Blog
/
/
December 1, 2021

Darktrace AI Detects Egregor Ransomware On Day One

Discover how Darktrace AI detected the signs of an Egregor ransomware attack on day one of deployment. Stay informed on the latest cybersecurity threats!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
01
Dec 2021

It’s no secret that ransomware has shaped conversations in the SOC this year more than any other topic, as attackers use new malware variants and other sophisticated techniques, tools and procedures to bypass conventional security tools. Not only are these attacks becoming more advanced and difficult to stop, but the ransom demands are growing, with one source suggesting the average ransom demand has grown by over 500% since last year.

To stop novel ransomware attacks, security teams need to turn away from ‘rear-view mirror’ tools trained on previous attacks, and towards AI technology that learns the business from the ground up and autonomously responds with targeted action to contain the threat.

This blog showcases how defenders can fight back against even the most sophisticated attacks, dissecting a recent ransomware attack uncovered by Darktrace’s AI from its first day of deployment at a utility services company. This was a particularly devastating ransomware strain known as Egregor, which has likely been disrupted by a joint effort between law enforcement agencies in Ukraine, France and the US, but wreaked havoc in the winter of 2020/21, affecting 150 companies and demanding ransoms of up to $4 million.

Anatomy of an Egregor attack

Figure 1: A timeline of the attack.

The initial intrusion occurred prior to Darktrace’s deployment, via Emotet, a trojan malware typically spread via spam emails – that has also been disrupted since this attack happened. Had Antigena Email been installed, Darktrace’s AI would have picked up on subtle deviations within malicious emails and actioned a response, containing the ransomware attack in its earliest stages. In this case, Antigena Email was not installed, and so the attack was allowed to proceed.

On November 27, 2020, Darktrace’s AI was deployed and began learning the ‘patterns of life’ for every user and device in the organization. On the first day of learning the organization, the technology detected suspicious external connections on a laptop that was deviating from the ‘pattern of life’ of its peer group of similar devices, beaconing to unusual rare domains that were later associated with malware activity.

Lateral movement and privilege escalation indicators were then observed, as well as possible attempted email hijacking. Darktrace’s AI detected new and unusual svcctl requests, new remote procedure calls, and suspicious executable file writes over SMBv2, as well as new external connections over email-related ports.

Connecting the dots: Cyber AI Analyst investigates

Triggered by this unusual activity, Darktrace’s Cyber AI Analyst launched an investigation into all observable stages of the kill chain including command and control connections, suspicious executable SMB writes and privilege escalation.

It then automatically generated an incident summary showcasing every stage of the attack, surfacing all the information the security team needed for a fast response.

Figure 2: Cyber AI Analyst triaged and reported on the malicious activity from the device, surfacing useful metrics and natural language summaries for each stage of the kill chain.

Figure 3: This graph from the Darktrace UI displays how Cyber AI Analyst detected the various stages of the kill chain and correlated the timeline of events.

Figure 4: Darktrace reveals the spike in external connections in blue for the device and the DCE-RPC requests in green. The dots represent model breaches triggered by the unusual suspicious activity originating from the device. The external connection spikes match the internal DC-RPC request spikes indicating the device is attempting to move laterally during the C2 connections.

In this case, real-time detections from Darktrace’s AI coupled with a high-confidence alert from Darktrace’s SOC team enabled the company’s security team to isolate the device from the network, successfully containing the attack before encryption began.

While having AI-powered detection was enough to stop the attack in this scenario, relying on detection alone is playing with fire. With the average dwell time of attacks shrinking – particularly in the case of ransomware – Autonomous Response is becoming critical in taking action on behalf of human teams. Attackers are increasingly striking out of hours, when these teams aren’t available to respond, and performing exfiltration and encryption rapidly. In these cases, detection without immediate response is futile.

Autonomous Response: Revolutionizing ransomware defense

Recent galvanizing attacks have propelled us into a new era of ransomware. 65% of C-suite and other executives say that ransomware will be a major issue they face over the next twelve months.

An over-reliance on security defenses that depend on rules, signatures, and historical data has proven to leave organizations vulnerable to novel ransomware. Failure to prepare for the unknown often forces businesses into a difficult dilemma when it comes to ransomware: either pull the plug to stop the encryption by taking everything offline, or face encrypted systems, and be confronted with a hefty ransom.

But there is a third way, one which uses Self-Learning AI to understand your organization from the ground up to spot subtle deviations indicative of a cyber-threat, regardless of whether it has been seen before. Moreover, Autonomous Response ensures that fast, precise action will be taken against attacks whenever they occur. While even the most attentive human teams cannot hope to match the machine speed of modern ransomware attacks, Autonomous Response halts these sophisticated threats the moment they emerge. It really is the only way to truly level the playing field against today’s ransomware attacks.

Thanks to Darktrace analyst Dylan Evans for his insights on the above threat find.

Darktrace model breaches:

  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Experimental / Possible Emotet Callback URL
  • Device / Large Number of Model Breaches
  • Device / Lateral Movement and C2 Activity
  • Compromise / SSL or HTTP Beacon
  • Device / Multiple Lateral Movement Model Breaches
  • Compromise / Suspicious SSL Activity
  • Compromise / Unusual SMB Session and DRS
  • Compromise / Suspicious Spam Activity
  • Compromise / Unusual DRS Activity
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Compromise / Beaconing Activity To External Rare
  • Compliance / SMB Drive Write
  • Experimental / Anomalous GetNCChanges and Kerberos Ticket
  • Experimental / New or Uncommon SMB Named Pipe V4
  • Device / Large Number of Connections to New Endpoints
  • Anomalous Connection / New or Uncommon Service Control
  • User / New Admin Credentials on Client
  • Anomalous Connection / Possible Outbound Spam
  • Compromise / New or Repeated to Unusual SSL Port
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Experimental / New or Uncommon SMB Named Pipe V3
  • Experimental / Anomalous DRSGetNCChanges Operation
  • Anomalous Connection / Possible Callback URL
  • Compromise / Sustained SSL or HTTP Increase
  • Anomalous Connection / Multiple SMB Admin Session
  • Anomalous Connection / Rare External SSL Self-Signed
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Device / New Failed External Connections
  • Anomalous Connection / Suspicious Self-Signed SSL
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / HTTP Beaconing to Rare Destination
  • Experimental / Rare Device TLS Agent

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI