Blog
/

Email

Threat Finds

Inside the SOC

/
June 16, 2021

Stopping Corp-Internal Phishing Attacks with Darktrace

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Jun 2021
Discover how Darktrace Email stopped a series of multi-language phishing attacks, including an Emotet campaign in Japanese. Learn how Darktrace can help!

Click here! Clique aqui! ここをクリック! Klikk here! !اینجا کلیک کنید naDev yIbej! Hic tange!

Language is deceptive. In the realm of email security, language can deceive a recipient into clicking a link or completing a transaction, and it can trick a security tool into thinking an email is legitimate.

It is for this reason that Darktrace/Email is not reliant on language, but rather uses mathematics to develop an understanding of ‘normal’ for every email user in an organization. This enables it to neutralize anomalous emails indicative of a threat around the world, no matter in what format or language they come.

Natural language processing

When it comes to catching a compromised account or impersonation email, how can you teach a computer to understand intent or a change of tone, compared to the normal way a person corresponds?

One of the most common approaches in email security is natural language processing. NLP looks at how to program computers to analyze natural language, commonly by exposing them to a large volume of data.

The result is a computer capable of ‘understanding’ the contents of documents, including the nuances of the language within them. The technology can then extract information in the documents as well as categorize and organize the documents themselves.

Modern-day limitations

However, using NLP is limited in scope for email security as it will often misunderstand specific jargon or colloquialisms, as well as terms that had not been invented when the computer was programmed, unless it is trained on these too. Each additional language requires the computer to learn from zero every time. NLP only works on the regional languages it has been trained on, and it is not commercially viable to teach the technology to work in all small markets.

If a company hires an email security vendor based in America, therefore, it is probable that the security vendor has invested most of their time in detecting English-based phishing threats. That is fine if the company only communicates in English, but this is often not the case. In a 21st century globalized world, the need for security technology to be language-agnostic is more critical than ever.

Not all AI is the same: Unsupervised machine learning

Darktrace/Email relies on unsupervised machine learning, which can learn on the job and does not need to be fed large data sets. It can glean insights from NLP for good measure, but it does not depend on NLP for detection or understanding.

When working with AI it is crucial to understand how the AI learns: does it learn on the job or was it trained with a labeled data set? This is particularly important when looking to understand the intent behind an email, specifically to uncover solicitation attempts either through spoofing, phishing, impersonation of a supplier or any other form of email attack.

Rather than teaching a computer to understand language in an email, Darktrace Cyber AI dynamically assesses activity across inbound and outbound emails including senders, recipients, links, IP addresses, and attachment types. The movement of all these objects are then used by the AI to create the ‘patterns of life’ for every user across all communications, including communications with external users who frequently correspond with a given business.

By taking a mathematical approach, Darktrace/Email is able to understand ‘normal’ for any user regardless of the dialect they are corresponding in, uniquely interpreting all languages from Norwegian to Latin and Persian, and subsequently identifying subtle anomalies indicative of a phishing attack or an account takeover.

Catching Emotet in Japanese

Last year, Darktrace uncovered a sophisticated Spamware campaign which leveraged Emotet, the infamous banking malware. The campaign targeted various industries with highly sophisticated phishing emails.

At a food production company in Japan, Darktrace detected six phishing emails sent over a two-day period in July.

Figure 1: An email from the Emotet campaign.

In the email above, both the subject line and the filename translate to “Regarding the invoice,” followed by a number and the date. The attacker was clearly trying to imitate a legitimate business email here, spoofing a well-known Japanese company (三菱食品(株)) and a common Japanese name (‘藤沢 昭彦’).

Darktrace/Email revealed key metrics behind the email including that the real sender was using a domain name from GMO, a Japanese company which offers cheap web email services, and that the sender’s location was actually Portugal, not Japan.

Figure 2: Darktrace/Email detects the attempt at inducement.

Darktrace/Email’s models recognized the topic anomalies and inducement attempts in the emails, regardless of the language they had been written in – giving a high anomaly score of 85. Furthermore, Darktrace’s AI determined that the extension and the MIME type in the attachments were anomalous, when compared to the documents which the user normally exchanges via email.

Portuguese threat find

In another instance, a series of malicious emails were sent to an organization in Europe. These emails used several tactics to bypass the company’s security tools, including personalized subject lines and hidden malicious URLs.

Figure 3: An interactive snapshot of Darktrace/Email’s user interface. The subject line reads ‘Notice of transfer.’

As displayed above, the email contained a link that appeared to lead to a CaixaBank domain. However, Darktrace/Email recognized this as a deliberate attempt to mislead the recipient and revealed that the link in fact led to a WordPress domain, which Cyber AI identified as 100% rare for the business.

A closer inspection revealed that these emails were sent from Vietnam. The sender had never been in any previous correspondence with the business, and the isolated link within the email was also marked as a 100% rare domain. Darktrace/Email held these malicious emails back, protecting the organization from harm.

Universal defense

These two examples demonstrate the benefits of an unsupervised machine learning approach. An AI security solution which analyzes hundreds of different metrics and does not rely on pre-existing data is a groundbreaking advantage when faced with global phishing threats that now utilize a wide range of languages.

Email-based attacks are becoming more targeted and more convincing by the day. Targeted social engineering and spear phishing with advanced translation tools bombard companies daily, in all languages.

Whether it’s a phishing attack against a local office in Korea or a solicitation attempt in Arabic – even a malicious email written in Klingon from a Star Trek convention – or any of the thousands of email exchanges which occur in countless vernaculars and tones, Darktrace/Email can keep your company safe across the world, and beyond.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Mariana Pereira
VP, Field CISO

Mariana is the VP, Field CISO at Darktrace, and works closely with the development, analyst, and marketing teams to advise technical and non-technical audiences on how best to augment cyber resilience, and how to implement AI technology as a means of defense. She speaks regularly at international events, with a specialism in presenting on sophisticated, AI-powered email attacks. She holds an MBA from the University of Chicago, and speaks several languages including French, Italian, and Portuguese.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 13, 2025

/

Cloud

Agent vs. Agentless cloud security: Why deployment methods matter

Default blog imageDefault blog image

The rapid adoption of cloud technologies has brought significant security challenges for organizations of all sizes. According to recent studies, over 70% of enterprises now operate in hybrid or multi-cloud environments, with 93% employing a multi-cloud strategy[1]. This complexity requires robust security tools, but opinions vary on the best deployment method—agent-based, agentless, or a combination of both.

Agent-based and agentless cloud security approaches offer distinct benefits and limitations, and organizations often make deployment choices based on their unique needs depending on the function of the specific assets covered, the types of data stored, and cloud architecture, such as hybrid or multi-cloud deployments.

For example, agentless solutions are increasingly favored for their ease of deployment and ability to provide broad visibility across dynamic cloud environments. These are especially useful for DevOps teams, with 64% of organizations citing faster deployment as a key reason for adopting agentless tools[2].

On the other hand, agent-based solutions remain the preferred choice for environments requiring deep monitoring and granular control, such as securing sensitive high-value workloads in industries like finance and healthcare. In fact, over 50% of enterprises with critical infrastructure report relying on agent-based solutions for their advanced protection capabilities[3].

As the debate continues, many organizations are turning to combined approaches, leveraging the strengths of both agent-based and agentless tools to address the full spectrum of their security needs for comprehensive coverage. Understanding the capabilities and limitations of these methods is critical to building an effective cloud security strategy that adapts to evolving threats and complex infrastructures.

Agent-based cloud security

Agent-based security solutions involve deploying software agents on each device or system that needs protection. Agent-based solutions are great choices when you need in-depth monitoring and protection capabilities. They are ideal for organizations that require deep security controls and real-time active response, particularly in hybrid and on-premises environments.

Key advantages include:

1. Real-time monitoring and protection: Agents detect and block threats like malware, ransomware, and anomalous behaviors in real time, providing ongoing protection and enforcing compliance by continuously monitoring workload activities.  Agents enable full control over workloads for active response such as blocking IP addresses, killing processes, disabling accounts, and isolating infected systems from the network, stopping lateral movement.

2. Deep visibility for hybrid environments: Agent-based approaches allow for full visibility across on-premises, hybrid, and multi-cloud environments by deploying agents on physical and virtual machines. Agents offer detailed insights into system behavior, including processes, files, memory, network connections, and more, detecting subtle anomalies that might indicate security threats. Host-based monitoring tracks vulnerabilities at the system and application level, including unpatched software, rogue processes, and unauthorized network activity.

3. Comprehensive coverage: Agents are very effective in hybrid environments (cloud and on-premises), as they can be installed on both physical and virtual machines.  Agents can function independently on each host device onto which they are installed, which is especially helpful for endpoints that may operate outside of constant network connectivity.

Challenges:

1. Resource-intensive: Agents can consume CPU, memory, and network resources, which may affect performance, especially in environments with large numbers of workloads or ephemeral resources.

2. Challenging in dynamic environments: Managing hundreds or thousands of agents in highly dynamic or ephemeral environments (e.g., containers, serverless functions) can be complex and labor-intensive.

3. Slower deployment: Requires agent installation on each workload or instance, which can be time-consuming, particularly in large or complex environments.  

Agentless cloud security

Agentless security does not require software agents to be installed on each device. Instead, it uses cloud infrastructure and APIs to perform security checks. Agentless solutions are highly scalable with minimal impact on performance, and ideal for cloud-native and highly dynamic environments like serverless and containerized. These solutions are great choices for your cloud-native and multi-cloud environments where rapid deployment, scalability, and minimal impact on performance are critical, but response actions can be handled through external tools or manual processes.

Key advantages include:

1. Scalability and ease of deployment: Because agentless security doesn’t require installation on each individual device, it is much easier to deploy and can quickly scale across a vast number of cloud assets. This approach is ideal for environments where resources are frequently created and destroyed (e.g., serverless, containerized workloads), as there is no need for agent installation or maintenance.

2. Reduced system overhead: Without the need to run local agents, agentless security minimizes the impact on system performance. This is crucial in high-performance environments.

3. Broad visibility: Agentless security connects via API to cloud service providers, offering near-instant visibility and threat detection. It provides a comprehensive view of your cloud environment, making it easier to manage and secure large and complex infrastructures.

Challenges

1. Infrastructure-level monitoring: Agentless solutions rely on cloud service provider logs and API calls, meaning that detection might not be as immediate as agent-based solutions. They collect configuration data and logs, focusing on infrastructure misconfigurations, identity risks, exposed resources, and network traffic, but lack visibility and access to detailed, system-level information such as running processes and host-level vulnerabilities.

2. Cloud-focused: Primarily for cloud environments, although some tools may integrate with on-premises systems through API-based data gathering. For organizations with hybrid cloud environments, this approach fragments visibility and security, leading to blind spots and increasing security risk.

3. Passive remediation: Typically provides alerts and recommendations, but lacks deep control over workloads, requiring manual intervention or orchestration tools (e.g., SOAR platforms) to execute responses. Some agentless tools trigger automated responses via cloud provider APIs (e.g., revoking permissions, adjusting security groups), but with limited scope.

Combined agent-based and agentless approaches

A combined approach leverages the strengths of both agent-based and agentless security for complete coverage. This hybrid strategy helps security teams achieve comprehensive coverage by:

  • Using agent-based solutions for deep, real-time protection and detailed monitoring of critical systems or sensitive workloads.
  • Employing agentless solutions for fast deployment, broader visibility, and easier scalability across all cloud assets, which is particularly useful in dynamic cloud environments where workloads frequently change.

The combined approach has distinct practical applications. For example, imagine a financial services company that deals with sensitive transactions. Its security team might use agent-based security for critical databases to ensure stringent protections are in place. Meanwhile, agentless solutions could be ideal for less critical, transient workloads in the cloud, where rapid scalability and minimal performance impact are priorities. With different data types and infrastructures, the combined approach is best.

Best of both worlds: The benefits of a combined approach

The combined approach not only maximizes security efficacy but also aligns with diverse operational needs. This means that all parts of the cloud environment are secured according to their risk profile and functional requirements. Agent-based deployment provides in-depth monitoring and active protection against threats, suitable for environments requiring tight security controls, such as financial services or healthcare data processing systems. Agentless deployment complements agents by offering broader visibility and easier scalability across diverse and dynamic cloud environments, ideal for rapidly changing cloud resources.

There are three major benefits from combining agent-based and agentless approaches.

1. Building a holistic security posture: By integrating both agent-based and agentless technologies, organizations can ensure that all parts of their cloud environments are covered—from persistent, high-risk endpoints to transient cloud resources. This comprehensive coverage is crucial for detecting and responding to threats promptly and effectively.

2. Reducing overhead while boosting scalability: Agentless systems require no software installation on each device, reducing overhead and eliminating the need to update and maintain agents on a large number of endpoints. This makes it easier to scale security as the organization grows or as the cloud environment changes.

3. Applying targeted protection where needed: Agent-based solutions can be deployed on selected assets that handle sensitive information or are critical to business operations, thus providing focused protection without incurring the costs and complexity of universal deployment.

Use cases for a combined approach

A combined approach gives security teams the flexibility to deploy agent-based and agentless solutions based on the specific security requirements of different assets and environments. As a result, organizations can optimize their security expenditures and operational efforts, allowing for greater adaptability in cloud security use cases.

Let’s take a look at how this could practically play out. In the combined approach, agent-based security can perform the following:

1. Deep monitoring and real-time protection:

  • Workload threat detection: Agent-based solutions monitor individual workloads for suspicious activity, such as unauthorized file changes or unusual resource usage, providing high granularity for detecting threats within critical cloud applications.
  • Behavioral analysis of applications: By deploying agents on virtual machines or containers, organizations can monitor behavior patterns and flag anomalies indicative of insider threats, lateral movement, or Advanced Persistent Threats (APTs).
  • Protecting high-sensitivity environments: Agents provide continuous monitoring and advanced threat protection for environments processing sensitive data, such as payment processing systems or healthcare records, leveraging capabilities like memory protection and file integrity monitoring.

2. Cloud asset protection:

  • Securing critical infrastructure: Agent-based deployments are ideal for assets like databases or storage systems that require real-time defense against exploits and ransomware.
  • Advanced packet inspection: For high-value assets, agents offer deep packet inspection and in-depth logging to detect stealthy attacks such as data exfiltration.
  • Customizable threat response: Agents allow for tailored security rules and automated responses at the workload level, such as shutting down compromised instances or quarantining infected files.

At the same time, agentless cloud security provides complementary benefits such as:

1. Broad visibility and compliance:

  • Asset discovery and management: Agentless systems can quickly scan the entire cloud environment to identify and inventory all assets, a crucial capability for maintaining compliance with regulations like GDPR or HIPAA, which require up-to-date records of data locations and usage.
  • Regulatory compliance auditing and configuration management: Quickly identify gaps in compliance frameworks like PCI DSS or SOC 2 by scanning configurations, permissions, and audit trails without installing agents. Using APIs to check configurations across cloud services ensures that all instances comply with organizational and regulatory standards, an essential aspect for maintaining security hygiene and compliance.
  • Shadow IT Detection: Detect and map unauthorized cloud services or assets that are spun up without security oversight, ensuring full inventory coverage.

2. Rapid environmental assessment:

  • Vulnerability assessment of new deployments: In environments where new code is frequently deployed, agentless security can quickly assess new instances, containers, or workloads in CI/CD pipelines for vulnerabilities and misconfigurations, enabling secure deployments at DevOps speed.
  • Misconfiguration alerts: Detect and alert on common cloud configuration issues, such as exposed storage buckets or overly permissive IAM roles, across cloud providers like AWS, Azure, and GCP.
  • Policy enforcement: Validate that new resources adhere to established security baselines and organizational policies, preventing security drift during rapid cloud scaling.

Combining agent-based and agentless approaches in cloud security not only maximizes the protective capabilities, but also offers flexibility, efficiency, and comprehensive coverage tailored to the diverse and evolving needs of modern cloud environments. This integrated strategy ensures that organizations can protect their assets more effectively while also adapting quickly to new threats and regulatory requirements.

Darktrace offers complementary and flexible deployment options for holistic cloud security

Powered by multilayered AI, Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that is agentless by default, with optional lightweight, host-based server agents for enhanced real-time actioning and deep inspection. As such, it can deploy in cloud environments in minutes and provide unified visibility and security across hybrid, multi-cloud environments.

With any deployment method, Darktrace supports multi-tenant, hybrid, and serverless cloud environments. Its Self-Learning AI learns the normal behavior across architectures, assets, and users to identify unusual activity that may indicate a threat. With this approach, Darktrace / CLOUD quickly disarms threats, whether they are known, unknown, or completely novel. It then accelerates the investigation process and responds to threats at machine speed.

Learn more about how Darktrace / CLOUD secures multi and hybrid cloud environments in the Solution Brief.

References:

1. Flexera 2023 State of the Cloud Report

2. ESG Research 2023 Report on Cloud-Native Security

3. Gartner, Market Guide for Cloud Workload Protection Platforms, 2023

Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

January 10, 2025

/

Inside the SOC

Detecting and mitigating adversary-in-the-middle phishing attacks with Darktrace Services

Default blog imageDefault blog image

What is an Adversary-in-the-Middle Attack?

Threat actors are increasingly utilizing advanced phishing toolkits and techniques to carry out Adversary-in-the-Middle (AitM) attacks. These attacks involve the use of a proxy to a legitimate service, where the attacker’s webpage mimics the expected site. While the victim believes they are visiting the legitimate site, they are actually interacting with the attacker’s device, allowing the malicious actor to monitor all interactions and control the authenticated session, ultimately gaining access to the user’s account [1][2].

This blog will explore how Darktrace detected AitM techniques being leveraged in a Business Email Compromise (BEC) attack that used the widely used and trusted cloud storage service, Dropbox, for delivery. Dropbox’s popularity has made it a prime target for attackers to exploit in recent years. Threat actors can exploit the service for various malicious activities, including distributing malware and exposing sensitive information.

Attack Overview

In these types of AitM BEC attacks, recipients are often targeted with Dropbox-related emails, featuring subject headings like ‘FirstLast shared "Filename" with you,’ which suggest an individual is sharing an invoice-related attachment. These email subjects are common in such attacks, as threat actors attempt to encourage victims to access Dropbox links by masquerading them as legitimate files.

While higher priority users are, of course, targeted, the scope of these attacks remains broad. For instance, if a lower priority user is targeted by a phishing attack or their token is stolen, an attacker can still attempt BEC for further malicious intent and financial gain.

In October 2024, a Darktrace customer received a phishing email from a seemingly legitimate Dropbox address. This email originated from the IP, 54.240.39[.]219 and contained multiple link payloads to Dropbox-related hostnames were observed, inviting the user to access a file. Based on anomaly indicators and detection by Darktrace / EMAIL, Darktrace recognized that one of the payloads was attempting to abuse a legitimate cloud platform to share files or other unwanted material with the recipient.

Figure 1: Overview of the malicious email in the Darktrace / EMAIL console, highlighting Dropbox associated content/link payloads.

Following the recipient’s engagement with this email, Darktrace / IDENTITY identified a series of suspicious activities within the customer’s environment.

AitM attacks allow threat actors to bypass multi-factor authentication (MFA). Initially, when a user is phished, the malicious infrastructure captures both the user’s credentials and the token. This includes replaying a token issued to user that has already completed the MFA requirement, allowing the threat actor to satisfy the validity of the requirement and gain access to sensitive organizational resources. Darktrace is able to analyze user activity and authentication patterns to determine whether MFA requirements were met. This capability helps verify and indicate token theft via AitM.

Darktrace observed the associated user account making requests over Microsoft 365 from the IP 41.90.175[.]46. Given the unusual nature and rare geolocation based in Kenya, Africa, this activity did not appear indicative of legitimate business operations.

Figure 2: Geographical location of the SaaS user in relation to the source IP 41.90.175[.]46.

Further analysis using open-source intelligence (OSINT) revealed that the endpoint was likely associated with a call-back proxy network [3]. This suggested the presence of a network device capable of re-routing traffic and harvesting information.

Darktrace also detected that the same SaaS user was logging in from two different locations around the same time. One login was from a common, expected location, while the other was from an unusual location. Additionally, the user was observed registering security information using the Microsoft Authenticator app, indicating an attempt by an attacker to maintain access to the account by establishing a new method of MFA. This new MFA method could be used to bypass future MFA requirements, allowing the attacker to access sensitive material or carry out further malicious activities.

Figure 3: External sites summary for the SaaS account in relation to the source IP 13.74.161[.]104, observed with Registering Security Information.

Ultimately, this anomalous behavior was escalated to the Darktrace Security Operations Centre (SOC) via the Managed Detection & Response service for prompt triage and investigation by Darktrace’s SOC Analysts who notified the customer of strong evidence of compromise.

Fortunately, since this customer had Darktrace enabled in Autonomous Response mode, the compromised SaaS account had already been disabled, containing the attack. Darktrace’s SOC elected to extend this action to ensure the malicious activity remained halted until the customer could take further remedial action.

Figure 4: Attack timeline of observed activity, in chronological order; This highlighted anomalous SaaS events such as, MailItemsAccessed’, ‘Use of Unusual Credentials’, ‘User Registered Security Info’ events, and a ‘Disable User’ Autonomous Response action.

Conclusion

AitM attacks can play a crucial role in BEC campaigns. These attacks are often part of multi-staged operations, where an initial AitM attack is leveraged to launch a BEC by delivering a malicious URL through a trusted vendor or service. Attackers often attempt to lay low on their target network, sometimes persisting for extended periods, as they monitor user accounts or network segments to intercept sensitive communications.

In this instance, Darktrace successfully identified and acted against AitM techniques being leveraged in a BEC attack that used Dropbox for delivery. While Dropbox is widely used for legitimate purposes, its popularity has also made it a target for exploitation by threat actors, who have used it for a variety of malicious purposes, including delivering malware and revealing sensitive information.

Darktrace’s Security Operations Support service, combined with its Autonomous Response technology, provided timely and effective mitigation. Dedicated Security Operations Support analysts triaged the incident and implemented preventative measures, ensuring the customer was promptly notified. Meanwhile, Darktrace swiftly disabled the compromised SaaS account, allowing the customer to take further necessary actions, such as resetting the user’s password.

This case highlights the capabilities of Darktrace’s solutions, enabling the customer to resume normal business operations despite the malicious activity.

Credit to Justin Torres (Senior Cyber Analyst), Stefan Rowe (Technical Director, SOC) and Ryan Traill (Analyst Content Lead)

Appendices

References

1.    https://www.proofpoint.com/us/threat-reference/man-in-the-middle-attack-mitm

2.    https://thehackernews.com/2024/08/how-to-stop-aitm-phishing-attack.html

3.    https://spur.us/context/41.90.175.46

Darktrace Model Detections

Darktrace / NETWORK Model Alert(s):

SaaS / Compromise::SaaS Anomaly Following Anomalous Login

SaaS / Unusual Activity::Multiple Unusual SaaS Activities

SaaS / Compromise::Unusual Login and Account Update

SaaS / Compromise::Login From Rare Endpoint While User Is Active

SaaS / Access::Unusual External Source for SaaS Credential Use

SaaS / Email Nexus::Unusual Login Location Following Link to File Storage

SaaS / Access::MailItemsAccessed from Rare Endpoint

Darktrace/Autonomous Response Model Alert(s):

Antigena / SaaS::Antigena Suspicious SaaS Activity Block

List of Indicators of Compromise (IoCs)

(IoC - Type - Description)

41.90.175[.]46 – Source IP Observed with Suspicious Login Behavior

MITRE ATT&CK Mapping

(Technique Name - Tactic - ID - Sub-Technique of)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Email Accounts - RESOURCE DEVELOPMENT - T1586.002 - T1586

Cloud Service Dashboard - DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Continue reading
About the author
Justin Torres
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI