Blog
/
Network
/
April 5, 2023

Understanding Qakbot Infections and Attack Paths

Explore the network-based analysis of Qakbot infections with Darktrace. Learn about the various attack paths used by cybercriminals and Darktrace's response.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher
Written by
Connor Mooney
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
05
Apr 2023

In an ever-changing threat landscape, security vendors around the world are forced to quickly adapt, react, and respond to known attack vectors and threats. In the face of this, malicious actors are constantly looking for novel ways to gain access to networks. Whether that’s through new exploitations of network vulnerabilities or new delivery methods, attackers and their methods are continually evolving. Although it is valuable for organizations to leverage threat intelligence to keep abreast of known threats to their networks, intelligence alone is not enough to defend against increasingly versatile attackers. Having an autonomous decision maker able to detect and respond to emerging threats, even those employing novel or unknown techniques, is paramount to defend against network compromise.

At the end of January 2023, threat actors began to abuse OneNote attachments to deliver the malware strain, Qakbot, onto users' devices. Widespread adoption of this novel delivery method resulted in a surge in Qakbot infections across Darktrace's customer base between the end of January 2023 and the end of February 2023. Using its Self-Learning AI, Darktrace was able to uncover and respond to these so-called ‘QakNote’ infections as the new trend emerged. Darktrace detected and responded to the threat at multiple stages of the kill chain, preventing damaging and widespread compromise to customer networks.

Qakbot and The Recent Weaponization of OneNote

Qakbot first appeared in 2007 as a banking trojan designed to steal sensitive data such as banking credentials. Since then, Qakbot has evolved into a highly modular, multi-purpose tool, with backdoor, payload delivery, reconnaissance, lateral movement, and data exfiltration capabilities. Although Qakbot's primary delivery method has always been email-based, threat actors have been known to modify their email-based delivery methods of Qakbot in the face of changing circumstances. In the first half of 2022, Microsoft started rolling out versions of Office which block XL4 and VBA macros by default [1]/[2]/[3]. Prior to this change, Qakbot email campaigns typically consisted in the spreading of deceitful emails with Office attachments containing malicious macros. In the face of Microsoft's default blocking of macros, threat actors appeared to cease delivering Qakbot via Office attachments, and shifted to primarily using HTML attachments, through a method known as 'HTML smuggling' [4]/[5]. After the public disclosure [6] of the Follina vulnerability (CVE-2022-30190) in Microsoft Support Diagnostic Tool (MSDT) in May 2022, Qakbot actors were seen capitalizing on the vulnerability to facilitate their email-based delivery of Qakbot payloads [7]/[8]/[9]. 

Given the inclination of Qakbot actors to adapt their email-based delivery methods, it is no surprise that they were quick to capitalize on the novel OneNote-based delivery method which emerged in December 2022. Since December 2022, threat actors have been seen using OneNote attachments to deliver a variety of malware strains, ranging from Formbook [10] to AsynRAT [11] to Emotet [12]. The abuse of OneNote documents to deliver malware is made possible by the fact that OneNote allows for the embedding of executable file types such as HTA files, CMD files, and BAT files. At the end of January 2023, actors started to leverage OneNote attachments to deliver Qakbot [13]/[14]. The adoption of this novel delivery method by Qakbot actors resulted in a surge in Qakbot infections in the wider threat landscape and across the Darktrace customer base.

Observed Activity Chains

Between January 31 and February 24, 2023, Darktrace observed variations of the following pattern of activity across its customer base:

1. User's device contacts OneNote-related endpoint 

2. User's device makes an external GET request with an empty Host header, a target URI whose final segment consists in 5 or 6 digits followed by '.dat', and a User-Agent header referencing either cURL or PowerShell. The GET request is responded to with a DLL file

3. User's device makes SSL connections over ports 443 and 2222 to unusual external endpoints, and makes TCP connections over port 65400 to 23.111.114[.]52

4. User's device makes SSL connections over port 443 to an external host named 'bonsars[.]com' (IP: 194.165.16[.]56) and TCP connections over port 443 to 78.31.67[.]7

5. User’s device makes call to Endpoint Mapper service on internal systems and then connects to the Service Control Manager (SCM) 

6. User's device uploads files with algorithmically generated names and ‘.dll’ or ‘.dll.cfg’ file extensions to SMB shares on internal systems

7. User's device makes Service Control requests to the systems to which it uploaded ‘.dll’ and ‘.dll.cfg’ files 

Further investigation of these chains of activity revealed that they were parts of Qakbot infections initiated via interactions with malicious OneNote attachments. 

Figure 1: Steps of observed QakNote infections.

Delivery Phase

Users' interactions with malicious OneNote attachments, which were evidenced by devices' HTTPS connections to OneNote-related endpoints, such as 'www.onenote[.]com', 'contentsync.onenote[.]com', and 'learningtools.onenote[.]com', resulted in the retrieval of Qakbot DLLs from unusual, external endpoints. In some cases, the user's interaction with the malicious OneNote attachment caused their device to fetch a Qakbot DLL using cURL, whereas, in other cases, it caused their device to download a Qakbot DLL using PowerShell. These different outcomes reflected variations in the contents of the executable files embedded within the weaponized OneNote attachments. In addition to having cURL and PowerShell User-Agent headers, the HTTP requests triggered by interaction with these OneNote attachments had other distinctive features, such as empty host headers and target URIs whose last segment consists in 5 or 6 digits followed by '.dat'. 

Figure 2: Model breach highlighting a user’s device making a HTTP GET request to 198.44.140[.]78 with a PowerShell User-Agent header and the target URI ‘/210/184/187737.dat’.
Figure 3: Model breach highlighting a user’s device making a HTTP GET request to 103.214.71[.]45 with a cURL User-Agent header and the target URI ‘/70802.dat’.
Figure 4: Event Log showing a user’s device making a GET request with a cURL User-Agent header to 185.231.205[.]246 after making an SSL connection to contentsync.onenote[.]com.
Figure 5: Event Log showing a user’s device making a GET request with a cURL User-Agent header to 185.231.205[.]246 after making an SSL connection to www.onenote[.]com.

Command and Control Phase

After fetching Qakbot DLLs, users’ devices were observed making numerous SSL connections over ports 443 and 2222 to highly unusual, external endpoints, as well as large volumes of TCP connections over port 65400 to 23.111.114[.]52. These connections represented Qakbot-infected devices communicating with command and control (C2) infrastructure. Qakbot-infected devices were also seen making intermittent connections to legitimate endpoints, such as 'xfinity[.]com', 'yahoo[.]com', 'verisign[.]com', 'oracle[.]com', and 'broadcom[.]com', likely due to Qakbot making connectivity checks. 

Figure 6: Event Log showing a user’s device contacting Qakbot C2 infrastructure and making connectivity checks to legitimate domains.
Figure 7: Event Log showing a user’s device contacting Qakbot C2 infrastructure and making connectivity checks to legitimate domains.

Cobalt Strike and VNC Phase

After Qakbot-infected devices established communication with C2 servers, they were observed making SSL connections to the external endpoint, bonsars[.]com, and TCP connections to the external endpoint, 78.31.67[.]7. The SSL connections to bonsars[.]com were C2 connections from Cobalt Strike Beacon, and the TCP connections to 78.31.67[.]7 were C2 connections from Qakbot’s Virtual Network Computing (VNC) module [15]/[16]. The occurrence of these connections indicate that actors leveraged Qakbot infections to drop Cobalt Strike Beacon along with a VNC payload onto infected systems. The deployment of Cobalt Strike and VNC likely provided actors with ‘hands-on-keyboard’ access to the Qakbot-infected systems. 

Figure 8: Advanced Search logs showing a user’s device contacting OneNote endpoints, fetching a Qakbot DLL over HTTP, making SSL connections to Qakbot infrastructure and connectivity checks to legitimate domains, and then making SSL connections to the Cobalt Strike endpoint, bonsars[.]com.
Figure 9: Event Log showing a user’s device contacting the Cobalt Strike C2 endpoint, bonsars[.]com, and the VNC C2 endpoint, 78.31.67[.]7, whilst simultaneously contacting the Qakbot C2 endpoint, 47.32.78[.]150.

Lateral Movement Phase

After dropping Cobalt Strike Beacon and a VNC module onto Qakbot-infected systems, actors leveraged their strengthened foothold to connect to the Service Control Manager (SCM) on internal systems in preparation for lateral movement. Before connecting to the SCM, infected systems were seen making calls to the Endpoint Mapper service, likely to identify exposed Microsoft Remote Procedure Call (MSRPC) services on internal systems. The MSRPC service, Service Control Manager (SCM), is known to be abused by Cobalt Strike to create and start services on remote systems. Connections to this service were evidenced by OpenSCManager2  (Opnum: 0x40) and OpenSCManagerW (Opnum: 0xf) calls to the svcctl RPC interface. 

Figure 10: Advanced Search logs showing a user’s device contacting the Endpoint Mapper and Service Control Manager (SCM) services on internal systems. 

After connecting to the SCM on internal systems, infected devices were seen using SMB to distribute files with ‘.dll’ and ‘.dll.cfg’ extensions to SMB shares. These uploads were followed by CreateWowService (Opnum: 0x3c) calls to the svcctl interface, likely intended to execute the uploaded payloads. The naming conventions of the uploaded files indicate that they were Qakbot payloads. 

Figure 11: Advanced Search logs showing a user’s device making Service Control DCE-RPC requests to internal systems after uploading ‘.dll’ and ‘.dll.cfg’ files to them over SMB.

Fortunately, none of the observed QakNote infections escalated further than this. If these infections had escalated, it is likely that they would have resulted in the widespread detonation of additional malicious payloads, such as ransomware.  

Darktrace Coverage of QakNote Activity

Figure 1 shows the steps involved in the QakNote infections observed across Darktrace’s customer base. How far attackers got along this chain was in part determined by the following three factors:

The presence of Darktrace/Email typically stopped QakNote infections from moving past the initial infection stage. The presence of RESPOND/Network significantly slowed down observed activity chains, however, infections left unattended and not mitigated by the security teams were able to progress further along the attack chain. 

Darktrace observed varying properties in the QakNote emails detected across the customer base. OneNote attachments were typically detected as either ‘application/octet-stream’ files or as ‘application/x-tar’ files. In some cases, the weaponized OneNote attachment embedded a malicious file, whereas in other cases, the OneNote file embedded a malicious link (typically a ‘.png’ or ‘.gif’ link) instead. In all cases Darktrace observed, QakNote emails used subject lines starting with ‘RE’ or ‘FW’ to manipulating their recipients into thinking that such emails were part of an existing email chain/thread. In some cases, emails impersonated users known to their recipients by including the names of such users in their header-from personal names. In many cases, QakNote emails appear to have originated from likely hijacked email accounts. These are highly successful methods of social engineering often employed by threat actors to exploit a user’s trust in known contacts or services, convincing them to open malicious emails and making it harder for security tools to detect.

The fact that observed QakNote emails used the fake-reply method, were sent from unknown email accounts, and contained attachments with unusual MIME types, caused such emails to breach the following Darktrace/Email models:

  • Association / Unknown Sender
  • Attachment / Unknown File
  • Attachment / Unsolicited Attachment
  • Attachment / Highly Unusual Mime
  • Attachment / Unsolicited Anomalous Mime
  • Attachment / Unusual Mime for Organisation
  • Unusual / Fake Reply
  • Unusual / Unusual Header TLD
  • Unusual / Fake Reply + Unknown Sender
  • Unusual / Unusual Connection from Unknown
  • Unusual / Off Topic

QakNote emails impersonating known users also breached the following DETECT & RESPOND/Email models:

  • Unusual / Unrelated Personal Name Address
  • Spoof / Basic Known Entity Similarities
  • Spoof / Internal User Similarities
  • Spoof / External User Similarities
  • Spoof / Internal User Similarities + Unrelated Personal Name Address
  • Spoof / External User Similarities + Unrelated Personal Name Address
  • Spoof / Internal User Similarities + Unknown File
  • Spoof / External User Similarities + Fake Reply
  • Spoof / Possible User Spoof from New Address - Enhanced Internal Similarities
  • Spoof / Whale

The actions taken by Darktrace on the observed emails is ultimately determined by Darktrace/Email models are breached. Those emails which did not breach Spoofing models (due to lack of impersonation indicators) received the ‘Convert Attachment’ action. This action converts suspicious attachments into neutralized PDFs, in this case successfully unweaponizing the malicious OneNote attachments. QakNote emails which did breach Spoofing models (due to the presence of impersonation indicators) received the strongest possible action, ‘Hold Message’. This action prevents suspicious emails from reaching the recipients’ mailbox. 

Figure 12: Email log showing a malicious OneNote email (without impersonation indicators) which received a 87% anomaly score, a ‘Move to junk’ action, and a ‘Convert attachment’ actions from Darktrace/Email.
Figure 13: Email log showing a malicious OneNote email (with impersonation indicators) which received an anomaly score of 100% and a ‘Hold message’ action from Darktrace/Email.
Figure 14: Email log showing a malicious OneNote email (with impersonation indicators) which received an anomaly score of 100% and a ‘Hold message’ action from Darktrace/Email.

If threat actors managed to get past the first stage of the QakNote kill chain, likely due to the absence of appropriate email security tools, the execution of the subsequent steps resulted in strong intervention from Darktrace/Network. 

Interactions with malicious OneNote attachments caused their devices to fetch a Qakbot DLL from a remote server via HTTP GET requests with an empty Host header and either a cURL or PowerShell User-Agent header. These unusual HTTP behaviors caused the following Darktrace/Network models to breach:

  • Device / New User Agent
  • Device / New PowerShell User Agent
  • Device / New User Agent and New IP
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Powershell to Rare External
  • Anomalous File / Numeric File Download
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / New User Agent Followed By Numeric File Download

For customers with RESPOND/Network active, these breaches resulted in the following autonomous actions:

  • Enforce group pattern of life for 30 minutes
  • Enforce group pattern of life for 2 hours
  • Block connections to relevant external endpoints over relevant ports for 2 hours   
  • Block all outgoing traffic for 10 minutes
Figure 15: Event Log showing a user’s device receiving Darktrace RESPOND/Network actions after downloading a Qakbot DLL. 
Figure 16: Event Log showing a user’s device receiving Darktrace RESPOND/Network actions after downloading a Qakbot DLL.

Successful, uninterrupted downloads of Qakbot DLLs resulted in connections to Qakbot C2 servers, and subsequently to Cobalt Strike and VNC C2 connections. These C2 activities resulted in breaches of the following DETECT/Network models:

  • Compromise / Suspicious TLS Beaconing To Rare External
  • Compromise / Large Number of Suspicious Successful Connections
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Beaconing Activity To External Rare
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Device / Initial Breach Chain Compromise

For customers with RESPOND/Network active, these breaches caused RESPOND to autonomously perform the following actions:

  • Block connections to relevant external endpoints over relevant ports for 1 hour
Figure 17: Event Log showing a user’s device receiving RESPOND/Network actions after contacting the Qakbot C2 endpoint,  Cobalt Strike C2 endpoint, bonsars[.]com.

In cases where C2 connections were allowed to continue, actors attempted to move laterally through usage of SMB and Service Control Manager. This lateral movement activity caused the following DETECT/Network models to breach:

  • Device / Possible SMB/NTLM Reconnaissance
  • Anomalous Connection / New or Uncommon Service Control 

For customers with RESPOND/Network enabled, these breaches caused RESPOND to autonomously perform the following actions:

  • Block connections to relevant internal endpoints over port 445 for 1 hour
Figure 18: Event Log shows a user’s device receiving RESPOND/Network actions after contacting the Qakbot C2 endpoint, 5.75.205[.]43, and distributing ‘.dll’ and ‘.dll.cfg’ files internally.

The QakNote infections observed across Darktrace’s customer base involved several steps, each of which elicited alerts and autonomous preventative actions from Darktrace. By autonomously investigating the alerts from DETECT, Darktrace’s Cyber AI Analyst was able to connect the distinct steps of observed QakNote infections into single incidents. It then produced incident logs to present in-depth details of the activity it uncovered, provide full visibility for customer security teams.

Figure 19: AI Analyst incident entry showing the steps of a QakNote infection which AI Analyst connected following its autonomous investigations.

Conclusion

Faced with the emerging threat of QakNote infections, Darktrace demonstrated its ability to autonomously detect and respond to arising threats in a constantly evolving threat landscape. The attack chains which Darktrace observed across its customer base involved the delivery of Qakbot via malicious OneNote attachments, the usage of ports 65400 and 2222 for Qakbot C2 communication, the usage of Cobalt Strike Beacon and VNC for ‘hands-on-keyboard’ activity, and the usage of SMB and Service Control Manager for lateral movement. 

Despite the novelty of the OneNote-based delivery method, Darktrace was able to identify QakNote infections across its customer base at various stages of the kill chain, using its autonomous anomaly-based detection to identify unusual activity or deviations from expected behavior. When active, Darktrace/Email neutralized malicious QakNote attachments sent to employees. In cases where Darktrace/Email was not active, Darktrace/Network detected and slowed down the unusual network activities which inevitably ensued from Qakbot infections. Ultimately, this intervention from Darktrace’s products prevented infections from leading to further harmful activity, such as data exfiltration and the detonation of ransomware.

Darktrace is able to offer customers an unparalleled level of network security by combining both Darktrace/Network and Darktrace/Email, safeguarding both their email and network environments. With its suite of products, including DETECT and RESPOND, Darktrace can autonomously uncover threats to customer networks and instantaneously intervene to prevent suspicious activity leading to damaging compromises. 

Appendices

MITRE ATT&CK Mapping 

Initial Access:

T1566.001 – Phishing: Spearphishing Attachment

Execution:

T1204.001 – User Execution: Malicious Link

T1204.002 – User Execution: Malicious File

T1569.002 – System Services: Service Execution

Lateral Movement:

T1021.002 – Remote Services: SMB/Windows Admin Shares

Command and Control:

T1573.002 – Encrypted Channel : Asymmetric Cryptography

T1571 – Non-Standard Port 

T1105 – Ingress Tool Transfer

T1095 –  Non-Application Layer Protocol

T1219 – Remote Access Software

List of IOCs

IP Addresses and/or Domain Names:

- 103.214.71[.]45 - Qakbot download infrastructure 

- 141.164.35[.]94 - Qakbot download infrastructure 

- 95.179.215[.]225 - Qakbot download infrastructure 

- 128.254.207[.]55 - Qakbot download infrastructure

- 141.164.35[.]94 - Qakbot download infrastructure

- 172.96.137[.]149 - Qakbot download infrastructure

- 185.231.205[.]246 - Qakbot download infrastructure

- 216.128.146[.]67 - Qakbot download infrastructure 

- 45.155.37[.]170 - Qakbot download infrastructure

- 85.239.41[.]55 - Qakbot download infrastructure

- 45.67.35[.]108 - Qakbot download infrastructure

- 77.83.199[.]12 - Qakbot download infrastructure 

- 45.77.63[.]210 - Qakbot download infrastructure 

- 198.44.140[.]78 - Qakbot download infrastructure

- 47.32.78[.]150 - Qakbot C2 infrastructure

- 197.204.13[.]52 - Qakbot C2 infrastructure

- 68.108.122[.]180 - Qakbot C2 infrastructure

- 2.50.48[.]213 - Qakbot C2 infrastructure

- 66.180.227[.]60 - Qakbot C2 infrastructure

- 190.206.75[.]58 - Qakbot C2 infrastructure

- 109.150.179[.]236 - Qakbot C2 infrastructure

- 86.202.48[.]142 - Qakbot C2 infrastructure

- 143.159.167[.]159 - Qakbot C2 infrastructure

- 5.75.205[.]43 - Qakbot C2 infrastructure

- 184.176.35[.]223 - Qakbot C2 infrastructure 

- 208.187.122[.]74 - Qakbot C2 infrastructure

- 23.111.114[.]52 - Qakbot C2 infrastructure 

- 74.12.134[.]53 – Qakbot C2 infrastructure

- bonsars[.]com • 194.165.16[.]56 - Cobalt Strike C2 infrastructure 

- 78.31.67[.]7 - VNC C2 infrastructure

Target URIs of GET Requests for Qakbot DLLs:

- /70802.dat 

- /51881.dat

- /12427.dat

- /70136.dat

- /35768.dat

- /41981.dat

- /30622.dat

- /72286.dat

- /46557.dat

- /33006.dat

- /300332.dat

- /703558.dat

- /760433.dat

- /210/184/187737.dat

- /469/387/553748.dat

- /282/535806.dat

User-Agent Headers of GET Requests for Qakbot DLLs:

- curl/7.83.1

- curl/7.55.1

- Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.19041.2364

- Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.17763.3770

- Mozilla/5.0 (Windows NT; Windows NT 10.0; en-GB) WindowsPowerShell/5.1.19041.2364

SHA256 Hashes of Downloaded Qakbot DLLs:  

- 83e9bdce1276d2701ff23b1b3ac7d61afc97937d6392ed6b648b4929dd4b1452

- ca95a5dcd0194e9189b1451fa444f106cbabef3558424d9935262368dba5f2c6 

- fa067ff1116b4c8611eae9ed4d59a19d904a8d3c530b866c680a7efeca83eb3d

- e6853589e42e1ab74548b5445b90a5a21ff0d7f8f4a23730cffe285e2d074d9e

- d864d93b8fd4c5e7fb136224460c7b98f99369fc9418bae57de466d419abeaf6

- c103c24ccb1ff18cd5763a3bb757ea2779a175a045e96acbb8d4c19cc7d84bea

Names of Internally Distributed Qakbot DLLs: 

- rpwpmgycyzghm.dll

- rpwpmgycyzghm.dll.cfg

- guapnluunsub.dll

- guapnluunsub.dll.cfg

- rskgvwfaqxzz.dll

- rskgvwfaqxzz.dll.cfg

- hkfjhcwukhsy.dll

- hkfjhcwukhsy.dll.cfg

- uqailliqbplm.dll

- uqailliqbplm.dll.cfg

- ghmaorgvuzfos.dll

- ghmaorgvuzfos.dll.cfg

Links Found Within Neutralized QakNote Email Attachments:

- hxxps://khatriassociates[.]com/MBt/3.gif

- hxxps://spincotech[.]com/8CoBExd/3.gif

- hxxps://minaato[.]com/tWZVw/3.gif

- hxxps://famille2point0[.]com/oghHO/01.png

- hxxps://sahifatinews[.]com/jZbaw/01.png

- hxxp://87.236.146[.]112/62778.dat

- hxxp://87.236.146[.]112/59076.dat

- hxxp://185.231.205[.]246/73342.dat

References

[1] https://techcommunity.microsoft.com/t5/excel-blog/excel-4-0-xlm-macros-now-restricted-by-default-for-customer/ba-p/3057905

[2] https://techcommunity.microsoft.com/t5/microsoft-365-blog/helping-users-stay-safe-blocking-internet-macros-by-default-in/ba-p/3071805

[3] https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked

[4] https://www.cyfirma.com/outofband/html-smuggling-a-stealthier-approach-to-deliver-malware/

[5] https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/html-smuggling-the-hidden-threat-in-your-inbox/

[6] https://twitter.com/nao_sec/status/1530196847679401984

[7] https://www.fortiguard.com/threat-signal-report/4616/qakbot-delivered-through-cve-2022-30190-follina

[8] https://isc.sans.edu/diary/rss/28728

[9] https://darktrace.com/blog/qakbot-resurgence-evolving-along-with-the-emerging-threat-landscape

[10] https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/trojanized-onenote-document-leads-to-formbook-malware/

[11] https://www.proofpoint.com/uk/blog/threat-insight/onenote-documents-increasingly-used-to-deliver-malware

[12] https://www.malwarebytes.com/blog/threat-intelligence/2023/03/emotet-onenote

[13] https://blog.cyble.com/2023/02/01/qakbots-evolution-continues-with-new-strategies/

[14] https://news.sophos.com/en-us/2023/02/06/qakbot-onenote-attacks/

[15] https://isc.sans.edu/diary/rss/29210

[16] https://unit42.paloaltonetworks.com/feb-wireshark-quiz-answers/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher
Written by
Connor Mooney
SOC Analyst

More in this series

No items found.

Blog

/

/

December 5, 2025

Simplifying Cross Domain Investigations

simplifying cross domain thraetsDefault blog imageDefault blog image

Cross-domain gaps mean cross-domain attacks  

Organizations are built on increasingly complex digital estates. Nowadays, the average IT ecosystem spans across a large web of interconnected domains like identity, network, cloud, and email.  

While these domain-specific technologies may boost business efficiency and scalability, they also provide blind spots where attackers can shelter undetected. Threat actors can slip past defenses because security teams often use different detection tools in each realm of their digital infrastructure. Adversaries will purposefully execute different stages of an attack across different domains, ensuring no single tool picks up too many traces of their malicious activity. Identifying and investigating this type of threat, known as a cross-domain attack, requires mastery in event correlation.  

For example, one isolated network scan detected on your network may seem harmless at first glance. Only when it is stitched together with a rare O365 login, a new email rule and anomalous remote connections to an S3 bucket in AWS does it begin to manifest as an actual intrusion.  

However, there are a whole host of other challenges that arise with detecting this type of attack. Accessing those alerts in the respective on-premise network, SaaS and IaaS environments, understanding them and identifying which ones are related to each other takes significant experience, skill and time. And time favours no one but the threat actor.  

Anatomy of a cross domain attack
Figure 1: Anatomy of a cross domain attack

Diverse domains and empty grocery shelves

In April 2025, the UK faced a throwback to pandemic-era shortages when the supermarket giant Marks & Spencer (M&S) was crippled by a cyberattack, leaving empty shelves across its stores and massive disruptions to its online service.  

The threat actors, a group called Scattered Spider, exploited multiple layers of the organization’s digital infrastructure. Notably, the group were able to bypass the perimeter not by exploiting a technical vulnerability, but an identity. They used social engineering tactics to impersonate an M&S employee and successfully request a password reset.  

Once authenticated on the network, they accessed the Windows domain controller and exfiltrated the NTDS.dit file – a critical file containing hashed passwords for all users in the domain. After cracking those hashes offline, they returned to the network with escalated privileges and set their sights on the M&S cloud infrastructure. They then launched the encryption payload on the company’s ESXi virtual machines.

To wrap up, the threat actors used a compromised employee’s email account to send an “abuse-filled” email to the M&S CEO, bragging about the hack and demanding payment. This was possibly more of a psychological attack on the CEO than a technically integral part of the cyber kill chain. However, it revealed yet another one of M&S’s domains had been compromised.  

In summary, the group’s attack spanned four different domains:

Identity: Social engineering user impersonation

Network: Exfiltration of NTDS.dit file

Cloud: Ransomware deployed on ESXI VMs

Email: Compromise of user account to contact the CEO

Adept at exploiting nuance

This year alone, several high-profile cyber-attacks have been attributed to the same group, Scattered Spider, including the hacks on Victoria’s Secret, Adidas, Hawaiian Airlines, WestJet, the Co-op and Harrods. It begs the question, what has made this group so successful?

In the M&S attack, they showcased their advanced proficiency in social engineering, which they use to bypass identity controls and gain initial access. They demonstrated deep knowledge of cloud environments by deploying ransomware onto virtualised infrastructure. However, this does not exemplify a cookie-cutter template of attack methods that brings them success every time.

According to CISA, Scattered Spider typically use a remarkable variety of TTPs (tactics, techniques and procedures) across multiple domains to carry out their campaigns. From leveraging legitimate remote access tools in the network, to manipulating AWS EC2 cloud instances or spoofing email domains, the list of TTPs used by the group is eye-wateringly long. Additionally, the group reportedly evades detection by “frequently modifying their TTPs”.  

If only they had better intentions. Any security director would be proud of a red team who not only has this depth and breadth of domain-centric knowledge but is also consistently upskilling.  

Yet, staying ahead of adversaries who seamlessly move across domains and fluently exploit every system they encounter is just one of many hurdles security teams face when investigating cross-domain attacks.  

Resource-heavy investigations

There was a significant delay in time to detection of the M&S intrusion. News outlet BleepingComputer reported that attackers infiltrated the M&S network as early as February 2025. They maintained persistence for weeks before launching the attack in late April 2025, indicating that early signs of compromise were missed or not correlated across domains.

While it’s unclear exactly why M&S missed the initial intrusion, one can speculate about the unique challenges investigating cross-domain attacks present.  

Challenges of cross-domain investigation

First and foremost, correlation work is arduous because the string of malicious behaviour doesn’t always stem from the same device.  

A hypothetical attack could begin with an O365 credential creating a new email rule. Weeks later, that same credential authenticates anomalously on two different devices. One device downloads an .exe file from a strange website, while the other starts beaconing every minute to a rare external IP address that no one else in the organisation has ever connected to. A month later, a third device downloads 1.3 GiB of data from a recently spun up S3 bucket and gradually transfers a similar amount of data to that same rare IP.

Amid a sea of alerts and false positives, connecting the dots of a malicious attack like this takes time and meticulous correlation. Factor in the nuanced telemetry data related to each domain and things get even more complex.  

An analyst who specialises in network security may not understand the unique logging formats or API calls in the cloud environment. Perhaps they are proficient in protecting the Windows Active Directory but are unfamiliar with cloud IAM.  

Cloud is also an inherently more difficult domain to investigate. With 89% of organizations now operating in multi-cloud environments time must be spent collecting logs, snapshots and access records. Coupled with the threat of an ephemeral asset disappearing, the risk of missing a threat is high. These are some of the reasons why research shows that 65% of organisations spend 3-5 extra days investigating cloud incidents.  

Helpdesk teams handling user requests over the phone require a different set of skills altogether. Imagine a threat actor posing as an employee and articulately requesting an urgent password reset or a temporary MFA deactivation. The junior Helpdesk agent— unfamiliar with the exception criteria, eager to help and feeling pressure from the persuasive manipulator at the end of the phoneline—could easily fall victim to this type of social engineering.  

Empowering analysts through intelligent automation

Even the most skilled analysts can’t manually piece together every strand of malicious activity stretching across domains. But skill alone isn’t enough. The biggest hurdle in investigating these attacks often comes down to whether the team have the time, context, and connected visibility needed to see the full picture.

Many organizations attempt to bridge the gap by stitching together a patchwork of security tools. One platform for email, another for endpoint, another for cloud, and so on. But this fragmentation reinforces the very silos that cross-domain attacks exploit. Logs must be exported, normalized, and parsed across tools a process that is not only error-prone but slow. By the time indicators are correlated, the intrusion has often already deepened.

That’s why automation and AI are becoming indispensable. The future of cross-domain investigation lies in systems that can:

  • Automatically correlate activity across domains and data sources, turning disjointed alerts into a single, interpretable incident.
  • Generate and test hypotheses autonomously, identifying likely chains of malicious behaviour without waiting for human triage.
  • Explain findings in human terms, reducing the knowledge gap between junior and senior analysts.
  • Operate within and across hybrid environments, from on-premise networks to SaaS, IaaS, and identity systems.

This is where Darktrace transforms alerting and investigations. Darktrace’s Cyber AI Analyst automates the process of correlation, hypothesis testing, and narrative building, not just within one domain, but across many. An anomalous O365 login, a new S3 bucket, and a suspicious beaconing host are stitched together automatically, surfacing the story behind the alerts rather than leaving it buried in telemetry.

How threat activity is correlated in Cyber AI Analyst
Figure 2: How threat activity is correlated in Cyber AI Analyst

By analyzing events from disparate tools and sources, AI Analyst constructs a unified timeline of activity showing what happened, how it spread, and where to focus next. For analysts, it means investigation time is measured in minutes, not days. For security leaders, it means every member of the SOC, regardless of experience, can contribute meaningfully to a cross-domain response.

Figure 3: Correlation showcasing cross domains (SaaS and IaaS) in Cyber AI Analyst

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

What once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

Continue reading
About the author
Benjamin Druttman
Cyber Security AI Technical Instructor

Blog

/

Network

/

December 5, 2025

Atomic Stealer: Darktrace’s Investigation of a Growing macOS Threat

Atomic Stealer: Darktrace’s Investigation of a Growing macOS ThreatDefault blog imageDefault blog image

The Rise of Infostealers Targeting Apple Users

In a threat landscape historically dominated by Windows-based threats, the growing prevalence of macOS information stealers targeting Apple users is becoming an increasing concern for organizations. Infostealers are a type of malware designed to steal sensitive data from target devices, often enabling attackers to extract credentials and financial data for resale or further exploitation. Recent research identified infostealers as the largest category of new macOS malware, with an alarming 101% increase in the last two quarters of 2024 [1].

What is Atomic Stealer?

Among the most notorious is Atomic macOS Stealer (or AMOS), first observed in 2023. Known for its sophisticated build, Atomic Stealer can exfiltrate a wide range of sensitive information including keychain passwords, cookies, browser data and cryptocurrency wallets.

Originally marketed on Telegram as a Malware-as-a-Service (MaaS), Atomic Stealer has become a popular malware due to its ability to target macOS. Like other MaaS offerings, it includes services like a web panel for managing victims, with reports indicating a monthly subscription cost between $1,000 and $3,000 [2]. Although Atomic Stealer’s original intent was as a standalone MaaS product, its unique capability to target macOS has led to new variants emerging at an unprecedented rate

Even more concerning, the most recent variant has now added a backdoor for persistent access [3]. This backdoor presents a significant threat, as Atomic Stealer campaigns are believed to have reached an around 120 countries. The addition of a backdoor elevates Atomic Stealer to the rare category of backdoor deployments potentially at a global scale, something only previously attributed to nation-state threat actors [4].

This level of sophistication is also evident in the wide range of distribution methods observed since its first appearance; including fake application installers, malvertising and terminal command execution via the ClickFix technique. The ClickFix technique is particularly noteworthy: once the malware is downloaded onto the device, users are presented with what appears to be a legitimate macOS installation prompt. In reality, however, the user unknowingly initiates the execution of the Atomic Stealer malware.

This blog will focus on activity observed across multiple Darktrace customer environments where Atomic Stealer was detected, along with several indicators of compromise (IoCs). These included devices that successfully connected to endpoints associated with Atomic Stealer, those that attempted but failed to establish connections, and instances suggesting potential data exfiltration activity.

Darktrace’s Coverage of Atomic Stealer

As this evolving threat began to spread across the internet in June 2025, Darktrace observed a surge in Atomic Stealer activity, impacting numerous customers in 24 different countries worldwide. Initially, most of the cases detected in 2025 affected Darktrace customers within the Europe, Middle East, and Africa (EMEA) region. However, later in the year, Darktrace began to observe a more even distribution of cases across EMEA, the Americas (AMS), and Asia Pacific (APAC). While multiple sectors were impacted by Atomic Stealer, Darktrace customers in the education sector were the most affected, particularly during September and October, coinciding with the return to school and universities after summer closures. This spike likely reflects increased device usage as students returned and reconnected potentially compromised devices to school and campus environments.

Starting from June, Darktrace detected multiple events of suspicious HTTP activity to external connections to IPs in the range 45.94.47.0/24. Investigation by Darktrace’s Threat Research team revealed several distinct patterns ; HTTP POST requests to the URI “/contact”, identical cURL User Agents and HTTP requests to “/api/tasks/[base64 string]” URIs.

Within one observed customer’s environment in July, Darktrace detected two devices making repeated initiated HTTP connections over port 80 to IPs within the same range. The first, Device A, was observed making GET requests to the IP 45.94.47[.]158 (AS60781 LeaseWeb Netherlands B.V.), targeting the URI “/api/tasks/[base64string]” using the “curl/8.7.2” user agent. This pattern suggested beaconing activity and triggered the ‘Beaconing Activity to External Rare' model alert in Darktrace / NETWORK, with Device A’s Model Event Log showing repeated connections. The IP associated with this endpoint has since been flagged by multiple open-source intelligence (OSINT) vendors as being associated with Atomic Stealer [5].

Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.
Figure 1: Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.

Darktrace’s Cyber AI Analyst subsequently launched an investigation into the activity, uncovering that the GET requests resulted in a ‘503 Service Unavailable’ response, likely indicating that the server was temporarily unable to process the requests.

Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.
Figure 2: Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.

This unusual activity prompted Darktrace’s Autonomous Response capability to recommend several blocking actions for the device in an attempt to stop the malicious activity. However, as the customer’s Autonomous Response configuration was set to Human Confirmation Mode, Darktrace was unable to automatically apply these actions. Had Autonomous Response been fully enabled, these connections would have been blocked, likely rendering the malware ineffective at reaching its malicious command-and-control (C2) infrastructure.

Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.
Figure 3: Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.

In another customer environment in August, Darktrace detected similar IoCs, noting a device establishing a connection to the external endpoint 45.94.47[.]149 (ASN: AS57043 Hostkey B.V.). Shortly after the initial connections, the device was observed making repeated requests to the same destination IP, targeting the URI /api/tasks/[base64string] with the user agent curl/8.7.1, again suggesting beaconing activity. Further analysis of this endpoint after the fact revealed links to Atomic Stealer in OSINT reporting [6].

Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.
Figure 4:  Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.

As with the customer in the first case, had Darktrace’s Autonomous Response been properly configured on the customer’s network, it would have been able to block connectivity with 45.94.47[.]149. Instead, Darktrace suggested recommended actions that the customer’s security team could manually apply to help contain the attack.

Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.
Figure 5: Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.

In the most recent case observed by Darktrace in October, multiple instances of Atomic Stealer activity were seen across one customer’s environment, with two devices communicating with Atomic Stealer C2 infrastructure. During this incident, one device was observed making an HTTP GET request to the IP 45.94.47[.]149 (ASN: AS60781 LeaseWeb Netherlands B.V.). These connections targeted the URI /api/tasks/[base64string, using the user agent curl/8.7.1.  

Shortly afterward, the device began making repeated connections over port 80 to the same external IP, 45.94.47[.]149. This activity continued for several days until Darktrace detected the device making an HTTP POST request to a new IP, 45.94.47[.]211 (ASN: AS57043 Hostkey B.V.), this time targeting the URI /contact, again using the curl/8.7.1 user agent. Similar to the other IPs observed in beaconing activity, OSINT reporting later linked this one to information stealer C2 infrastructure [7].

Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.
Figure 6: Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.

Further investigation into this customer’s network revealed that similar activity had been occurring as far back as August, when Darktrace detected data exfiltration on a second device. Cyber AI Analyst identified this device making a single HTTP POST connection to the external IP 45.94.47[.]144, another IP with malicious links [8], using the user agent curl/8.7.1 and targeting the URI /contact.

Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.
Figure 7:  Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.

A deeper investigation into the technical details within the POST request revealed the presence of a file named “out.zip”, suggesting potential data exfiltration.

Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.
Figure 8: Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.

Similarly, in another environment, Darktrace was able to collect a packet capture (PCAP) of suspected Atomic Stealer activity, which revealed potential indicators of data exfiltration. This included the presence of the “out.zip” file being exfiltrated via an HTTP POST request, along with data that appeared to contain details of an Electrum cryptocurrency wallet and possible passwords.

Read more about Darktrace’s full deep dive into a similar case where this tactic was leveraged by malware as part of an elaborate cryptocurrency scam.

PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.
Figure 9: PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.

Although recent research attributes the “out.zip” file to a new variant named SHAMOS [9], it has also been linked more broadly to Atomic Stealer [10]. Indeed, this is not the first instance where Darktrace has seen the “out.zip” file in cases involving Atomic Stealer either. In a previous blog detailing a social engineering campaign that targeted cryptocurrency users with the Realst Stealer, the macOS version of Realst contained a binary that was found to be Atomic Stealer, and similar IoCs were identified, including artifacts of data exfiltration such as the “out.zip” file.

Conclusion

The rapid rise of Atomic Stealer and its ability to target macOS marks a significant shift in the threat landscape and should serve as a clear warning to Apple users who were traditionally perceived as more secure in a malware ecosystem historically dominated by Windows-based threats.

Atomic Stealer’s growing popularity is now challenging that perception, expanding its reach and accessibility to a broader range of victims. Even more concerning is the emergence of a variant embedded with a backdoor, which is likely to increase its appeal among a diverse range of threat actors. Darktrace’s ability to adapt and detect new tactics and IoCs in real time delivers the proactive defense organizations need to protect themselves against emerging threats before they can gain momentum.

Credit to Isabel Evans (Cyber Analyst), Dylan Hinz (Associate Principal Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.     https://www.scworld.com/news/infostealers-targeting-macos-jumped-by-101-in-second-half-of-2024

2.     https://www.kandji.io/blog/amos-macos-stealer-analysis

3.     https://www.broadcom.com/support/security-center/protection-bulletin/amos-stealer-adds-backdoor

4.     https://moonlock.com/amos-backdoor-persistent-access

5.     https://www.virustotal.com/gui/ip-address/45.94.47.158/detection

6.     https://www.trendmicro.com/en_us/research/25/i/an-mdr-analysis-of-the-amos-stealer-campaign.html

7.     https://www.virustotal.com/gui/ip-address/45.94.47.211/detection

8.     https://www.virustotal.com/gui/ip-address/45.94.47.144/detection

9.     https://securityaffairs.com/181441/malware/over-300-entities-hit-by-a-variant-of-atomic-macos-stealer-in-recent-campaign.html

10.   https://binhex.ninja/malware-analysis-blogs/amos-stealer-atomic-stealer-malware.html

Darktrace Model Detections

Darktrace / NETWORK

  • Compromise / Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to New IP
  • Compromise / HTTP Beaconing to Rare Destination
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compromise / Quick and Regular Windows HTTP Beaconing

Autonomous Response

  • Antigena / Network / Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network / Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network / External Threat::Antigena Suspicious Activity Block

List of IoCs

  • 45.94.47[.]149 – IP – Atomic C2 Endpoint
  • 45.94.47[.]144 – IP – Atomic C2 Endpoint
  • 45.94.47[.]158 – IP – Atomic C2 Endpoint
  • 45.94.47[.]211 – IP – Atomic C2 Endpoint
  • out.zip - File Output – Possible ZIP file for Data Exfiltration

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique

Execution - T1204.002 - User Execution: Malicious File

Credential Access - T1555.001 - Credentials from Password Stores: Keychain

Credential Access - T1555.003 - Credentials from Web Browsers

Command & Control - T1071 - Application Layer Protocol

Exfiltration - T1041 - Exfiltration Over C2 Channel

Continue reading
About the author
Isabel Evans
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI