ブログ
/
AI
/
February 13, 2022

REvil's Ransomware Business Model & Staying Ahead with AI

Learn more about REvil by exploring a REvil ransomware campaign discovered by Darktrace's AI. Find out how the recent arrests impact cyber security.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Feb 2022

REvil, also known as Sodinokibi, is a Ransomware-as-a-Service (RaaS) gang responsible for one of the largest ransomware attacks in history. On 14th January 2022, Russia announced it had arrested 14 members of the criminal gang. The move came at the request of the US authorities, who have worked hard with international partners to crack down on the gang. Last year, multiple high-profile attacks were attributed to the REvil group, including the JBS ransomware and Kaseya supply chain incidents.

The arrests are certainly a victory for western law enforcement agencies, and follows November’s announcement from Europol that seven arrests of REvil affiliates had been made in the preceding months. The question is: to what extent will these arrests disrupt the gang’s operations, and for how long?

Early indications from security researchers at ReversingLabs indicates REvil activity has been unaffected. Statistics on REvil implants two weeks after the Russian arrests are unchanged, and if anything indicate a modest increase.

This continued activity implies one of two scenarios:

  • The flurry of arrests have only impacted ‘middle men’ within the criminal gang’s hierarchy
  • REvil’s ransomware-as-a-service model is resilient enough to survive disruption from law enforcement

Both scenarios are worrisome to those who may fall prey to ransomware gangs, and the reality is likely to be a far more complex mixture of these and other factors. The crackdown on ransomware is long overdue, but the battle is likely to be a long one. Law enforcement agencies need to disrupt the business model to such an extent that it no longer becomes profitable or favorable to be in the ransomware business, and this is likely to take months or even years.

So as the crackdown on ransomware plays out on the biggest stage, what comfort, if any, can security teams take from recent events?

Staying ahead of the evolving RaaS model with AI

A joint report on ransomware issued recently by the FBI, CISA, the NCSC, the ACSC and the NSA highlighted key trends over the past year:

  • RaaS has become increasingly professionalized, with business models and processes now well established.
  • The business model complicates attribution because there are complex networks of developers, affiliates, and freelancers.
  • Ransomware groups are sharing victim information with each other, diversifying the threat to targeted organizations.

In summary, the report illuminates how ransomware gangs have become increasingly adaptable when it comes to evading law enforcement and maximizing profit from ransom payments. Multiple groups have faded away, or retired, only to reappear under a different name and with a slightly updated playbook. The tactics, techniques, and procedures (TTPs) differ from victim to victim, largely because attacks are conducted by different ransomware operators and affiliates.

This is troubling for law enforcement bodies trying to crack down on the individuals behind these attacks. When a RaaS group like REvil consists of an amorphous and ever-changing web of associates, making individual arrests is a constant game of catch up, and will be unlikely to bring down the group as a whole.

The same battle is being played out on the scale of individual attack campaigns. Security tools focused on the hallmarks of previously encountered threats are also in a continuous state of catch up: by the time a single attack is detected, fingerprinted, and stored for next time, attackers and their techniques have moved on.

But there is another option available to defenders, who are increasingly turning to Self-Learning AI to stay one step ahead of attackers. By learning its digital surroundings and identifying subtle deviations indicative of an attack, this technology can detect and respond to novel attacks on the first encounter. Below is an example of how Self-Learning AI detected an attack launched by REvil without the use of rules or signatures.

REvil threat find

In the summer of 2021, a REvil affiliate launched an attack against a health and social care organization – a sector that has seen a big increase in cyber-attacks since the start of the global pandemic. While the attack was detected by Darktrace’s AI without using rules or signatures, the security team was not monitoring Darktrace at the time. In the absence of Autonomous Response – which would have taken targeted action to contain the threat – the attack was allowed to progress.

After gaining access to the network via the laptop of a remote worker, the attacker was able to abuse a legitimate remote desktop (RDP) connection to a corporate jump server to bruteforce additional credentials.

Once equipped with more credentials, the attacker connected to multiple internal devices via RDP, including a second jump server. Data exfiltration began from the initially compromised server over RDP port 3389.

Two weeks later, the attacker identified the organization’s crown jewels, stored on a third server, and attempted to initiate command and control (C2) communications. The server made a number of unusual external connections, including attempts to connect to a rare domain that resembled the pattern of activity associated with REvil’s earlier Kaseya ransomware campaign.

Darktrace for Endpoint, which was running on remote user devices, provided additional visibility, enabling the security team to determine the initially compromised user device. Had Antigena been active on the endpoint, it would have intervened to stop this unusual activity by blocking the specific unusual connections – containing the attack without impacting normal business operations.

Connecting the dots of a low-and-slow attack

The total dwell time of the attacker was 22 days. They were patient, and undertook actions in bursts of activity often with days in between. This pattern of behavior is not uncommon for ransomware attacks, particularly those using the RaaS model in which each step may be performed by different gang members or affiliates.

Darktrace’s Cyber AI Analyst was able to track in real time the complete attack lifecycle over several weeks, stitching together the separate phases of the attack into a coherent security incident.

Figure 1: Cyber AI Analyst reveals the complete attack kill chain

New name, same game

This attack is another case of threat actors living off the land: using legitimate programs and processes that were already in use in the environment to perform malicious activity. This can be very difficult to detect with traditional tools that are based on static use cases and cannot differentiate a legitimate RDP session from a malicious one.

As cyber-criminal groups like REvil continue to defy law enforcement efforts, defenders need to stay ahead with AI technology that learns its environment, adapts as it changes and grows, and responds to threats based on subtle deviations that indicate an emerging attack. Autonomous Response has been adopted by over thousands of organizations across all areas of the digital estate – from email and cloud services to endpoint devices, stopping ransomware attacks early, before encryption is achieved.

Thanks to Darktrace analyst Petal Beharry for her insights on the above threat find.

Technical details

Darktrace model detections:

  • Device / RDP Scan
  • Device / Bruteforce Activity
  • Compliance / Outbound Remote Desktop
  • Anomalous Connection / Upload via Remote Desktop
  • Anomalous Connection / Download and Upload
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Active Remote Desktop Tunnel
  • Device / New or Uncommon SMB Named Pipe
  • Device / Large Number of Connections to New Endpoints

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

Default blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

Default blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ