Blog
/
/
December 1, 2021

Darktrace AI Detects Egregor Ransomware On Day One

Discover how Darktrace AI detected the signs of an Egregor ransomware attack on day one of deployment. Stay informed on the latest cybersecurity threats!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
01
Dec 2021

It’s no secret that ransomware has shaped conversations in the SOC this year more than any other topic, as attackers use new malware variants and other sophisticated techniques, tools and procedures to bypass conventional security tools. Not only are these attacks becoming more advanced and difficult to stop, but the ransom demands are growing, with one source suggesting the average ransom demand has grown by over 500% since last year.

To stop novel ransomware attacks, security teams need to turn away from ‘rear-view mirror’ tools trained on previous attacks, and towards AI technology that learns the business from the ground up and autonomously responds with targeted action to contain the threat.

This blog showcases how defenders can fight back against even the most sophisticated attacks, dissecting a recent ransomware attack uncovered by Darktrace’s AI from its first day of deployment at a utility services company. This was a particularly devastating ransomware strain known as Egregor, which has likely been disrupted by a joint effort between law enforcement agencies in Ukraine, France and the US, but wreaked havoc in the winter of 2020/21, affecting 150 companies and demanding ransoms of up to $4 million.

Anatomy of an Egregor attack

Figure 1: A timeline of the attack.

The initial intrusion occurred prior to Darktrace’s deployment, via Emotet, a trojan malware typically spread via spam emails – that has also been disrupted since this attack happened. Had Antigena Email been installed, Darktrace’s AI would have picked up on subtle deviations within malicious emails and actioned a response, containing the ransomware attack in its earliest stages. In this case, Antigena Email was not installed, and so the attack was allowed to proceed.

On November 27, 2020, Darktrace’s AI was deployed and began learning the ‘patterns of life’ for every user and device in the organization. On the first day of learning the organization, the technology detected suspicious external connections on a laptop that was deviating from the ‘pattern of life’ of its peer group of similar devices, beaconing to unusual rare domains that were later associated with malware activity.

Lateral movement and privilege escalation indicators were then observed, as well as possible attempted email hijacking. Darktrace’s AI detected new and unusual svcctl requests, new remote procedure calls, and suspicious executable file writes over SMBv2, as well as new external connections over email-related ports.

Connecting the dots: Cyber AI Analyst investigates

Triggered by this unusual activity, Darktrace’s Cyber AI Analyst launched an investigation into all observable stages of the kill chain including command and control connections, suspicious executable SMB writes and privilege escalation.

It then automatically generated an incident summary showcasing every stage of the attack, surfacing all the information the security team needed for a fast response.

Figure 2: Cyber AI Analyst triaged and reported on the malicious activity from the device, surfacing useful metrics and natural language summaries for each stage of the kill chain.

Figure 3: This graph from the Darktrace UI displays how Cyber AI Analyst detected the various stages of the kill chain and correlated the timeline of events.

Figure 4: Darktrace reveals the spike in external connections in blue for the device and the DCE-RPC requests in green. The dots represent model breaches triggered by the unusual suspicious activity originating from the device. The external connection spikes match the internal DC-RPC request spikes indicating the device is attempting to move laterally during the C2 connections.

In this case, real-time detections from Darktrace’s AI coupled with a high-confidence alert from Darktrace’s SOC team enabled the company’s security team to isolate the device from the network, successfully containing the attack before encryption began.

While having AI-powered detection was enough to stop the attack in this scenario, relying on detection alone is playing with fire. With the average dwell time of attacks shrinking – particularly in the case of ransomware – Autonomous Response is becoming critical in taking action on behalf of human teams. Attackers are increasingly striking out of hours, when these teams aren’t available to respond, and performing exfiltration and encryption rapidly. In these cases, detection without immediate response is futile.

Autonomous Response: Revolutionizing ransomware defense

Recent galvanizing attacks have propelled us into a new era of ransomware. 65% of C-suite and other executives say that ransomware will be a major issue they face over the next twelve months.

An over-reliance on security defenses that depend on rules, signatures, and historical data has proven to leave organizations vulnerable to novel ransomware. Failure to prepare for the unknown often forces businesses into a difficult dilemma when it comes to ransomware: either pull the plug to stop the encryption by taking everything offline, or face encrypted systems, and be confronted with a hefty ransom.

But there is a third way, one which uses Self-Learning AI to understand your organization from the ground up to spot subtle deviations indicative of a cyber-threat, regardless of whether it has been seen before. Moreover, Autonomous Response ensures that fast, precise action will be taken against attacks whenever they occur. While even the most attentive human teams cannot hope to match the machine speed of modern ransomware attacks, Autonomous Response halts these sophisticated threats the moment they emerge. It really is the only way to truly level the playing field against today’s ransomware attacks.

Thanks to Darktrace analyst Dylan Evans for his insights on the above threat find.

Darktrace model breaches:

  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Experimental / Possible Emotet Callback URL
  • Device / Large Number of Model Breaches
  • Device / Lateral Movement and C2 Activity
  • Compromise / SSL or HTTP Beacon
  • Device / Multiple Lateral Movement Model Breaches
  • Compromise / Suspicious SSL Activity
  • Compromise / Unusual SMB Session and DRS
  • Compromise / Suspicious Spam Activity
  • Compromise / Unusual DRS Activity
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Compromise / Beaconing Activity To External Rare
  • Compliance / SMB Drive Write
  • Experimental / Anomalous GetNCChanges and Kerberos Ticket
  • Experimental / New or Uncommon SMB Named Pipe V4
  • Device / Large Number of Connections to New Endpoints
  • Anomalous Connection / New or Uncommon Service Control
  • User / New Admin Credentials on Client
  • Anomalous Connection / Possible Outbound Spam
  • Compromise / New or Repeated to Unusual SSL Port
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Experimental / New or Uncommon SMB Named Pipe V3
  • Experimental / Anomalous DRSGetNCChanges Operation
  • Anomalous Connection / Possible Callback URL
  • Compromise / Sustained SSL or HTTP Increase
  • Anomalous Connection / Multiple SMB Admin Session
  • Anomalous Connection / Rare External SSL Self-Signed
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Device / New Failed External Connections
  • Anomalous Connection / Suspicious Self-Signed SSL
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / HTTP Beaconing to Rare Destination
  • Experimental / Rare Device TLS Agent

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI