Blog
/
AI
/
February 13, 2022

REvil's Ransomware Business Model & Staying Ahead with AI

Learn more about REvil by exploring a REvil ransomware campaign discovered by Darktrace's AI. Find out how the recent arrests impact cyber security.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Feb 2022

REvil, also known as Sodinokibi, is a Ransomware-as-a-Service (RaaS) gang responsible for one of the largest ransomware attacks in history. On 14th January 2022, Russia announced it had arrested 14 members of the criminal gang. The move came at the request of the US authorities, who have worked hard with international partners to crack down on the gang. Last year, multiple high-profile attacks were attributed to the REvil group, including the JBS ransomware and Kaseya supply chain incidents.

The arrests are certainly a victory for western law enforcement agencies, and follows November’s announcement from Europol that seven arrests of REvil affiliates had been made in the preceding months. The question is: to what extent will these arrests disrupt the gang’s operations, and for how long?

Early indications from security researchers at ReversingLabs indicates REvil activity has been unaffected. Statistics on REvil implants two weeks after the Russian arrests are unchanged, and if anything indicate a modest increase.

This continued activity implies one of two scenarios:

  • The flurry of arrests have only impacted ‘middle men’ within the criminal gang’s hierarchy
  • REvil’s ransomware-as-a-service model is resilient enough to survive disruption from law enforcement

Both scenarios are worrisome to those who may fall prey to ransomware gangs, and the reality is likely to be a far more complex mixture of these and other factors. The crackdown on ransomware is long overdue, but the battle is likely to be a long one. Law enforcement agencies need to disrupt the business model to such an extent that it no longer becomes profitable or favorable to be in the ransomware business, and this is likely to take months or even years.

So as the crackdown on ransomware plays out on the biggest stage, what comfort, if any, can security teams take from recent events?

Staying ahead of the evolving RaaS model with AI

A joint report on ransomware issued recently by the FBI, CISA, the NCSC, the ACSC and the NSA highlighted key trends over the past year:

  • RaaS has become increasingly professionalized, with business models and processes now well established.
  • The business model complicates attribution because there are complex networks of developers, affiliates, and freelancers.
  • Ransomware groups are sharing victim information with each other, diversifying the threat to targeted organizations.

In summary, the report illuminates how ransomware gangs have become increasingly adaptable when it comes to evading law enforcement and maximizing profit from ransom payments. Multiple groups have faded away, or retired, only to reappear under a different name and with a slightly updated playbook. The tactics, techniques, and procedures (TTPs) differ from victim to victim, largely because attacks are conducted by different ransomware operators and affiliates.

This is troubling for law enforcement bodies trying to crack down on the individuals behind these attacks. When a RaaS group like REvil consists of an amorphous and ever-changing web of associates, making individual arrests is a constant game of catch up, and will be unlikely to bring down the group as a whole.

The same battle is being played out on the scale of individual attack campaigns. Security tools focused on the hallmarks of previously encountered threats are also in a continuous state of catch up: by the time a single attack is detected, fingerprinted, and stored for next time, attackers and their techniques have moved on.

But there is another option available to defenders, who are increasingly turning to Self-Learning AI to stay one step ahead of attackers. By learning its digital surroundings and identifying subtle deviations indicative of an attack, this technology can detect and respond to novel attacks on the first encounter. Below is an example of how Self-Learning AI detected an attack launched by REvil without the use of rules or signatures.

REvil threat find

In the summer of 2021, a REvil affiliate launched an attack against a health and social care organization – a sector that has seen a big increase in cyber-attacks since the start of the global pandemic. While the attack was detected by Darktrace’s AI without using rules or signatures, the security team was not monitoring Darktrace at the time. In the absence of Autonomous Response – which would have taken targeted action to contain the threat – the attack was allowed to progress.

After gaining access to the network via the laptop of a remote worker, the attacker was able to abuse a legitimate remote desktop (RDP) connection to a corporate jump server to bruteforce additional credentials.

Once equipped with more credentials, the attacker connected to multiple internal devices via RDP, including a second jump server. Data exfiltration began from the initially compromised server over RDP port 3389.

Two weeks later, the attacker identified the organization’s crown jewels, stored on a third server, and attempted to initiate command and control (C2) communications. The server made a number of unusual external connections, including attempts to connect to a rare domain that resembled the pattern of activity associated with REvil’s earlier Kaseya ransomware campaign.

Darktrace for Endpoint, which was running on remote user devices, provided additional visibility, enabling the security team to determine the initially compromised user device. Had Antigena been active on the endpoint, it would have intervened to stop this unusual activity by blocking the specific unusual connections – containing the attack without impacting normal business operations.

Connecting the dots of a low-and-slow attack

The total dwell time of the attacker was 22 days. They were patient, and undertook actions in bursts of activity often with days in between. This pattern of behavior is not uncommon for ransomware attacks, particularly those using the RaaS model in which each step may be performed by different gang members or affiliates.

Darktrace’s Cyber AI Analyst was able to track in real time the complete attack lifecycle over several weeks, stitching together the separate phases of the attack into a coherent security incident.

Figure 1: Cyber AI Analyst reveals the complete attack kill chain

New name, same game

This attack is another case of threat actors living off the land: using legitimate programs and processes that were already in use in the environment to perform malicious activity. This can be very difficult to detect with traditional tools that are based on static use cases and cannot differentiate a legitimate RDP session from a malicious one.

As cyber-criminal groups like REvil continue to defy law enforcement efforts, defenders need to stay ahead with AI technology that learns its environment, adapts as it changes and grows, and responds to threats based on subtle deviations that indicate an emerging attack. Autonomous Response has been adopted by over thousands of organizations across all areas of the digital estate – from email and cloud services to endpoint devices, stopping ransomware attacks early, before encryption is achieved.

Thanks to Darktrace analyst Petal Beharry for her insights on the above threat find.

Technical details

Darktrace model detections:

  • Device / RDP Scan
  • Device / Bruteforce Activity
  • Compliance / Outbound Remote Desktop
  • Anomalous Connection / Upload via Remote Desktop
  • Anomalous Connection / Download and Upload
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Active Remote Desktop Tunnel
  • Device / New or Uncommon SMB Named Pipe
  • Device / Large Number of Connections to New Endpoints

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product

More in this series

No items found.

Blog

/

Network

/

November 14, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Default blog imageDefault blog image

What is Vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK™, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

Network

/

November 6, 2025

Darktrace Named the Only 2025 Gartner® Peer Insights™ Customers’ Choice for Network Detection and Response

Default blog imageDefault blog image

Darktrace: The only Customers’ Choice for NDR in 2025

In a year defined by rapid change across the threat landscape, recognition from those who use and rely on security technology every day means the most.

That’s why we’re proud to share that Darktrace has been named the only Customers’ Choice in the 2025 Gartner® Peer Insights™ Voice of the Customer for Network Detection and Response (NDR).

Out of 11 leading NDR vendors evaluated, Darktrace stood alone as the sole Customers’ Choice, a recognition that we feel reflects not just our innovation, but the trust and satisfaction of the customers who secure their networks with Darktrace every day.

What the Gartner® Peer Insights™ Voice of the Customer means

“Voice of the Customer” is a document that synthesizes Gartner Peer Insights reviews into insights for buyers of technology and services. This aggregated peer perspective, along with the individual detailed reviews, is complementary to Gartner expert research and can play a key role in your buying process. Peers are verified reviewers of a technology product or service, who not only rate the offering, but also provide valuable feedback to consider before making a purchase decision. Vendors placed in the upper-right “Customers’ Choice” quadrant of the “Voice of the Customer” have scores that meet or exceed the market average for both axes (User Interest and Adoption, and Overall Experience).It’s not just a rating. We feel it’s a reflection of genuine customer sentiment and success in the field.

In our view, Customers consistently highlight Darktrace’s ability to:

  • Detect and respond to unknown threats in real time
  • Deliver unmatched visibility across IT, OT, and cloud environments
  • Automate investigations and responses through AI-driven insights

We believe this recognition reinforces what our customers already know: that Darktrace helps them see, understand, and stop attacks others miss.

A rare double: recognized by customers and analysts alike

This distinction follows another major recogniton. Darktrace’s placement as a Leader in the Gartner® Magic Quadrant™ for Network Detection and Response earlier this year.

That makes Darktrace the only vendor to achieve both:

  • A Leader status in the Gartner Magic Quadrant for NDR, and
  • A Customers’ Choice in Gartner Peer Insights 2025

It’s a rare double that we feel reflects both industry leadership and customer trust, two perspectives that, together, define what great cybersecurity looks like.

A Customers’ Choice across the network and the inbox

To us, this recognition also builds on Darktrace’s momentum across multiple domains. Earlier this year, Darktrace was also named a Customers’ Choice for Email Security Platforms in the Gartner® Peer Insights™ report.

With more than 1,000 verified reviews across Network Detection and Response, Email Security Platforms, and Cyber Physical Systems (CPS), we at Darktrace are proud to be trusted across the full attack surface, from the inbox to the industrial network.

Thank you to our customers

We’re deeply grateful to every customer who shared their experience with Darktrace on Gartner Peer Insights. Your insights drive our innovation and continue to shape how we protect complex, dynamic environments across the world.

Discover why customers choose Darktrace for network and email security.

Gartner® Peer Insights™ content consists of the opinions of individual end users based on their own experiences, and should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Magic Quadrant and Peer Insights are registered trademarks of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner, Voice of the Customer for Network Detection and Response, By Peer Community Contributor, 30 October 2025

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI