Blog
/

Inside the SOC

/
November 27, 2023

Darktrace Uncovers Persistent PurpleFox Rootkit

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Nov 2023
Explore Darktrace's successful hunt for the PurpleFox rootkit. Understand the techniques used to detect and defeat this sophisticated threat.

Versatile Malware: PurpleFox

As organizations and security teams across the world move to bolster their digital defenses against cyber threats, threats actors, in turn, are forced to adopt more sophisticated tactics, techniques and procedures (TTPs) to circumvent them. Rather than being static and predictable, malware strains are becoming increasingly versatile and therefore elusive to traditional security tools.

One such example is PurpleFox. First observed in 2018, PurpleFox is a combined fileless rootkit and backdoor trojan known to target Windows machines. PurpleFox is known for consistently adapting its functionalities over time, utilizing different infection vectors including known vulnerabilities (CVEs), fake Telegram installers, and phishing. It is also leveraged by other campaigns to deliver ransomware tools, spyware, and cryptocurrency mining malware. It is also widely known for using Microsoft Software Installer (MSI) files masquerading as other file types.

The Evolution of PurpleFox

The Original Strain

First reported in March 2018, PurpleFox was identified to be a trojan that drops itself onto Windows machines using an MSI installation package that alters registry values to replace a legitimate Windows system file [1]. The initial stage of infection relied on the third-party toolkit RIG Exploit Kit (EK). RIG EK is hosted on compromised or malicious websites and is dropped onto the unsuspecting system when they visit browse that site. The built-in Windows installer (MSIEXEC) is leveraged to run the installation package retrieved from the website. This, in turn, drops two files into the Windows directory – namely a malicious dynamic-link library (DLL) that acts as a loader, and the payload of the malware. After infection, PurpleFox is often used to retrieve and deploy other types of malware.  

Subsequent Variants

Since its initial discovery, PurpleFox has also been observed leveraging PowerShell to enable fileless infection and additional privilege escalation vulnerabilities to increase the likelihood of successful infection [2]. The PowerShell script had also been reported to be masquerading as a .jpg image file. PowerSploit modules are utilized to gain elevated privileges if the current user lacks administrator privileges. Once obtained, the script proceeds to retrieve and execute a malicious MSI package, also masquerading as an image file. As of 2020, PurpleFox no longer relied on the RIG EK for its delivery phase, instead spreading via the exploitation of the SMB protocol [3]. The malware would leverage the compromised systems as hosts for the PurpleFox payloads to facilitate its spread to other systems. This mode of infection can occur without any user action, akin to a worm.

The current iteration of PurpleFox reportedly uses brute-forcing of vulnerable services, such as SMB, to facilitate its spread over the network and escalate privileges. By scanning internet-facing Windows computers, PurpleFox exploits weak passwords for Windows user accounts through SMB, including administrative credentials to facilitate further privilege escalation.

Darktrace detection of PurpleFox

In July 2023, Darktrace observed an example of a PurpleFox infection on the network of a customer in the healthcare sector. This observation was a slightly different method of downloading the PurpleFox payload. An affected device was observed initiating a series of service control requests using DCE-RPC, instructing the device to make connections to a host of servers to download a malicious .PNG file, later confirmed to be the PurpleFox rootkit. The device was then observed carrying out worm-like activity to other external internet-facing servers, as well as scanning related subnets.

Darktrace DETECT™ was able to successfully identify and track this compromise across the cyber kill chain and ensure the customer was able to take swift remedial action to prevent the attack from escalating further.

While the customer in question did have Darktrace RESPOND™, it was configured in human confirmation mode, meaning any mitigative actions had to be manually applied by the customer’s security team. If RESPOND had been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action against the compromise to contain it at the earliest instance.

Attack Overview

Figure 1: Timeline of PurpleFox malware kill chain.

Initial Scanning over SMB

On July 14, 2023, Darktrace detected the affected device scanning other internal devices on the customer’s network via port 445. The numerous connections were consistent with the aforementioned worm-like activity that has been reported from PurpleFox behavior as it appears to be targeting SMB services looking for open or vulnerable channels to exploit.

This initial scanning activity was detected by Darktrace DETECT, specifically through the model breach ‘Device / Suspicious SMB Scanning Activity’. Darktrace’s Cyber AI Analyst™ then launched an autonomous investigation into these internal connections and tied them into one larger-scale network reconnaissance incident, rather than a series of isolated connections.

Figure 2: Cyber AI Analyst technical details summarizing the initial scanning activity seen with the internal network scan over port 445.

As Darktrace RESPOND was configured in human confirmation mode, it was unable to autonomously block these internal connections. However, it did suggest blocking connections on port 445, which could have been manually applied by the customer’s security team.

Figure 3: The affected device’s Model Breach Event Log showing the initial scanning activity observed by Darktrace DETECT and the corresponding suggested RESPOND action.

Privilege Escalation

The device successfully logged in via NTLM with the credential, ‘administrator’. Darktrace recognized that the endpoint was external to the customer’s environment, indicating that the affected device was now being used to propagate the malware to other networks. Considering the lack of observed brute-force activity up to this point, the credentials for ‘administrator’ had likely been compromised prior to Darktrace’s deployment on the network, or outside of Darktrace’s purview via a phishing attack.

Exploitation

Darktrace then detected a series of service control requests over DCE-RPC using the credential ‘admin’ to make SVCCTL Create Service W Requests. A script was then observed where the controlled device is instructed to launch mshta.exe, a Windows-native binary designed to execute Microsoft HTML Application (HTA) files. This enables the execution of arbitrary script code, VBScript in this case.

Figure 4: PurpleFox remote service control activity captured by a Darktrace DETECT model breach.
Figure 5: The infected device’s Model Breach Event Log showing the anomalous service control activity being picked up by DETECT.

There are a few MSIEXEC flags to note:

  • /i : installs or configures a product
  • /Q : sets the user interface level. In this case, it is set to ‘No UI’, which is used for “quiet” execution, so no user interaction is required

Evidently, this was an attempt to evade detection by endpoint users as it is surreptitiously installed onto the system. This corresponds to the download of the rootkit that has previously been associated with PurpleFox. At this stage, the infected device continues to be leveraged as an attack device and scans SMB services over external endpoints. The device also appeared to attempt brute-forcing over NTLM using the same ‘administrator’ credential to these endpoints. This activity was identified by Darktrace DETECT which, if enabled in autonomous response mode would have instantly blocked similar outbound connections, thus preventing the spread of PurpleFox.

Figure 6: The infected device’s Model Breach Event Log showing the outbound activity corresponding to PurpleFox’s wormlike spread. This was caught by DETECT and the corresponding suggested RESPOND action.

Installation

On August 9, Darktrace observed the device making initial attempts to download a malicious .PNG file. This was a notable change in tactics from previously reported PurpleFox campaigns which had been observed utilizing .MOE files for their payloads [3]. The .MOE payloads are binary files that are more easily detected and blocked by traditional signatured-based security measures as they are not associated with known software. The ubiquity of .PNG files, especially on the web, make identifying and blacklisting the files significantly more difficult.

The first connection was made with the URI ‘/test.png’.  It was noted that the HTTP method here was HEAD, a method similar to GET requests except the server must not return a message-body in the response.

The metainformation contained in the HTTP headers in response to a HEAD request should be identical to the information sent in response to a GET request. This method is often used to test hypertext links for validity and recent modification. This is likely a way of checking if the server hosting the payload is still active. Avoiding connections that could possibly be detected by antivirus solutions can help keep this activity under-the-radar.

Figure 7: Packet Capture from an affected customer device showing the initial HTTP requests to the payload server.
Figure 8: Packet Capture showing the HTTP requests to download the payloads.

The server responds with a status code of 200 before the download begins. The HEAD request could be part of the attacker’s verification that the server is still running, and that the payload is available for download. The ‘/test.png’ HEAD request was sent twice, likely for double confirmation to begin the file transfer.

Figure 9: PCAP from the affected customer device showing the Windows Installer user-agent associated with the .PNG file download.

Subsequent analysis using a Packet Capture (PCAP) tool revealed that this connection used the Windows Installer user agent that has previously been associated with PurpleFox. The device then began to download a payload that was masquerading as a Microsoft Word document. The device was thus able to download the payload twice, from two separate endpoints.

By masquerading as a Microsoft Word file, the threat actor was likely attempting to evade the detection of the endpoint user and traditional security tools by passing off as an innocuous text document. Likewise, using a Windows Installer user agent would enable threat actors to bypass antivirus measures and disguise the malicious installation as legitimate download activity.  

Darktrace DETECT identified that these were masqueraded file downloads by correctly identifying the mismatch between the file extension and the true file type. Subsequently, AI Analyst was able to correctly identify the file type and deduced that this download was indicative of the device having been compromised.

In this case, the device attempted to download the payload from several different endpoints, many of which had low antivirus detection rates or open-source intelligence (OSINT) flags, highlighting the need to move beyond traditional signature-base detections.

Figure 10: Cyber AI Analyst technical details summarizing the downloads of the PurpleFox payload.
Figure 11 (a): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.
Figure 11 (b): The Model Breach generated by the masqueraded file transfer associated with the PurpleFox payload.

If Darktrace RESPOND was enabled in autonomous response mode at the time of the attack it would have acted by blocking connections to these suspicious endpoints, thus preventing the download of malicious files. However, as RESPOND was in human confirmation mode, RESPOND actions required manual application by the customer’s security team which unfortunately did not happen, as such the device was able to download the payloads.

Conclusion

The PurpleFox malware is a particularly dynamic strain known to continually evolve over time, utilizing a blend of old and new approaches to achieve its goals which is likely to muddy expectations on its behavior. By frequently employing new methods of attack, malicious actors are able to bypass traditional security tools that rely on signature-based detections and static lists of indicators of compromise (IoCs), necessitating a more sophisticated approach to threat detection.  

Darktrace DETECT’s Self-Learning AI enables it to confront adaptable and elusive threats like PurpleFox. By learning and understanding customer networks, it is able to discern normal network behavior and patterns of life, distinguishing expected activity from potential deviations. This anomaly-based approach to threat detection allows Darktrace to detect cyber threats as soon as they emerge.  

By combining DETECT with the autonomous response capabilities of RESPOND, Darktrace customers are able to effectively safeguard their digital environments and ensure that emerging threats can be identified and shut down at the earliest stage of the kill chain, regardless of the tactics employed by would-be attackers.

Credit to Piramol Krishnan, Cyber Analyst, Qing Hong Kwa, Senior Cyber Analyst & Deputy Team Lead, Singapore

Appendices

Darktrace Model Detections

  • Device / Increased External Connectivity
  • Device / Large Number of Connections to New Endpoints
  • Device / SMB Session Brute Force (Admin)
  • Compliance / External Windows Communications
  • Anomalous Connection / New or Uncommon Service Control
  • Compromise / Unusual SVCCTL Activity
  • Compromise / Rare Domain Pointing to Internal IP
  • Anomalous File / Masqueraded File Transfer

RESPOND Models

  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Antigena / Network / External Threat / Antigena File then New Outbound Block

List of IoCs

IoC - Type - Description

/C558B828.Png - URI - URI for Purple Fox Rootkit [4]

5b1de649f2bc4eb08f1d83f7ea052de5b8fe141f - File Hash - SHA1 hash of C558B828.Png file (Malware payload)

190.4.210[.]242 - IP - Purple Fox C2 Servers

218.4.170[.]236 - IP - IP for download of .PNG file (Malware payload)

180.169.1[.]220 - IP - IP for download of .PNG file (Malware payload)

103.94.108[.]114:10837 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

221.199.171[.]174:16543 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

61.222.155[.]49:14098 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

178.128.103[.]246:17880 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

222.134.99[.]132:12539 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

164.90.152[.]252:18075 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

198.199.80[.]121:11490 - IP - IP from Service Control MSIEXEC script to download PNG file (Malware payload)

MITRE ATT&CK Mapping

Tactic - Technique

Reconnaissance - Active Scanning T1595, Active Scanning: Scanning IP Blocks T1595.001, Active Scanning: Vulnerability Scanning T1595.002

Resource Development - Obtain Capabilities: Malware T1588.001

Initial Access, Defense Evasion, Persistence, Privilege Escalation - Valid Accounts: Default Accounts T1078.001

Initial Access - Drive-by Compromise T1189

Defense Evasion - Masquerading T1036

Credential Access - Brute Force T1110

Discovery - Network Service Discovery T1046

Command and Control - Proxy: External Proxy T1090.002

References

  1. https://blog.360totalsecurity.com/en/purple-fox-trojan-burst-out-globally-and-infected-more-than-30000-users/
  2. https://www.trendmicro.com/en_us/research/19/i/purple-fox-fileless-malware-with-rookit-component-delivered-by-rig-exploit-kit-now-abuses-powershell.html
  3. https://www.akamai.com/blog/security/purple-fox-rootkit-now-propagates-as-a-worm
  4. https://www.foregenix.com/blog/an-overview-on-purple-fox
  5. https://www.trendmicro.com/en_sg/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Piramol Krishnan
Cyber Security Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

December 12, 2024

/
No items found.

Company Shuts Down Cyber-attacks with “Flawless” Detection and Response from Darktrace

Default blog imageDefault blog image

Growing pains: Balancing efficiency with risk  

This organization has recently scaled its operations, and numerous acquisitions have significantly boosted the organization’s capabilities and growth. However, this also creates work and high expectations for the organization’s IT and security teams. Within 12 months of an acquisition, the teams must fully integrate each new business onto the company’s platform. “A huge piece of that integration plan is rolling out our security controls,” said the CISO. “While our goal is to connect those facilities up as quickly as possible to drive efficiency, we also need to implement the proper security controls to protect the enterprise.”

Gap beyond the perimeter  

The organization had established strong security measures to safeguard its perimeter; however, the CISO identified a critical gap in real-time network monitoring. If the perimeter were breached, threats were only discovered after an endpoint was compromised and the issue was manually reported.

As digital transformation progresses, the need to adopt advanced technologies is becoming essential, particularly as organizations begin to open up operational environments to greater connectivity. Many processes still rely on traditional methods, and integrating innovative solutions could drive significant improvements in efficiency and productivity. “We’re committed to adopting cutting-edge technologies,” the CISO explained. “But we understood that without more robust network security controls, opening up our operational environments would expose us to heightened risks, including advanced threats like ransomware.”

Building a layered, proactive security strategy with Darktrace  

To close the gap beyond the perimeter, the company embarked on a free trial with Darktrace. The CISO recalls: “The trials were fantastic. It was obvious that Darktrace was exactly what we needed. The Darktrace team was also very knowledgeable and helpful throughout the process, which was impressive.”  

Today, the organization is using a combination of Darktrace solutions for its layered security approach, including:

Detecting unusual behavior with AI  

Darktrace’s use of machine learning and Self-Learning AI is one of the reasons the company chose Darktrace. Instead of teaching an AI system what an ‘attack’ looks like, training it on large data lakes of thousands of organizations’ data, Darktrace AI learns from the company’s own unique data and user activity to learn and create baseline models of what ‘normal’ looks like for their business.

Darktrace can then detect subtle deviations and unusual activity that signals a possible threat. “That fascinated us because what it really means is this technology doesn’t need to know about every single threat because the threat itself isn’t important, it’s the behavior of the activity that’s important. That capability is unique when it when it comes to threat detection,” said the CISO.

Identifying and mitigating high-impact attack paths

The security team appreciated that with Darktrace they could take a more proactive approach to security by exposing high-risk attack paths through modeling and AI risk assessments. Darktrace / Proactive Exposure Management gives them visibility into vulnerable entry points and assets, identifies active risks, and prioritizes the most important security issues to be addressed.

“Specific users and assets within our business have a higher risk of being targeted by a cyber-attack, for example our executives,” said the CISO. “With Darktrace, we get an adversarial view of our risk. We can see the attack path around those potential targets and proactively take measures to mitigate that vulnerability and prevent an attack.”

Driving up productivity while putting the brakes on cyber-attacks  

The security team collaborated with Darktrace to fine tune the models that really fit their business. With Darktrace now automating most of their threat detection and response efforts, productivity has soared, the security team is now focused on delivering greater value to the business and, most importantly, Darktrace proved it could quickly detect and shut down a major cyber-attack–and do so without impacting business operations.

Fueling team productivity with automation and AI

Prior to using Darktrace, the security team had little visibility into potential risks beyond the perimeter. Today, the team has full control and visibility over the network. “My team is now spending 80-90% of their time doing proactive work because Darktrace is managing the vast majority of our detect and response needs. The team really has faith in the Darktrace system,” said the CISO.  

With less time spent on low-level manual tasks, the security team can now focus on higher priority initiatives. For example, they have expanded their internal vulnerability assessments across the entire group. The team couldn’t focus on this additional audit and vulnerability management work if Darktrace wasn’t taking care of most of their security monitoring. “Darktrace has allowed us to move on to these additional kinds of governance projects that we otherwise would have to hire an army of staff to get through”.

Stopping email threats in their tracks

Using Darktrace / EMAIL, the company has identified and blocked a significant percentage of emails that were making it past their native email filters. “Darktrace is especially good at detecting impersonation emails, and we really appreciate its ability to automatically remove suspicious emails directly from a user’s inbox. It adds an extra level of confidence,” said the CISO.

Self-Learning AI understands anomalies within unique communication patterns to stop known and unknown threats. For example, when an employee sent an email to a brand new domain, Darktrace identified the behavior as unusual and inconsistent with baseline models and blocked the email.

Darktrace passes the biggest test of all

In 2024, the company experienced the value of the security system firsthand when attackers exploited a vulnerability in a third-party remote support solution that they was using. This solution provided remote access and tech support capabilities. If successful, the attackers could have infiltrated high-value end points and created their own administrative user, giving them full control over the server.

“We first became aware of the attack when Darktrace notified us of unusual behavior coming from the remote support server,” said the CISO. The attackers were attempting to put backdoors onto the service with the intent of selling access to the highest bidder who would then install ransomware on their servers. It all happened very quickly, as the attackers tried to connect to the internal network and other servers, while also firing off a host of other actions, like PowerShell commands, to escalate their privileges.  

“Darktrace worked flawlessly. There was no chance that ransomware was ever going to come in,” the CISO said. “Even though there was no signature to really look at, Darktrace realized this was not normal behavior for this server, shutting down connections and doing everything it could do to stop the attack.” Within eight hours, the security team identified and stopped the attack, severed its connection to the third-party solution, and completed additional analysis and clean-up. “In addition to our own investigation, third parties like our external SOC and legal department also confirmed that Darktrace performed as expected. We were able to report back to the executive team that there was zero risk that any data or systems were compromised.”

Post-attack, there was no need to make any changes to Darktrace. The team consistently reviews its models and baselines, often collaborating with Darktrace to make adjustments when needed to continuously improve performance. “Because of this relationship and constant engagement with Darktrace’s technical teams, we didn't have to go back and ask: ‘why wasn’t this updated’ or ‘why didn’t this model work.’ The models worked.”

His advice to other organizations facing similar challenges? First, focus on updating, patching, and vulnerability management, and act quickly when vulnerabilities are identified. His second piece of advice: “have an automated detection system like Darktrace in place so you can respond at the speed that these attacks evolve. Humans can no longer keep up with a scripted attack as it moves around and tries to compromise items on your network. You need the right technology to fight these types of attacks.”

Dynamic capabilities for a dynamic future

Real-time playbooks

With a proactive, enterprise-wide security strategy in place, the CISO now has the time to think about future projects and innovations. He’s particularly interested in the idea of generating playbooks on the fly in response to real-time events. He believes cyber-attacks are far too varied for a static playbook to be useful; when an attack strikes, teams need to quickly understand exactly what’s in front of them and how to shut it down. “This fits into our future cybersecurity strategy, and Darktrace is the only company I’ve seen talking about building playbooks dynamically. This kind of technology would really help bring our cybersecurity strategy full circle.”

“Darktrace ’s technology, experience and expertise is helping us staying ahead of cyber-attacks, minimizing our risk and driving greater productivity for our team,” said the CISO. In collaboration with Darktrace, the team have created a security foundation that is both powerful and agile. “While Darktrace is detecting and responding to attacks targeting our business today, we know that it’s always learning, adapting and scaling to ensure we’re protected tomorrow. That gives me peace of mind and the freedom to focus on our future.”

Download the Darktrace / NETWORK Solution Brief

Darktrace / NETWORK solution brief screenshot

Protect in real time: Defend against known and emerging threats without relying on historical data or external intelligence.

Full visibility: Gain comprehensive insights across all network environments, including on-premises, cloud, and remote devices.

AI-powered efficiency: Streamline incident response with AI automation, saving time and resources while ensuring minimal disruption to operations.

Continue reading
About the author
The Darktrace Community

Blog

/

December 11, 2024

/
No items found.

Darktrace is Positioned as a Leader in the IDC MarketScape: Worldwide Network Detection and Response 2024 Vendor Assessment

Default blog imageDefault blog image

Darktrace is pleased to announce that we have been positioned as a Leader in the IDC MarketScape: Worldwide Network Detection and Response 2024 Vendor Assessment. We believe this further highlights Darktrace’s position as a pioneer in the NDR market and follows similar recognition from KuppingerCole, who recently named Darktrace as an Overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

Network Detection and Response (NDR) solutions are uniquely positioned to provide visibility over the core hub of a business and employee activity, analyzing North-South and East-West traffic to identify threats across the modern network. NDR provides a rich and true source of anomalies and goes beyond process level data that is relied on by Endpoint Detection and Response (EDR) agents that do not provide network level visibility and can be misconfigured at any time.1

Metadata from network traffic can be used to detect a variety of different threats based on events such as anomalous port usage, unusual upload/download activity, impossible travel and many other activities. This has been accelerated by the increased usage of user behavioral analytics (UBA) in network security, which establishes statistical baselines about network entities and highlights deviations from expected activity.1

Darktrace is recognized as a Leader in the IDC MarketScape due to our leadership in the market and our pioneering leadership in AI over the past decade, alongside a variety of other unique differentiators and innovations in the NDR industry.

Darktrace / NETWORK™ delivers full visibility, real time threat detection and Autonomous Response capabilities across an organization’s on-premises, cloud, hybrid and virtual environments, including remote worker endpoints.

Unique Approach to AI

Most NDR vendors and network security tools such as IDS/IPS rely on detecting known attacks with historical data and supervised machine learning, leaving organizations blind and vulnerable to novel threats such as zero-days, variants of known attacks, supply chain attacks and insider threats.

These vendors also tend to apply AI models that are trained globally, and are not unique to each organization’s environment, which creates a high number of false positives and alerts that ultimately lack business context.

The IDC MarketScape recognizes that Darktrace takes a differentiated approach in the market with regards to delivering network detection and response capabilities, noting; “Darktrace is unique in that it does not rely on rules and signatures but rather learns what constitutes as normal for an organization and generates alerts when there is a deviation.”1

Darktrace / NETWORK achieves this through the use of Self-Learning AI and unsupervised machine learning to understand what is normal network behavior, continuously analyzing, mapping and modeling every connection to create a full picture of devices, identities, connections and potential attack paths. Darktrace Self-Learning AI autonomously optimizes itself to cut through the noise and quickly surface genuine, prioritized network security incidents – significantly reducing false positives and removing the hassle of needing to continually tuning alerts manually.

Darktrace’s unique approach to AI also extends to the investigation and triage of network alerts with Cyber AI Analyst. Unlike a chat or prompt based LLM, Cyber AI Analyst investigates all relevant alerts in an environment, including third party alerts, autonomously forming hypotheses and reaching conclusions just like a human analyst would, accelerating SOC Level 2 analyses of incidents by 10x. Cyber AI Analyst also typically providing SOC teams with up to 50,000 additional hours annually of Level 2 analysis producing high level alerts and written reporting, transforming security operations.2

Darktrace also uses its deep understanding of what is normal for a network to identify suspicious behavior, leveraging Autonomous Response capabilities to shut down both known and novel threats in real time, taking targeted actions without disrupting business operations. Darktrace / NETWORK is the only NDR solution that can autonomously enforce a pattern of life based on what is normal for a standalone device or group of peers, rapidly containing and disarming threats based on the overall context of the environment and a granular understanding of what is normal for a device or user – instead of relying on historical attack data.

Continued NDR Market Leadership

Darktrace has been recognized as a Leader in the NDR market, and the IDC MarketScape listed a variety of strengths:

  • Darktrace achieves roughly one-fifth of all global NDR revenue. This is important because other IT and cybersecurity solutions providers necessarily want to have integration with Darktrace.
  • The AI algorithms that Darktrace uses for NDR have had 10 years of deployments, tuning, and learning to draw from.
  • Darktrace is available as a SaaS, as an enterprise license, and as physical, hybrid, or virtual appliances. Darktrace also offers an endpoint agent and visibility into VPN and ZTNA.
  • Darktrace integrates with 30+ different interfaces including SIEM, SOAR, XDR platforms, IT ticketing solutions, and their own dashboards. The Darktrace Threat Visualizer highlights events and incidents from the entire deployment including cloud, apps, email, endpoint, zero trust, network, and OT.
  • Darktrace / NETWORK charts the progress that the SOC is making over time with key metrics such as MTTD/MTTR, alerts generated and processed, and other criteria.
  • Darktrace reported coverage of 14 MITRE ATT&CK categories, 158 techniques, and 184 subtechniques

Proactive Network Resilience

The IDC MarketScape notes, “Ultimately, NDR shines as a standalone detection and response technology but is especially powerful when combined with other platforms. NDR in combination with other control points such as endpoint, data, identity, and application provides the proper context when winnowing alerts and trying to uncover a single source of truth.” . Darktrace comprehensively addresses this as part of the ActiveAI Security Platform, by combining network alerts with data from / EMAIL, / IDENTITY, / ENDPOINT, / CLOUD and / OT, providing deeper contextual analysis for each network alert and automatically enriching investigations.

Darktrace also goes beyond NDR solutions with capabilities that are closely linked to our NDR offering, helping clients to achieve and maintain a state of proactive network resilience:

  • Darktrace / Proactive Exposure Management – look beyond just CVE risks to discover, prioritize and validate risks by business impact and how to address them early, reducing the number of real threats that security teams need to handle.
  • Darktrace / Incident Readiness & Recovery – lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations based on their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional approach to NDR and shift teams to a more hardened and proactive stance.

Protecting Clients with Continued Innovation

Darktrace invests heavily in Research and Development to continue providing customers with market-leading NDR capabilities and innovations, which was reflected in our position in the Leader category of the MarketScape report for both capabilities and strategy. We are led by the needs and challenges of our customers, which serve as the driving force behind our continued innovation and leadership in the NDR market. The IDC MarketScape report underlines this approach with the following feedback presented by Darktrace customers:

“A customer intimated that 99% of their detections were OOTB with little need to tune or define parameters.”
“A customer reported that it had early warnings for adversarial tactics such as suspicious SMB scanning, suspicious remote execution, remote desktop protocol (RDP) scanning, data exfiltration, C2C, LDAP query, and suspicious Kerberos activity.”
“The client could use Regex to determine if suspicious behavior was found elsewhere on the network.”

Thousands of customers around the world across all industries and sectors rely on Darktrace / NETWORK to protect against known and novel threats. From the latest vulnerabilities in network hardware to sophisticated new strains of ransomware and everything in-between, Darktrace helps clients detect and respond to all types of threats affecting their networks and avoid business disruption, even from the latest attacks.

Find out more about the unique capabilities of Darktrace / NETWORK and our application of AI in network security in the IDC MarketScape excerpt.

References

  1. IDC MarketScape: Worldwide Network Detection and Response 2024 Vendor Assessment (Doc #US51752324, November 2024)
  2. Darktrace Cyber AI Analyst Customer Fleet Data
Continue reading
About the author
Mikey Anderson
Product Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI