Blog
/
Network
/
April 5, 2023

Understanding Qakbot Infections and Attack Paths

Explore the network-based analysis of Qakbot infections with Darktrace. Learn about the various attack paths used by cybercriminals and Darktrace's response.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher
Written by
Connor Mooney
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
05
Apr 2023

In an ever-changing threat landscape, security vendors around the world are forced to quickly adapt, react, and respond to known attack vectors and threats. In the face of this, malicious actors are constantly looking for novel ways to gain access to networks. Whether that’s through new exploitations of network vulnerabilities or new delivery methods, attackers and their methods are continually evolving. Although it is valuable for organizations to leverage threat intelligence to keep abreast of known threats to their networks, intelligence alone is not enough to defend against increasingly versatile attackers. Having an autonomous decision maker able to detect and respond to emerging threats, even those employing novel or unknown techniques, is paramount to defend against network compromise.

At the end of January 2023, threat actors began to abuse OneNote attachments to deliver the malware strain, Qakbot, onto users' devices. Widespread adoption of this novel delivery method resulted in a surge in Qakbot infections across Darktrace's customer base between the end of January 2023 and the end of February 2023. Using its Self-Learning AI, Darktrace was able to uncover and respond to these so-called ‘QakNote’ infections as the new trend emerged. Darktrace detected and responded to the threat at multiple stages of the kill chain, preventing damaging and widespread compromise to customer networks.

Qakbot and The Recent Weaponization of OneNote

Qakbot first appeared in 2007 as a banking trojan designed to steal sensitive data such as banking credentials. Since then, Qakbot has evolved into a highly modular, multi-purpose tool, with backdoor, payload delivery, reconnaissance, lateral movement, and data exfiltration capabilities. Although Qakbot's primary delivery method has always been email-based, threat actors have been known to modify their email-based delivery methods of Qakbot in the face of changing circumstances. In the first half of 2022, Microsoft started rolling out versions of Office which block XL4 and VBA macros by default [1]/[2]/[3]. Prior to this change, Qakbot email campaigns typically consisted in the spreading of deceitful emails with Office attachments containing malicious macros. In the face of Microsoft's default blocking of macros, threat actors appeared to cease delivering Qakbot via Office attachments, and shifted to primarily using HTML attachments, through a method known as 'HTML smuggling' [4]/[5]. After the public disclosure [6] of the Follina vulnerability (CVE-2022-30190) in Microsoft Support Diagnostic Tool (MSDT) in May 2022, Qakbot actors were seen capitalizing on the vulnerability to facilitate their email-based delivery of Qakbot payloads [7]/[8]/[9]. 

Given the inclination of Qakbot actors to adapt their email-based delivery methods, it is no surprise that they were quick to capitalize on the novel OneNote-based delivery method which emerged in December 2022. Since December 2022, threat actors have been seen using OneNote attachments to deliver a variety of malware strains, ranging from Formbook [10] to AsynRAT [11] to Emotet [12]. The abuse of OneNote documents to deliver malware is made possible by the fact that OneNote allows for the embedding of executable file types such as HTA files, CMD files, and BAT files. At the end of January 2023, actors started to leverage OneNote attachments to deliver Qakbot [13]/[14]. The adoption of this novel delivery method by Qakbot actors resulted in a surge in Qakbot infections in the wider threat landscape and across the Darktrace customer base.

Observed Activity Chains

Between January 31 and February 24, 2023, Darktrace observed variations of the following pattern of activity across its customer base:

1. User's device contacts OneNote-related endpoint 

2. User's device makes an external GET request with an empty Host header, a target URI whose final segment consists in 5 or 6 digits followed by '.dat', and a User-Agent header referencing either cURL or PowerShell. The GET request is responded to with a DLL file

3. User's device makes SSL connections over ports 443 and 2222 to unusual external endpoints, and makes TCP connections over port 65400 to 23.111.114[.]52

4. User's device makes SSL connections over port 443 to an external host named 'bonsars[.]com' (IP: 194.165.16[.]56) and TCP connections over port 443 to 78.31.67[.]7

5. User’s device makes call to Endpoint Mapper service on internal systems and then connects to the Service Control Manager (SCM) 

6. User's device uploads files with algorithmically generated names and ‘.dll’ or ‘.dll.cfg’ file extensions to SMB shares on internal systems

7. User's device makes Service Control requests to the systems to which it uploaded ‘.dll’ and ‘.dll.cfg’ files 

Further investigation of these chains of activity revealed that they were parts of Qakbot infections initiated via interactions with malicious OneNote attachments. 

Figure 1: Steps of observed QakNote infections.

Delivery Phase

Users' interactions with malicious OneNote attachments, which were evidenced by devices' HTTPS connections to OneNote-related endpoints, such as 'www.onenote[.]com', 'contentsync.onenote[.]com', and 'learningtools.onenote[.]com', resulted in the retrieval of Qakbot DLLs from unusual, external endpoints. In some cases, the user's interaction with the malicious OneNote attachment caused their device to fetch a Qakbot DLL using cURL, whereas, in other cases, it caused their device to download a Qakbot DLL using PowerShell. These different outcomes reflected variations in the contents of the executable files embedded within the weaponized OneNote attachments. In addition to having cURL and PowerShell User-Agent headers, the HTTP requests triggered by interaction with these OneNote attachments had other distinctive features, such as empty host headers and target URIs whose last segment consists in 5 or 6 digits followed by '.dat'. 

Figure 2: Model breach highlighting a user’s device making a HTTP GET request to 198.44.140[.]78 with a PowerShell User-Agent header and the target URI ‘/210/184/187737.dat’.
Figure 3: Model breach highlighting a user’s device making a HTTP GET request to 103.214.71[.]45 with a cURL User-Agent header and the target URI ‘/70802.dat’.
Figure 4: Event Log showing a user’s device making a GET request with a cURL User-Agent header to 185.231.205[.]246 after making an SSL connection to contentsync.onenote[.]com.
Figure 5: Event Log showing a user’s device making a GET request with a cURL User-Agent header to 185.231.205[.]246 after making an SSL connection to www.onenote[.]com.

Command and Control Phase

After fetching Qakbot DLLs, users’ devices were observed making numerous SSL connections over ports 443 and 2222 to highly unusual, external endpoints, as well as large volumes of TCP connections over port 65400 to 23.111.114[.]52. These connections represented Qakbot-infected devices communicating with command and control (C2) infrastructure. Qakbot-infected devices were also seen making intermittent connections to legitimate endpoints, such as 'xfinity[.]com', 'yahoo[.]com', 'verisign[.]com', 'oracle[.]com', and 'broadcom[.]com', likely due to Qakbot making connectivity checks. 

Figure 6: Event Log showing a user’s device contacting Qakbot C2 infrastructure and making connectivity checks to legitimate domains.
Figure 7: Event Log showing a user’s device contacting Qakbot C2 infrastructure and making connectivity checks to legitimate domains.

Cobalt Strike and VNC Phase

After Qakbot-infected devices established communication with C2 servers, they were observed making SSL connections to the external endpoint, bonsars[.]com, and TCP connections to the external endpoint, 78.31.67[.]7. The SSL connections to bonsars[.]com were C2 connections from Cobalt Strike Beacon, and the TCP connections to 78.31.67[.]7 were C2 connections from Qakbot’s Virtual Network Computing (VNC) module [15]/[16]. The occurrence of these connections indicate that actors leveraged Qakbot infections to drop Cobalt Strike Beacon along with a VNC payload onto infected systems. The deployment of Cobalt Strike and VNC likely provided actors with ‘hands-on-keyboard’ access to the Qakbot-infected systems. 

Figure 8: Advanced Search logs showing a user’s device contacting OneNote endpoints, fetching a Qakbot DLL over HTTP, making SSL connections to Qakbot infrastructure and connectivity checks to legitimate domains, and then making SSL connections to the Cobalt Strike endpoint, bonsars[.]com.
Figure 9: Event Log showing a user’s device contacting the Cobalt Strike C2 endpoint, bonsars[.]com, and the VNC C2 endpoint, 78.31.67[.]7, whilst simultaneously contacting the Qakbot C2 endpoint, 47.32.78[.]150.

Lateral Movement Phase

After dropping Cobalt Strike Beacon and a VNC module onto Qakbot-infected systems, actors leveraged their strengthened foothold to connect to the Service Control Manager (SCM) on internal systems in preparation for lateral movement. Before connecting to the SCM, infected systems were seen making calls to the Endpoint Mapper service, likely to identify exposed Microsoft Remote Procedure Call (MSRPC) services on internal systems. The MSRPC service, Service Control Manager (SCM), is known to be abused by Cobalt Strike to create and start services on remote systems. Connections to this service were evidenced by OpenSCManager2  (Opnum: 0x40) and OpenSCManagerW (Opnum: 0xf) calls to the svcctl RPC interface. 

Figure 10: Advanced Search logs showing a user’s device contacting the Endpoint Mapper and Service Control Manager (SCM) services on internal systems. 

After connecting to the SCM on internal systems, infected devices were seen using SMB to distribute files with ‘.dll’ and ‘.dll.cfg’ extensions to SMB shares. These uploads were followed by CreateWowService (Opnum: 0x3c) calls to the svcctl interface, likely intended to execute the uploaded payloads. The naming conventions of the uploaded files indicate that they were Qakbot payloads. 

Figure 11: Advanced Search logs showing a user’s device making Service Control DCE-RPC requests to internal systems after uploading ‘.dll’ and ‘.dll.cfg’ files to them over SMB.

Fortunately, none of the observed QakNote infections escalated further than this. If these infections had escalated, it is likely that they would have resulted in the widespread detonation of additional malicious payloads, such as ransomware.  

Darktrace Coverage of QakNote Activity

Figure 1 shows the steps involved in the QakNote infections observed across Darktrace’s customer base. How far attackers got along this chain was in part determined by the following three factors:

The presence of Darktrace/Email typically stopped QakNote infections from moving past the initial infection stage. The presence of RESPOND/Network significantly slowed down observed activity chains, however, infections left unattended and not mitigated by the security teams were able to progress further along the attack chain. 

Darktrace observed varying properties in the QakNote emails detected across the customer base. OneNote attachments were typically detected as either ‘application/octet-stream’ files or as ‘application/x-tar’ files. In some cases, the weaponized OneNote attachment embedded a malicious file, whereas in other cases, the OneNote file embedded a malicious link (typically a ‘.png’ or ‘.gif’ link) instead. In all cases Darktrace observed, QakNote emails used subject lines starting with ‘RE’ or ‘FW’ to manipulating their recipients into thinking that such emails were part of an existing email chain/thread. In some cases, emails impersonated users known to their recipients by including the names of such users in their header-from personal names. In many cases, QakNote emails appear to have originated from likely hijacked email accounts. These are highly successful methods of social engineering often employed by threat actors to exploit a user’s trust in known contacts or services, convincing them to open malicious emails and making it harder for security tools to detect.

The fact that observed QakNote emails used the fake-reply method, were sent from unknown email accounts, and contained attachments with unusual MIME types, caused such emails to breach the following Darktrace/Email models:

  • Association / Unknown Sender
  • Attachment / Unknown File
  • Attachment / Unsolicited Attachment
  • Attachment / Highly Unusual Mime
  • Attachment / Unsolicited Anomalous Mime
  • Attachment / Unusual Mime for Organisation
  • Unusual / Fake Reply
  • Unusual / Unusual Header TLD
  • Unusual / Fake Reply + Unknown Sender
  • Unusual / Unusual Connection from Unknown
  • Unusual / Off Topic

QakNote emails impersonating known users also breached the following DETECT & RESPOND/Email models:

  • Unusual / Unrelated Personal Name Address
  • Spoof / Basic Known Entity Similarities
  • Spoof / Internal User Similarities
  • Spoof / External User Similarities
  • Spoof / Internal User Similarities + Unrelated Personal Name Address
  • Spoof / External User Similarities + Unrelated Personal Name Address
  • Spoof / Internal User Similarities + Unknown File
  • Spoof / External User Similarities + Fake Reply
  • Spoof / Possible User Spoof from New Address - Enhanced Internal Similarities
  • Spoof / Whale

The actions taken by Darktrace on the observed emails is ultimately determined by Darktrace/Email models are breached. Those emails which did not breach Spoofing models (due to lack of impersonation indicators) received the ‘Convert Attachment’ action. This action converts suspicious attachments into neutralized PDFs, in this case successfully unweaponizing the malicious OneNote attachments. QakNote emails which did breach Spoofing models (due to the presence of impersonation indicators) received the strongest possible action, ‘Hold Message’. This action prevents suspicious emails from reaching the recipients’ mailbox. 

Figure 12: Email log showing a malicious OneNote email (without impersonation indicators) which received a 87% anomaly score, a ‘Move to junk’ action, and a ‘Convert attachment’ actions from Darktrace/Email.
Figure 13: Email log showing a malicious OneNote email (with impersonation indicators) which received an anomaly score of 100% and a ‘Hold message’ action from Darktrace/Email.
Figure 14: Email log showing a malicious OneNote email (with impersonation indicators) which received an anomaly score of 100% and a ‘Hold message’ action from Darktrace/Email.

If threat actors managed to get past the first stage of the QakNote kill chain, likely due to the absence of appropriate email security tools, the execution of the subsequent steps resulted in strong intervention from Darktrace/Network. 

Interactions with malicious OneNote attachments caused their devices to fetch a Qakbot DLL from a remote server via HTTP GET requests with an empty Host header and either a cURL or PowerShell User-Agent header. These unusual HTTP behaviors caused the following Darktrace/Network models to breach:

  • Device / New User Agent
  • Device / New PowerShell User Agent
  • Device / New User Agent and New IP
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Powershell to Rare External
  • Anomalous File / Numeric File Download
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / New User Agent Followed By Numeric File Download

For customers with RESPOND/Network active, these breaches resulted in the following autonomous actions:

  • Enforce group pattern of life for 30 minutes
  • Enforce group pattern of life for 2 hours
  • Block connections to relevant external endpoints over relevant ports for 2 hours   
  • Block all outgoing traffic for 10 minutes
Figure 15: Event Log showing a user’s device receiving Darktrace RESPOND/Network actions after downloading a Qakbot DLL. 
Figure 16: Event Log showing a user’s device receiving Darktrace RESPOND/Network actions after downloading a Qakbot DLL.

Successful, uninterrupted downloads of Qakbot DLLs resulted in connections to Qakbot C2 servers, and subsequently to Cobalt Strike and VNC C2 connections. These C2 activities resulted in breaches of the following DETECT/Network models:

  • Compromise / Suspicious TLS Beaconing To Rare External
  • Compromise / Large Number of Suspicious Successful Connections
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Beaconing Activity To External Rare
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Device / Initial Breach Chain Compromise

For customers with RESPOND/Network active, these breaches caused RESPOND to autonomously perform the following actions:

  • Block connections to relevant external endpoints over relevant ports for 1 hour
Figure 17: Event Log showing a user’s device receiving RESPOND/Network actions after contacting the Qakbot C2 endpoint,  Cobalt Strike C2 endpoint, bonsars[.]com.

In cases where C2 connections were allowed to continue, actors attempted to move laterally through usage of SMB and Service Control Manager. This lateral movement activity caused the following DETECT/Network models to breach:

  • Device / Possible SMB/NTLM Reconnaissance
  • Anomalous Connection / New or Uncommon Service Control 

For customers with RESPOND/Network enabled, these breaches caused RESPOND to autonomously perform the following actions:

  • Block connections to relevant internal endpoints over port 445 for 1 hour
Figure 18: Event Log shows a user’s device receiving RESPOND/Network actions after contacting the Qakbot C2 endpoint, 5.75.205[.]43, and distributing ‘.dll’ and ‘.dll.cfg’ files internally.

The QakNote infections observed across Darktrace’s customer base involved several steps, each of which elicited alerts and autonomous preventative actions from Darktrace. By autonomously investigating the alerts from DETECT, Darktrace’s Cyber AI Analyst was able to connect the distinct steps of observed QakNote infections into single incidents. It then produced incident logs to present in-depth details of the activity it uncovered, provide full visibility for customer security teams.

Figure 19: AI Analyst incident entry showing the steps of a QakNote infection which AI Analyst connected following its autonomous investigations.

Conclusion

Faced with the emerging threat of QakNote infections, Darktrace demonstrated its ability to autonomously detect and respond to arising threats in a constantly evolving threat landscape. The attack chains which Darktrace observed across its customer base involved the delivery of Qakbot via malicious OneNote attachments, the usage of ports 65400 and 2222 for Qakbot C2 communication, the usage of Cobalt Strike Beacon and VNC for ‘hands-on-keyboard’ activity, and the usage of SMB and Service Control Manager for lateral movement. 

Despite the novelty of the OneNote-based delivery method, Darktrace was able to identify QakNote infections across its customer base at various stages of the kill chain, using its autonomous anomaly-based detection to identify unusual activity or deviations from expected behavior. When active, Darktrace/Email neutralized malicious QakNote attachments sent to employees. In cases where Darktrace/Email was not active, Darktrace/Network detected and slowed down the unusual network activities which inevitably ensued from Qakbot infections. Ultimately, this intervention from Darktrace’s products prevented infections from leading to further harmful activity, such as data exfiltration and the detonation of ransomware.

Darktrace is able to offer customers an unparalleled level of network security by combining both Darktrace/Network and Darktrace/Email, safeguarding both their email and network environments. With its suite of products, including DETECT and RESPOND, Darktrace can autonomously uncover threats to customer networks and instantaneously intervene to prevent suspicious activity leading to damaging compromises. 

Appendices

MITRE ATT&CK Mapping 

Initial Access:

T1566.001 – Phishing: Spearphishing Attachment

Execution:

T1204.001 – User Execution: Malicious Link

T1204.002 – User Execution: Malicious File

T1569.002 – System Services: Service Execution

Lateral Movement:

T1021.002 – Remote Services: SMB/Windows Admin Shares

Command and Control:

T1573.002 – Encrypted Channel : Asymmetric Cryptography

T1571 – Non-Standard Port 

T1105 – Ingress Tool Transfer

T1095 –  Non-Application Layer Protocol

T1219 – Remote Access Software

List of IOCs

IP Addresses and/or Domain Names:

- 103.214.71[.]45 - Qakbot download infrastructure 

- 141.164.35[.]94 - Qakbot download infrastructure 

- 95.179.215[.]225 - Qakbot download infrastructure 

- 128.254.207[.]55 - Qakbot download infrastructure

- 141.164.35[.]94 - Qakbot download infrastructure

- 172.96.137[.]149 - Qakbot download infrastructure

- 185.231.205[.]246 - Qakbot download infrastructure

- 216.128.146[.]67 - Qakbot download infrastructure 

- 45.155.37[.]170 - Qakbot download infrastructure

- 85.239.41[.]55 - Qakbot download infrastructure

- 45.67.35[.]108 - Qakbot download infrastructure

- 77.83.199[.]12 - Qakbot download infrastructure 

- 45.77.63[.]210 - Qakbot download infrastructure 

- 198.44.140[.]78 - Qakbot download infrastructure

- 47.32.78[.]150 - Qakbot C2 infrastructure

- 197.204.13[.]52 - Qakbot C2 infrastructure

- 68.108.122[.]180 - Qakbot C2 infrastructure

- 2.50.48[.]213 - Qakbot C2 infrastructure

- 66.180.227[.]60 - Qakbot C2 infrastructure

- 190.206.75[.]58 - Qakbot C2 infrastructure

- 109.150.179[.]236 - Qakbot C2 infrastructure

- 86.202.48[.]142 - Qakbot C2 infrastructure

- 143.159.167[.]159 - Qakbot C2 infrastructure

- 5.75.205[.]43 - Qakbot C2 infrastructure

- 184.176.35[.]223 - Qakbot C2 infrastructure 

- 208.187.122[.]74 - Qakbot C2 infrastructure

- 23.111.114[.]52 - Qakbot C2 infrastructure 

- 74.12.134[.]53 – Qakbot C2 infrastructure

- bonsars[.]com • 194.165.16[.]56 - Cobalt Strike C2 infrastructure 

- 78.31.67[.]7 - VNC C2 infrastructure

Target URIs of GET Requests for Qakbot DLLs:

- /70802.dat 

- /51881.dat

- /12427.dat

- /70136.dat

- /35768.dat

- /41981.dat

- /30622.dat

- /72286.dat

- /46557.dat

- /33006.dat

- /300332.dat

- /703558.dat

- /760433.dat

- /210/184/187737.dat

- /469/387/553748.dat

- /282/535806.dat

User-Agent Headers of GET Requests for Qakbot DLLs:

- curl/7.83.1

- curl/7.55.1

- Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.19041.2364

- Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.17763.3770

- Mozilla/5.0 (Windows NT; Windows NT 10.0; en-GB) WindowsPowerShell/5.1.19041.2364

SHA256 Hashes of Downloaded Qakbot DLLs:  

- 83e9bdce1276d2701ff23b1b3ac7d61afc97937d6392ed6b648b4929dd4b1452

- ca95a5dcd0194e9189b1451fa444f106cbabef3558424d9935262368dba5f2c6 

- fa067ff1116b4c8611eae9ed4d59a19d904a8d3c530b866c680a7efeca83eb3d

- e6853589e42e1ab74548b5445b90a5a21ff0d7f8f4a23730cffe285e2d074d9e

- d864d93b8fd4c5e7fb136224460c7b98f99369fc9418bae57de466d419abeaf6

- c103c24ccb1ff18cd5763a3bb757ea2779a175a045e96acbb8d4c19cc7d84bea

Names of Internally Distributed Qakbot DLLs: 

- rpwpmgycyzghm.dll

- rpwpmgycyzghm.dll.cfg

- guapnluunsub.dll

- guapnluunsub.dll.cfg

- rskgvwfaqxzz.dll

- rskgvwfaqxzz.dll.cfg

- hkfjhcwukhsy.dll

- hkfjhcwukhsy.dll.cfg

- uqailliqbplm.dll

- uqailliqbplm.dll.cfg

- ghmaorgvuzfos.dll

- ghmaorgvuzfos.dll.cfg

Links Found Within Neutralized QakNote Email Attachments:

- hxxps://khatriassociates[.]com/MBt/3.gif

- hxxps://spincotech[.]com/8CoBExd/3.gif

- hxxps://minaato[.]com/tWZVw/3.gif

- hxxps://famille2point0[.]com/oghHO/01.png

- hxxps://sahifatinews[.]com/jZbaw/01.png

- hxxp://87.236.146[.]112/62778.dat

- hxxp://87.236.146[.]112/59076.dat

- hxxp://185.231.205[.]246/73342.dat

References

[1] https://techcommunity.microsoft.com/t5/excel-blog/excel-4-0-xlm-macros-now-restricted-by-default-for-customer/ba-p/3057905

[2] https://techcommunity.microsoft.com/t5/microsoft-365-blog/helping-users-stay-safe-blocking-internet-macros-by-default-in/ba-p/3071805

[3] https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked

[4] https://www.cyfirma.com/outofband/html-smuggling-a-stealthier-approach-to-deliver-malware/

[5] https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/html-smuggling-the-hidden-threat-in-your-inbox/

[6] https://twitter.com/nao_sec/status/1530196847679401984

[7] https://www.fortiguard.com/threat-signal-report/4616/qakbot-delivered-through-cve-2022-30190-follina

[8] https://isc.sans.edu/diary/rss/28728

[9] https://darktrace.com/blog/qakbot-resurgence-evolving-along-with-the-emerging-threat-landscape

[10] https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/trojanized-onenote-document-leads-to-formbook-malware/

[11] https://www.proofpoint.com/uk/blog/threat-insight/onenote-documents-increasingly-used-to-deliver-malware

[12] https://www.malwarebytes.com/blog/threat-intelligence/2023/03/emotet-onenote

[13] https://blog.cyble.com/2023/02/01/qakbots-evolution-continues-with-new-strategies/

[14] https://news.sophos.com/en-us/2023/02/06/qakbot-onenote-attacks/

[15] https://isc.sans.edu/diary/rss/29210

[16] https://unit42.paloaltonetworks.com/feb-wireshark-quiz-answers/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher
Written by
Connor Mooney
SOC Analyst

More in this series

No items found.

Blog

/

AI

/

December 23, 2025

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI