Blog
/

Thought Leadership

Ransomware

/
February 6, 2022

Ransomware Groups Aim for Maximum Disruption

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Feb 2022
Discover key ransomware trends and effective strategies to safeguard your organization. Marcus Fowler provides insights on combating cyber threats!

In parallel to the global COVID-19 pandemic, there has been a growing ransomware pandemic. Darktrace researchers discovered that ransomware attacks on US organizations tripled in 2021 compared to 2020, and attacks on UK organizations doubled.

This crisis brought 30 nations together to discuss a counter-ransomware initiative focused on cryptocurrency regulation, security resilience, attack disruption, and international cyber diplomacy. Despite these landmark policies and law enforcement efforts, it’s safe to say that ransomware will remain as a top priority threat and is not going anywhere.

As ransomware permeates, cyber-attackers will continue evolving techniques in 2022

Ransomware gangs are becoming more sophisticated in how they select targets and how they carry out attacks. Many organizations think that ransomware shouldn’t be a serious concern if they have backups in place because they can quickly bring business operations back online. But modern attacks are about more than encryption or data exfiltration; they focus on maximizing disruption to business operations, including targeting backups for encryption and deletion. In 2022, we could see ransomware gangs target cloud service providers as well as backup and archiving providers.

Critical infrastructure organizations and businesses will continue to assess how quickly they can restore operations in the aftermath of an attack and how extensively they will be able to rely on, and the costs required for cyber insurers to cover entire ransom payments and costly systems repairs.

In early January, Microsoft researchers found evidence of malware targeting multiple Ukrainian organizations deploying what appeared to be ransomware but was actually a wiper. The malware displays a ransom note then executes the wiper when the target device is powered down. If adopted by other non-state actors, this evolution goes beyond ransomware, and some organizations won’t be able to survive these types of attacks.

Sophisticated ransomware gangs will expand their detailed targeting efforts from only ‘big game hunting,’ where they target large and well-known targets, to use more resources directly targeting midsize and smaller organizations. With increased scalability through automation and leveraging supply chain attacks, ransomware gangs will have the resources to expand their operations. Large organizations have more substantial budgets and more people, and they can prioritize resources to deal with ransomware’s effects — it will be far more difficult for small businesses.

Not only are ransomware operators expanding whom they can target, but the group of cyber-attackers able to execute attacks is expanding. The rise of Ransomware-as-a-Service (RaaS) gives low-skilled threat actors access to sophisticated malware strains, lowering the barrier to entry for attackers. RaaS has expanded the criminal ecosystem to include lower-level threat actors who find and attack the targets before installing the malicious software. Threat actors are increasingly using bots to automate the initial attack that gets them a foothold in the system.

There is also a varying degree of professionalism amongst cyber-criminals, from seasoned veterans (with current or previous nation-state experience) to ‘script kiddies’ with little expertise. This array translates to greater potential for untested or reckless use of sophisticated tools by unsophisticated actors.

Ransomware groups will bounce back

Ransomware groups are resilient. Even if government pressures force ransomware groups to disband or criminally charge them, they will continue to rebrand and crop back up. For example, DarkSide, confirmed by the FBI to be behind the attack on Colonial Pipeline, shut down a week after the attack. Shortly after, BlackMatter emerged, widely believed to be a rebranded version of the same cyber-crime group.

Figure 1: Darktrace breaks down the stages of a BlackMatter ransomware attack targeting a marketing firm in the US

Earlier this year, Russia’s security agency announced that it had arrested several members belonging to the notorious REvil ransomware gang and neutralized its operations. While this is a significant step against a major group, it is unlikely to reflect a long-term change in Russian policy towards cyber-criminal gangs. These arrests almost certainly do not mark the end of REvil.

Five ransomware groups have formed a cartel to exchange data and ‘best’ practices. These groups include Wizard Spider (linked to the Ryuk and Conti ransomware strains), Twisted Spider (which developed Maze and uses Egregor), Viking Spider (the group behind Ragnar), and LockBit.

Even if government pressures force ransomware groups to disband or criminally charge ransomware gangs, these groups will continue to rebrand and crop back up with even more sophisticated techniques and capabilities.

A static ‘hardened’ perimeter defense isn’t the answer – a dynamic self-defending one is

For organizations to build systems to withstand cyber-attacks, security leaders need to think and, more importantly, defend beyond the initial breach to maximize continuity of business operations. Security defenses like firewalls centered on defending the cyber perimeter are not enough to protect against evolving threats.

A truly dynamic defense is achievable. Organizations need to actively enforce ‘normal’ for businesses and disrupt attacks at the earliest indicators of malicious anomalous behavior, such as file encryption or data exfiltration. Security technology needs to learn, make micro-decisions, and take proportional responses to detect and stop attacks early enough before data exfiltration or encryption occurs.

Attackers are acutely aware of Threat Intelligence-reliant defensive tools they need to evade and know the limitations of the legacy, siloed approach many organizations employ. Attackers are finding valuable information, exfiltrating the files, and encrypting the data in a short period. The race condition and response window for defenders to detect and stop attacks is getting smaller; security teams and solution responses must get faster.

Cyber security is no longer a human-scale problem. Organizations need to adopt AI-based protections that can defend against increasingly automated ransomware attacks. In an era of fast-moving cyber-attacks, and with threat actors deliberately striking when security teams are out of the office, AI technologies have become essential in taking targeted action to contain attacks without interrupting normal business.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats

Marcus Fowler is the CEO of Darktrace Federal, working to help defend the U.S. Department of Defense (DoD), the Intelligence Community (IC), and Federal Civilian Agencies against cyber disruption and strengthen their defenses with complete AI-powered cybersecurity solutions. Marcus is a seasoned cybersecurity professional, with expertise on emerging and next generation cyber threats, trends, and conflicts. Marcus also serves as the SVP of Strategic Engagements and Threats at Darktrace, working closely with senior security leaders across industries on innovative cybersecurity strategy and business resilience.  

Previously, Marcus spent 15 years at the Central Intelligence Agency developing global cyber operations and technical strategies, leading cyber efforts with various US Intelligence Community elements and global partners. Prior to serving at the CIA, Marcus was an officer in the United States Marine Corps. Marcus has an engineering degree from the United States Naval Academy and a master's degree in international security studies from The Fletcher School. He also completed Harvard Business School’s Executive Education Advanced Management Program.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 28, 2025

/
No items found.

Reimaginar su SOC: cómo lograr una seguridad de red proactiva

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI