Blog
/
/
December 1, 2021

Darktrace AI Detects Egregor Ransomware On Day One

Discover how Darktrace AI detected the signs of an Egregor ransomware attack on day one of deployment. Stay informed on the latest cybersecurity threats!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
01
Dec 2021

It’s no secret that ransomware has shaped conversations in the SOC this year more than any other topic, as attackers use new malware variants and other sophisticated techniques, tools and procedures to bypass conventional security tools. Not only are these attacks becoming more advanced and difficult to stop, but the ransom demands are growing, with one source suggesting the average ransom demand has grown by over 500% since last year.

To stop novel ransomware attacks, security teams need to turn away from ‘rear-view mirror’ tools trained on previous attacks, and towards AI technology that learns the business from the ground up and autonomously responds with targeted action to contain the threat.

This blog showcases how defenders can fight back against even the most sophisticated attacks, dissecting a recent ransomware attack uncovered by Darktrace’s AI from its first day of deployment at a utility services company. This was a particularly devastating ransomware strain known as Egregor, which has likely been disrupted by a joint effort between law enforcement agencies in Ukraine, France and the US, but wreaked havoc in the winter of 2020/21, affecting 150 companies and demanding ransoms of up to $4 million.

Anatomy of an Egregor attack

Figure 1: A timeline of the attack.

The initial intrusion occurred prior to Darktrace’s deployment, via Emotet, a trojan malware typically spread via spam emails – that has also been disrupted since this attack happened. Had Antigena Email been installed, Darktrace’s AI would have picked up on subtle deviations within malicious emails and actioned a response, containing the ransomware attack in its earliest stages. In this case, Antigena Email was not installed, and so the attack was allowed to proceed.

On November 27, 2020, Darktrace’s AI was deployed and began learning the ‘patterns of life’ for every user and device in the organization. On the first day of learning the organization, the technology detected suspicious external connections on a laptop that was deviating from the ‘pattern of life’ of its peer group of similar devices, beaconing to unusual rare domains that were later associated with malware activity.

Lateral movement and privilege escalation indicators were then observed, as well as possible attempted email hijacking. Darktrace’s AI detected new and unusual svcctl requests, new remote procedure calls, and suspicious executable file writes over SMBv2, as well as new external connections over email-related ports.

Connecting the dots: Cyber AI Analyst investigates

Triggered by this unusual activity, Darktrace’s Cyber AI Analyst launched an investigation into all observable stages of the kill chain including command and control connections, suspicious executable SMB writes and privilege escalation.

It then automatically generated an incident summary showcasing every stage of the attack, surfacing all the information the security team needed for a fast response.

Figure 2: Cyber AI Analyst triaged and reported on the malicious activity from the device, surfacing useful metrics and natural language summaries for each stage of the kill chain.

Figure 3: This graph from the Darktrace UI displays how Cyber AI Analyst detected the various stages of the kill chain and correlated the timeline of events.

Figure 4: Darktrace reveals the spike in external connections in blue for the device and the DCE-RPC requests in green. The dots represent model breaches triggered by the unusual suspicious activity originating from the device. The external connection spikes match the internal DC-RPC request spikes indicating the device is attempting to move laterally during the C2 connections.

In this case, real-time detections from Darktrace’s AI coupled with a high-confidence alert from Darktrace’s SOC team enabled the company’s security team to isolate the device from the network, successfully containing the attack before encryption began.

While having AI-powered detection was enough to stop the attack in this scenario, relying on detection alone is playing with fire. With the average dwell time of attacks shrinking – particularly in the case of ransomware – Autonomous Response is becoming critical in taking action on behalf of human teams. Attackers are increasingly striking out of hours, when these teams aren’t available to respond, and performing exfiltration and encryption rapidly. In these cases, detection without immediate response is futile.

Autonomous Response: Revolutionizing ransomware defense

Recent galvanizing attacks have propelled us into a new era of ransomware. 65% of C-suite and other executives say that ransomware will be a major issue they face over the next twelve months.

An over-reliance on security defenses that depend on rules, signatures, and historical data has proven to leave organizations vulnerable to novel ransomware. Failure to prepare for the unknown often forces businesses into a difficult dilemma when it comes to ransomware: either pull the plug to stop the encryption by taking everything offline, or face encrypted systems, and be confronted with a hefty ransom.

But there is a third way, one which uses Self-Learning AI to understand your organization from the ground up to spot subtle deviations indicative of a cyber-threat, regardless of whether it has been seen before. Moreover, Autonomous Response ensures that fast, precise action will be taken against attacks whenever they occur. While even the most attentive human teams cannot hope to match the machine speed of modern ransomware attacks, Autonomous Response halts these sophisticated threats the moment they emerge. It really is the only way to truly level the playing field against today’s ransomware attacks.

Thanks to Darktrace analyst Dylan Evans for his insights on the above threat find.

Darktrace model breaches:

  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Experimental / Possible Emotet Callback URL
  • Device / Large Number of Model Breaches
  • Device / Lateral Movement and C2 Activity
  • Compromise / SSL or HTTP Beacon
  • Device / Multiple Lateral Movement Model Breaches
  • Compromise / Suspicious SSL Activity
  • Compromise / Unusual SMB Session and DRS
  • Compromise / Suspicious Spam Activity
  • Compromise / Unusual DRS Activity
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Compromise / Beaconing Activity To External Rare
  • Compliance / SMB Drive Write
  • Experimental / Anomalous GetNCChanges and Kerberos Ticket
  • Experimental / New or Uncommon SMB Named Pipe V4
  • Device / Large Number of Connections to New Endpoints
  • Anomalous Connection / New or Uncommon Service Control
  • User / New Admin Credentials on Client
  • Anomalous Connection / Possible Outbound Spam
  • Compromise / New or Repeated to Unusual SSL Port
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Experimental / New or Uncommon SMB Named Pipe V3
  • Experimental / Anomalous DRSGetNCChanges Operation
  • Anomalous Connection / Possible Callback URL
  • Compromise / Sustained SSL or HTTP Increase
  • Anomalous Connection / Multiple SMB Admin Session
  • Anomalous Connection / Rare External SSL Self-Signed
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Device / New Failed External Connections
  • Anomalous Connection / Suspicious Self-Signed SSL
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / HTTP Beaconing to Rare Destination
  • Experimental / Rare Device TLS Agent

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Compliance

/

November 25, 2025

UK Cyber Security & Resilience Bill: What Organizations Need to Know

Default blog imageDefault blog image

Why the Bill has been introduced

The UK’s cyber threat landscape has evolved dramatically since the 2018 NIS regime was introduced. Incidents such as the Synnovis attack against hospitals and the British Library ransomware attack show how quickly operational risk can become public harm. In this context, the UK Department for Science, Innovation and Technology estimates that cyber-attacks cost UK businesses around £14.7 billion each year.

At the same time, the widespread adoption of AI has expanded organisations’ attack surfaces and empowered threat actors to launch more effective and sophisticated activities, including crafting convincing phishing campaigns, exploiting vulnerabilities and initiating ransomware attacks at unprecedented speed and scale.  

The CSRB responds to these challenges by widening who is regulated, accelerating incident reporting and tightening supply chain accountability, while enabling rapid updates that keep pace with technology and emerging risks.

Key provisions of the Cyber Security and Resilience Bill

A wider set of organisations in scope

The Bill significantly broadens the range of organisations regulated under the NIS framework.

  • Managed service providers (MSPs) - medium and large MSPs, including MSSPs, managed SOCs, SIEM providers and similar services,will now fall under NIS obligations due to their systemic importance and privileged access to client systems. The Information Commissioner’s Office (ICO) will act as the regulator. Government analysis anticipates that a further 900 to 1,100 MSPs will be in scope.
  • Data infrastructure is now recognised as essential to the functioning of the economy and public services. Medium and large data centres, as well as enterprise facilities meeting specified thresholds, will be required to implement appropriate and proportionate measures to manage cyber risk. Oversight will be shared between DSIT and Ofcom, with Ofcom serving as the operational regulator.
  • Organisations that manage electrical loads for smart appliances, such as those supporting EV charging during peak times, are now within scope.

These additions sit alongside existing NIS-regulated sectors such as transport, energy, water, health, digital infrastructure, and certain digital services (including online marketplaces, search engines, and cloud computing).

Stronger supply chain requirements

Under the CSRB, regulators can now designate third-party suppliers as ‘designated critical suppliers’ (DCS) when certain threshold criteria are met and where disruption could have significant knock-on effects. Designated suppliers will be subject to the same security and incident-reporting obligations as Operators of Essential Services (OES) and Relevant Digital Service Providers (RDSPs).

Government will scope the supply chain duties for OES and RDSPs via secondary legislation, following consultation. infrastructure incidents where a single supplier’s compromise caused widespread disruption.

Faster incident reporting

Sector-specific regulators, 12 in total, will be responsible for implementing the CSRB, allowing for more effective and consistent reporting. In addition, the CSRB introduces a two-stage reporting process and expands incident reporting criteria. Regulated entities must submit an initial notification within 24 hours of becoming aware of a significant incident, followed by an incident report within 72 hours. Incident reporting criteria are also broadened to capture incidents beyond those which actually resulted in an interruption, ensuring earlier visibility for regulators and the National Cyber Security Centre (NCSC). The importance of information sharing across agencies, law enforcement and regulators is also facilitated by the CSRB.

The reforms also require data centres and managed service providers to notify affected customers where they are likely to have been impacted by a cyber incident.

An agile regulatory framework

To keep pace with technological change, the CSRB will enable the Secretary of State to update elements of the framework via secondary legislation. Supporting materials such as the NCSC Cyber Assessment Framework (CAF) are to be "put on a stronger footing” allowing for requirements to be more easily followed, managed and updated. Regulators will also now be able to recover full costs associated with NIS duties meaning they are better resourced to carry out their associated responsibilities.

Relevant Managed Service Providers must identify and take appropriate and proportionate measures to manage risks to the systems they rely on for providing services within the UK. Importantly, these measures must, having regard to the state of the art, ensure a level of security appropriate to the risk posed, and prevent or minimise the impact of incidents.

The Secretary of State will also be empowered to issue a Statement of Strategic Priorities, setting cross-regime outcomes to drive consistency across the 12 competent authorities responsible for implementation.

Penalties

The enforcement framework will be strengthened, with maximum fines aligned with comparable regimes such as the GDPR, which incorporate maximums tied to turnover. Under the CSRB, maximum penalties for more serious breaches could be up to £17 million or 4% of global turnover, whichever is higher.

Next steps

The Bill is expected to progress through Parliament over the course of 2025 and early 2026, with Royal Assent anticipated in 2026. Once enacted, most operational measures will not take immediate effect. Instead, Government will bring key components into force through secondary legislation following further consultation, providing regulators and industry with time to adjust practices and prepare for compliance.

Anticipated timeline

  • 2025-2026: Parliamentary scrutiny and passage;
  • 2026: Royal Assent;  
  • 2026 consultation: DSIT intends to consult on detailed implementation;
  • From 2026 onwards: Phased implementation via secondary legislation, following further consultation led by DSIT.

How Darktrace can help

The CSRB represents a step change in how the UK approaches digital risk, shifting the focus from compliance to resilience.

Darktrace can help organisations operationalise this shift by using AI to detect, investigate and respond to emerging threats at machine speed, before they escalate into incidents requiring regulatory notification. Proactive tools which can be included in the Darktrace platform allow security teams to stress-test defences, map supply chain exposure and rehearse recovery scenarios, directly supporting the CSRB’s focus on resilience, transparency and rapid response. If an incident does occur, Darktrace’s autonomous agent, Cyber AI Analyst, can accelerate investigations and provide a view of every stage of the attack chain, supporting timely reporting.  

Darktrace’s AI can provide organisations with a vital lens into both internal and external cyber risk. By continuously learning patterns of behaviour across interconnected systems, Darktrace can flag potential compromise or disruption to detect supply chain risk before it impacts your organisation.

In a landscape where compliance and resilience go hand in hand, Darktrace can equip organisations to stay ahead of both evolving threats and evolving regulatory requirements.

[related-resource]

Continue reading
About the author
The Darktrace Community

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI