Blog
/
/
July 26, 2022

Identifying PrivateLoader Network Threats

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jul 2022
Learn how Darktrace identifies network-based indicators of compromise for the PrivateLoader malware. Gain insights into advanced threat detection.

Instead of delivering their malicious payloads themselves, threat actors can pay certain cybercriminals (known as pay-per-install (PPI) providers) to deliver their payloads for them. Since January 2022, Darktrace’s SOC has observed several cases of PPI providers delivering their clients’ payloads using a modular malware downloader known as ‘PrivateLoader’.

This blog will explore how these PPI providers installed PrivateLoader onto systems and outline the steps which the infected PrivateLoader bots took to install further malicious payloads. The details provided here are intended to provide insight into the operations of PrivateLoader and to assist security teams in identifying PrivateLoader bots within their own networks.  

Threat Summary 

Between January and June 2022, Darktrace identified the following sequence of network behaviours within the environments of several Darktrace clients. Patterns of activity involving these steps are paradigmatic examples of PrivateLoader activity:

1. A victim’s device is redirected to a page which instructs them to download a password-protected archive file from a file storage service — typically Discord Content Delivery Network (CDN)

2. The device contacts a file storage service (typically Discord CDN) via SSL connections

3. The device either contacts Pastebin via SSL connections, makes an HTTP GET request with the URI string ‘/server.txt’ or ‘server_p.txt’ to 45.144.225[.]57, or makes an HTTP GET request with the URI string ‘/proxies.txt’ to 212.193.30[.]45

4. The device makes an HTTP GET request with the URI string ‘/base/api/statistics.php’ to either 212.193.30[.]21, 85.202.169[.]116, 2.56.56[.]126 or 2.56.59[.]42

5. The device contacts a file storage service (typically Discord CDN) via SSL connections

6. The device makes a HTTP POST request with the URI string ‘/base/api/getData.php’ to either 212.193.30[.]21, 85.202.169[.]116, 2.56.56[.]126 or 2.56.59[.]42

7. The device finally downloads malicious payloads from a variety of endpoints

The PPI Business 

Before exploring PrivateLoader in more detail, the pay-per-install (PPI) business should be contextualized. This consists of two parties:  

1. PPI clients - actors who want their malicious payloads to be installed onto a large number of target systems. PPI clients are typically entry-level threat actors who seek to widely distribute commodity malware [1]

2. PPI providers - actors who PPI clients can pay to install their malicious payloads 

As the smugglers of the cybercriminal world, PPI providers typically advertise their malware delivery services on underground web forums. In some cases, PPI services can even be accessed via Clearnet websites such as InstallBest and InstallShop [2] (Figure 1).  

Figure 1: A snapshot of the InstallBest PPI login page [2]


To utilize a PPI provider’s service, a PPI client must typically specify: 

(A)  the URLs of the payloads which they want to be installed

(B)  the number of systems onto which they want their payloads to be installed

(C)  their geographical targeting preferences. 

Payment of course, is also required. To fulfil their clients’ requests, PPI providers typically make use of downloaders - malware which instructs the devices on which it is running to download and execute further payloads. PPI providers seek to install their downloaders onto as many systems as possible. Follow-on payloads are usually determined by system information garnered and relayed back to the PPI providers’ command and control (C2) infrastructure. PPI providers may disseminate their downloaders themselves, or they may outsource the dissemination to third parties called ‘affiliates’ [3].  

Back in May 2021, Intel 471 researchers became aware of PPI providers using a novel downloader (dubbed ‘PrivateLoader’) to conduct their operations. Since Intel 471’s public disclosure of the downloader back in Feb 2022 [4], several other threat research teams, such as the Walmart Cyber Intel Team [5], Zscaler ThreatLabz [6], and Trend Micro Research [7] have all provided valuable insights into the downloader’s behaviour. 

Anatomy of a PrivateLoader Infection

The PrivateLoader downloader, which is written in C++, was originally monolithic (i.e, consisted of only one module). At some point, however, the downloader became modular (i.e, consisting of multiple modules). The modules communicate via HTTP and employ various anti-analysis methods. PrivateLoader currently consists of the following three modules [8]: 

  • The loader module: Instructs the system on which it is running to retrieve the IP address of the main C2 server and to download and execute the PrivateLoader core module
  • The core module: Instructs the system on which it is running to send system information to the main C2 server, to download and execute further malicious payloads, and to relay information regarding installed payloads back to the main C2 server
  • The service module: Instructs the system on which it is running to keep the PrivateLoader modules running

Kill Chain Deep-Dive 

The chain of activity starts with the user’s browser being redirected to a webpage which instructs them to download a password-protected archive file from a file storage service such as Discord CDN. Discord is a popular VoIP and instant messaging service, and Discord CDN is the service’s CDN infrastructure. In several cases, the webpages to which users’ browsers were redirected were hosted on ‘hero-files[.]com’ (Figure 2), ‘qd-files[.]com’, and ‘pu-file[.]com’ (Figure 3). 

Figure 2: An image of a page hosted on hero-files[.]com - an endpoint which Darktrace observed systems contacting before downloading PrivateLoader from Discord CDN
Figure 3: An image of a page hosted on pu-file[.]com- an endpoint which Darktrace observed systems contacting before downloading PrivateLoader from Discord CDN


On attempting to download cracked/pirated software, users’ browsers were typically redirected to download instruction pages. In one case however, a user’s device showed signs of being infected with the malicious Chrome extension, ChromeBack [9], immediately before it contacted a webpage providing download instructions (Figure 4). This may suggest that cracked software downloads are not the only cause of users’ browsers being redirected to these download instruction pages (Figure 5). 

Figure 4: The event log for this device (taken from the Darktrace Threat Visualiser interface) shows that the device contacted endpoints associated with ChromeBack ('freychang[.]fun') prior to visiting a page ('qd-file[.]com') which instructed the device’s user to download an archive file from Discord CDN
 Figure 5: An image of the website 'crackright[.]com'- a provider of cracked software. Systems which attempted to download software from this website were subsequently led to pages providing instructions to download a password-protected archive from Discord CDN


After users’ devices were redirected to pages instructing them to download a password-protected archive, they subsequently contacted cdn.discordapp[.]com over SSL. The archive files which users downloaded over these SSL connections likely contained the PrivateLoader loader module. Immediately after contacting the file storage endpoint, users’ devices were observed either contacting Pastebin over SSL, making an HTTP GET request with the URI string ‘/server.txt’ or ‘server_p.txt’ to 45.144.225[.]57, or making an HTTP GET request with the URI string ‘/proxies.txt’ to 212.193.30[.]45 (Figure 6).

Distinctive user-agent strings such as those containing question marks (e.g. ‘????ll’) and strings referencing outdated Chrome browser versions were consistently seen in these HTTP requests. The following chrome agent was repeatedly observed: ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36’.

In some cases, devices also displayed signs of infection with other strains of malware such as the RedLine infostealer and the BeamWinHTTP malware downloader. This may suggest that the password-protected archives embedded several payloads.

Figure 6: This figure, obtained from Darktrace's Advanced Search interface, represents the post-infection behaviour displayed by a PrivateLoader bot. After visiting hero-files[.]com and downloading the PrivateLoader loader module from Discord CDN, the device can be seen making HTTP GET requests for ‘/proxies.txt’ and ‘/server.txt’ and contacting pastebin[.]com

It seems that PrivateLoader bots contact Pastebin, 45.144.225[.]57, and 212.193.30[.]45 in order to retrieve the IP address of PrivateLoader’s main C2 server - the server which provides PrivateLoader bots with payload URLs. This technique used by the operators of PrivateLoader closely mirrors the well-known espionage tactic known as ‘dead drop’.

The dead drop is a method of espionage tradecraft in which an individual leaves a physical object such as papers, cash, or weapons in an agreed hiding spot so that the intended recipient can retrieve the object later on without having to come in to contact with the source. When threat actors host information about core C2 infrastructure on intermediary endpoints, the hosted information is analogously called a ‘Dead Drop Resolver’ or ‘DDR’. Example URLs of DDRs used by PrivateLoader:

  • https://pastebin[.]com/...
  • http://212.193.30[.]45/proxies.txt
  • http://45.144.225[.]57/server.txt
  • http://45.144.255[.]57/server_p.txt

The ‘proxies.txt’ DDR hosted on 212.193.40[.]45 contains a list of 132 IP address / port pairs. The 119th line of this list includes a scrambled version of the IP address of PrivateLoader’s main C2 server (Figures 7 & 8). Prior to June, it seems that the main C2 IP address was ‘212.193.30[.]21’, however, the IP address appears to have recently changed to ‘85.202.169[.]116’. In a limited set of cases, Darktrace also observed PrivateLoader bots retrieving payload URLs from 2.56.56[.]126 and 2.56.59[.]42 (rather than from 212.193.30[.]21 or 85.202.169[.]116). These IP addresses may be hardcoded secondary C2 address which PrivateLoader bots use in cases where they are unable to retrieve the primary C2 address from Pastebin, 212.193.30[.]45 or 45.144.255[.]57 [10]. 

Figure 7: Before June, the 119th entry of the ‘proxies.txt’ file lists '30.212.21.193' -  a scrambling of the ‘212.193.30[.]21’ main C2 IP address
Figure 8: Since June, the 119th entry of the ‘proxies.txt’ file lists '169.85.116.202' - a scrambling of the '85.202.169[.]116' main C2 IP address

Once PrivateLoader bots had retrieved C2 information from either Pastebin, 45.144.225[.]57, or 212.193.30[.]45, they went on to make HTTP GET requests for ‘/base/api/statistics.php’ to either 212.193.30[.]21, 85.202.169[.]116, 2.56.56[.]126, or 2.56.59[.]42 (Figure 9). The server responded to these requests with an XOR encrypted string. The strings were encrypted using a 1-byte key [11], such as 0001101 (Figure 10). Decrypting the string revealed a URL for a BMP file hosted on Discord CDN, such as ‘hxxps://cdn.discordapp[.]com/attachments/978284851323088960/986671030670078012/PL_Client.bmp’. These encrypted URLs appear to be file download paths for the PrivateLoader core module. 

Figure 9: HTTP response from server to an HTTP GET request for '/base/api/statistics.php'
Figure 10: XOR decrypting the string with the one-byte key, 00011101, outputs a URL in CyberChef

After PrivateLoader bots retrieved the 'cdn.discordapp[.]com’ URL from 212.193.30[.]21, 85.202.169[.]116, 2.56.56[.]126, or 2.56.59[.]42, they immediately contacted Discord CDN via SSL connections in order to obtain the PrivateLoader core module. Execution of this module resulted in the bots making HTTP POST requests (with the URI string ‘/base/api/getData.php’) to the main C2 address (Figures 11 & 12). Both the data which the PrivateLoader bots sent over these HTTP POST requests and the data returned via the C2 server’s HTTP responses were heavily encrypted using a combination of password-based key derivation, base64 encoding, AES encryption, and HMAC validation [12]. 

Figure 11: The above image, taken from Darktrace's Advanced Search interface, shows a PrivateLoader bot carrying out the following steps: contact ‘hero-files[.]com’ --> contact ‘cdn.discordapp[.]com’ --> retrieve ‘/proxies.txt’ from 212.193.30[.]45 --> retrieve ‘/base/api/statistics.php’ from 212.193.30[.]21 --> contact ‘cdn.discordapp[.]com --> make HTTP POST request with the URI ‘base/api/getData.php’ to 212.193.30[.]21
Figure 12: A PCAP of the data sent via the HTTP POST (in red), and the data returned by the C2 endpoint (in blue)

These ‘/base/api/getData.php’ POST requests contain a command, a campaign name and a JSON object. The response may either contain a simple status message (such as “success”) or a JSON object containing URLs of payloads. After making these HTTP connections, PrivateLoader bots were observed downloading and executing large volumes of payloads (Figure 13), ranging from crypto-miners to infostealers (such as Mars stealer), and even to other malware downloaders (such as SmokeLoader). In some cases, bots were also seen downloading files with ‘.bmp’ extensions, such as ‘Service.bmp’, ‘Cube_WW14.bmp’, and ‘NiceProcessX64.bmp’, from 45.144.225[.]57 - the same DDR endpoint from which PrivateLoader bots retrieved main C2 information. These ‘.bmp’ payloads are likely related to the PrivateLoader service module [13]. Certain bots made follow-up HTTP POST requests (with the URI string ‘/service/communication.php’) to either 212.193.30[.]21 or 85.202.169[.]116, indicating the presence of the PrivateLoader service module, which has the purpose of establishing persistence on the device (Figure 14). 

Figure 13: The above image, taken from Darktrace's Advanced Search interface, outlines the plethora of malware payloads downloaded by a PrivateLoader bot after it made an HTTP POST request to the ‘/base/api/getData.php’ endpoint. The PrivateLoader service module is highlighted in red
Figure 14: The event log for a PrivateLoader bot, obtained from the Threat Visualiser interface, shows a device making HTTP POST requests to ‘/service/communication.php’ and connecting to the NanoPool mining pool, indicating successful execution of downloaded payloads

In several observed cases, PrivateLoader bots downloaded another malware downloader called ‘SmokeLoader’ (payloads named ‘toolspab2.exe’ and ‘toolspab3.exe’) from “Privacy Tools” endpoints [14], such as ‘privacy-tools-for-you-802[.]com’ and ‘privacy-tools-for-you-783[.]com’. These “Privacy Tools” domains are likely impersonation attempts of the legitimate ‘privacytools[.]io’ website - a website run by volunteers who advocate for data privacy [15]. 

After downloading and executing malicious payloads, PrivateLoader bots were typically seen contacting crypto-mining pools, such as NanoPool, and making HTTP POST requests to external hosts associated with SmokeLoader, such as hosts named ‘host-data-coin-11[.]com’ and ‘file-coin-host-12[.]com’ [16]. In one case, a PrivateLoader bot went on to exfiltrate data over HTTP to an external host named ‘cheapf[.]link’, which was registered on the 14th March 2022 [17]. The name of the file which the PrivateLoader bot used to exfiltrate data was ‘NOP8QIMGV3W47Y.zip’, indicating information stealing activities by Mars Stealer (Figure 15) [18]. By saving the HTTP stream as raw data and utilizing a hex editor to remove the HTTP header portions, the hex data of the ZIP file was obtained. Saving the hex data using a ‘.zip’ extension and extracting the contents, a file directory consisting of system information and Chrome and Edge browsers’ Autofill data in cleartext .txt file format could be seen (Figure 16).

Figure 15: A PCAP of a PrivateLoader bot’s HTTP POST request to cheapf[.]link, with data sent by the bot appearing to include Chrome and Edge autofill data, as well as system information
Figure 16: File directory structure and files of the ZIP archive 

When left unattended, PrivateLoader bots continued to contact C2 infrastructure in order to relay details of executed payloads and to retrieve URLs of further payloads. 

Figure 17: Timeline of the attack

Darktrace Coverage 

Most of the incidents surveyed for this article belonged to prospective customers who were trialling Darktrace with RESPOND in passive mode, and thus without the ability for autonomous intervention. However in all observed cases, Darktrace DETECT was able to provide visibility into the actions taken by PrivateLoader bots. In one case, despite the infected bot being disconnected from the client’s network, Darktrace was still able to provide visibility into the device’s network behaviour due to the client’s usage of Darktrace/Endpoint. 

If a system within an organization’s network becomes infected with PrivateLoader, it will display a range of anomalous network behaviours before it downloads and executes malicious payloads. For example, it will contact Pastebin or make HTTP requests with new and unusual user-agent strings to rare external endpoints. These network behaviours will generate some of the following alerts on the Darktrace UI:

  • Compliance / Pastebin 
  • Device / New User Agent and New IP
  • Device / New User Agent
  • Device / Three or More New User Agents
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / POST to PHP on New External Host
  • Anomalous Connection / Posting HTTP to IP Without Hostname

Once the infected host obtains URLs for malware payloads from a C2 endpoint, it will likely start to download and execute large volumes of malicious files. These file downloads will usually cause Darktrace to generate some of the following alerts:

  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric Exe Download
  • Anomalous File / Masqueraded File Transfer
  • Anomalous File / Multiple EXE from Rare External Locations
  • Device / Initial Breach Chain Compromise

If RESPOND is deployed in active mode, Darktrace will be able to autonomously block the download of additional malware payloads onto the target machine and the subsequent beaconing or crypto-mining activities through network inhibitors such as ‘Block matching connections’, ‘Enforce pattern of life’ and ‘Block all outgoing traffic’. The ‘Enforce pattern of life’ action results in a device only being able to make connections and data transfers which Darktrace considers normal for that device. The ‘Block all outgoing traffic’ action will cause all traffic originating from the device to be blocked. If the customer has Darktrace’s Proactive Threat Notification (PTN) service, then a breach of an Enhanced Monitoring model such as ‘Device / Initial Breach Chain Compromise’ will result in a Darktrace SOC analyst proactively notifying the customer of the suspicious activity. Below is a list of Darktrace RESPOND (Antigena) models which would be expected to breach due to PrivateLoader activity. Such models can seriously hamper attempts made by PrivateLoader bots to download malicious payloads. 

  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block 
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

In one observed case, the infected bot began to download malicious payloads within one minute of becoming infected with PrivateLoader. Since RESPOND was correctly configured, it was able to immediately intervene by autonomously enforcing the device’s pattern of life for 2 hours and blocking all of the device’s outgoing traffic for 10 minutes (Figure 17). When malware moves at such a fast pace, the availability of autonomous response technology, which can respond immediately to detected threats, is key for the prevention of further damage.  

Figure 18: The event log for a Darktrace RESPOND (Antigena) model breach shows Darktrace RESPOND performing inhibitive actions once the PrivateLoader bot begins to download payloads

Conclusion

By investigating PrivateLoader infections over the past couple of months, Darktrace has observed PrivateLoader operators making changes to the downloader’s main C2 IP address and to the user-agent strings which the downloader uses in its C2 communications. It is relatively easy for the operators of PrivateLoader to change these superficial network-based features of the malware in order to evade detection [19]. However, once a system becomes infected with PrivateLoader, it will inevitably start to display anomalous patterns of network behaviour characteristic of the Tactics, Techniques and Procedures (TTPs) discussed in this blog.

Throughout 2022, Darktrace observed overlapping patterns of network activity within the environments of several customers, which reveal the archetypal steps of a PrivateLoader infection. Despite the changes made to PrivateLoader’s network-based features, Darktrace’s Self-Learning AI was able to continually identify infected bots, detecting every stage of an infection without relying on known indicators of compromise. When configured, RESPOND was able to immediately respond to such infections, preventing further advancement in the cyber kill chain and ultimately preventing the delivery of floods of payloads onto infected devices.

IoCs

MITRE ATT&CK Techniques Observed

References

[1], [8],[13] https://www.youtube.com/watch?v=Ldp7eESQotM  

[2] https://news.sophos.com/en-us/2021/09/01/fake-pirated-software-sites-serve-up-malware-droppers-as-a-service/

[3] https://www.researchgate.net/publication/228873118_Measuring_Pay-per Install_The_Commoditization_of_Malware_Distribution 

[4], [15] https://intel471.com/blog/privateloader-malware

[5] https://medium.com/walmartglobaltech/privateloader-to-anubis-loader-55d066a2653e 

[6], [10],[11], [12] https://www.zscaler.com/blogs/security-research/peeking-privateloader 

[7] https://www.trendmicro.com/en_us/research/22/e/netdooka-framework-distributed-via-privateloader-ppi.html

[9] https://www.gosecure.net/blog/2022/02/10/malicious-chrome-browser-extension-exposed-chromeback-leverages-silent-extension-loading/

[14] https://www.proofpoint.com/us/blog/threat-insight/malware-masquerades-privacy-tool 

[16] https://asec.ahnlab.com/en/30513/ 

[17]https://twitter.com/0xrb/status/1515956690642161669

[18] https://isc.sans.edu/forums/diary/Arkei+Variants+From+Vidar+to+Mars+Stealer/28468

[19] http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Sam Lister
SOC Analyst
Shuh Chin Goh
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Network

/

February 7, 2025

RansomHub revisited: New front-runner in the ransomware-as-a-service marketplace

Default blog imageDefault blog image

In a previous Inside the SOC blog, Darktrace investigated RansomHub and its growing impact on the threat landscape due to its use by the ShadowSyndicate threat group. Here, RansomHub is revisited with new insights on this ransomware-as-a-service (RaaS) platform that has rapidly gained traction among threat actors of late.

In recent months, Darktrace’s Threat Research team has noted a significant uptick in potential compromises affecting the fleet, indicating that RansomHub is becoming a preferred tool for cybercriminals.  This article delves into the increasing adoption of RansomHub, the tactics, techniques, and procedures (TTPs) employed by its affiliates, and the broader implications for organizations striving to protect their systems.

RansomHub overview & background

One notable threat group to have transitioned from ALPHV (BlackCat)-aligned operations to RansomHub-aligned operations is ScatteredSpider [1]. The adoption of RansomHub by ScatteredSpider and other threat actors suggests a possible power shift among threat groups, given the increasing number of cybercriminals adopting it, including those who previously relied on ALPHV’s malware code [2].

ALPHV was a RaaS strain used by cybercriminals to breach Change Healthcare in February 2024 [2]. However, there are claims that the ransom payment never reached the affiliate using ALPHV, leading to a loss of trust in the RaaS. Around the same time, Operation Cronos resulted in the shutdown of LockBit and the abandonment of its affiliates [2]. Consequently, RansomHub emerged as a prominent RaaS successor.

RansomHub targets

The RansomHub ransomware group has been observed targeting various sectors, including critical infrastructure, financial and government services, and the healthcare sector [4]. They use ransomware variants rewritten in GoLang to target both Windows and Linux systems [5]. RansomHub is known for employing double extortion attacks, encrypting data using “Curve25519” encryption [6].

RansomHub tactics and techniques

The attackers leverage phishing attacks and social engineering techniques to lure their victims. Once access is gained, they use sophisticated tools to maintain control over compromised networks and exploit vulnerabilities in systems like Windows, Linux, ESXI, and NAS.

In more recent RansomHub attacks, tools such as Atera and Splashtop have been used to facilitate remote access, while NetScan has been employed to discover and retrieve information about network devices [7].

External researchers have observed that RansomHub uses several legitimate tools, or a tactic known as Living-off-the-Land (LOTL), to carry out their attacks. These tools include:

  • SecretServerSecretStealer: A PowerShell script that allows for the decryption of passwords [1].
  • Ngrok: A legitimate reverse proxy tool that creates a secure tunnel to servers located behind firewalls, used by the group for lateral movement and data exfiltration.
  • Remmina: An open-source remote desktop client for POSIX-based operating systems, enabling threat actors to access remote services [1].

By using these legitimate tools instead of traditional malware, RansomHub can avoid detection and maintain a lower profile during their operations.

Darktrace’s Coverage of RansomHub

Darktrace’s Security Operations Center (SOC) detected several notable cases of likely RansomHub activity across the customer base in recent months. In all instances, threat actors performed network scanning and brute force activities.

During the investigation of a confirmed RansomHub attack in January 2025, the Darktrace Threat Research team identified multiple authentication attempts as attackers tried to retrieve valid credentials. It is plausible that the attackers gained entry to customer environments through their Remote Desktop (RD) web server. Following this, various RDP connections were made to pivot to other devices within the network.

The common element among the cases investigated was that, in most instances, devices were seen performing outgoing connections to splashtop[.]com, a remote access and support software service, after the scanning activity had occurred. On one customer network, following this activity, the same device was seen connecting to the domain agent-api[.]atera[.]com and IP 20.37.139[.]187, which are seemingly linked to Atera, a Remote Monitoring and Management (RMM) tool.

Model Alert Log of an affected device making connections to *atera[.]com.
Figure 1: Model Alert Log of an affected device making connections to *atera[.]com.

In a separate case, a Darktrace observed a device attempting to perform SMB scanning activity, trying to connect to multiple internal devices over port 445. Cyber AI Analyst was able to detect and correlate these individual connections into a single reconnaissance incident.

Similar connections to Remote Monitoring and Management (RMM) tools were also detected in a different customer environment, as alerted by Darktrace’s SOC. Unusual connections to Splashtop and Atera were made from the alerted device. Following this, the same device was observed sending a large volume of data over SSH Rclone to a rare external endpoint on the unusual port 448, triggered multiple models in Darktrace / NETWORK.

Advanced Search graph demonstrating the rarity of the  external IP 38.244.145[.]85  used for data exfiltration.
Figure 2: Advanced Search graph demonstrating the rarity of the  external IP 38.244.145[.]85  used for data exfiltration.
Model Alert Log displaying information related to the suspicious IP, including the port used and its rarity for the network.
Figure 3: Model Alert Log displaying information related to the suspicious IP, including the port used and its rarity for the network.

In the cases observed, data exfiltration occurred alongside the encryption of files likely indicating double extortion tactics. In September 2024, the Darktrace’s Threat Research team identified a 6-digit alphanumeric additional extension similar to “.293ac3”. This case was closely linked to a RansomHub attack, which was also analyzed in a different blog post by Darktrace [8].

Event Log displaying the extension “.293ac3” being appended to encrypted files on an affected customer network.
Figure 4: Event Log displaying the extension “.293ac3” being appended to encrypted files on an affected customer network.

Conclusion

RansomHub exemplifies the evolving RaaS ecosystem, where threat actors capitalize on ready-made platforms to launch sophisticated attacks with ease. The activities observed highlight its growing popularity among cybercriminals. The analysis showed that the different attacks investigated followed a similar pattern of activity.

First, attackers perform reconnaissance activities, including widespread scanning from multiple devices and reverse DNS sweeps. They then use high-privileged credentials to pivot among devices and establish remote connections using RMM tools such as Atera. A common element among most attacks that reached the data encryption stage is the use of a 6-digit alphanumeric extension.

In all cases, Darktrace alerted on the unusual activities observed, creating not only model alerts but also Cyber AI Analyst incidents. Both Darktrace Security Operations Support and Darktrace Managed Threat Detection services provided 24/7 assistance to clients affected by RansomHub. The analyst team continued investigating these incidents, gathering data and IoCs seen in the RansomHub incidents, providing valuable insight and guidance throughout the process.

As RansomHub continues to gain traction, it serves as a stark reminder of the need for robust cybersecurity measures, proactive threat intelligence, and continued vigilance.

Credit to Maria Geronikolou (Cyber Analyst) and Nahisha Nobregas (Senior Cyber Analyst)

Appendices

Darktrace Model Detections

Network Reconnaissance

o   Device / Network Scan

o   Device / ICMP Address Scan

o   Device / RDP Scan

o   Device / Anomalous LDAP Root Searches

o   Anomalous Connection / SMB Enumeration

o   Device / Spike in LDAP Activity

o   Device / Suspicious Network Scan Activity

Lateral Movement

o   Device / Multiple Lateral Movement Model Alerts

o   Device / Increase in New RPC Services

o   Device / New or Uncommon WMI Activity

o   Device / Possible SMB/NTLM Brute Force

o   Device / SMB Session Brute Force (Non-Admin)

o   Device / Anomalous NTLM Brute Force

o   Compliance / Default Credential Usage

o   Compliance / Outgoing NTLM Request from DC

C2 Activity

o   Anomalous Server Activity / Outgoing from Server

o   Anomalous Connection / Multiple Connections to New External TCP Port

o   Unusual Activity / Unusual External Activity

o   Compliance / Remote Management Tool On Server

Data Exfiltration

o   Unusual Activity / Enhanced Unusual External Data Transfer

o   Anomalous Connection / Outbound SSH to Unusual Port

o   Compliance / SSH to Rare External Destination

o   Unusual Activity / Unusual External Data to New Endpoint

o   Unusual Activity / Unusual External Data Transfer

o   Attack Path Modelling / Unusual Data Transfer on Critical Attack Path

o   Compliance / Possible Unencrypted Password File On Server

Autonomous Response Models

-       Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

-       Antigena/Network/Insider Threat/Antigena SMB Enumeration Block

-       Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

-       Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

List of Indicators of Compromise (IoCs)

o   38.244.145[.]85

o   20.37.139[.]187 agent-api.atera[.]com

o   108.157.150[.]120 ps.atera[.]com

o   st-v3-univ-srs-win-3720[.]api[.]splashtop[.]com

MITRE ATT&CK Mapping

  • RECONNAISSANCE T1592.004
  • RECONNAISSANCE T1595.002
  • DISCOVERY T1046
  • DISCOVERY T1083
  • DISCOVERY T1135
  • DISCOVERY T1018
  • INITIAL ACCESS T1190
  • CREDENTIAL ACCESS T1110
  • LATERAL MOVEMENT T1210
  • COMMAND AND CONTROL T1001
  • EXFILTRATION T1041
  • EXFILTRATION T1567.002

References

[1] https://www.guidepointsecurity.com/blog/worldwide-web-an-analysis-of-tactics-and-techniques-attributed-to-scattered-spider/

[2] https://www.theregister.com/2024/07/16/scattered_spider_ransom/

[3] https://krebsonsecurity.com/2024/03/blackcat-ransomware-group-implodes-after-apparent-22m-ransom-payment-by-change-healthcare/

[4] https://thehackernews.com/2024/09/ransomhub-ransomware-group-targets-210.html

[5] https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-ransomhub

[6] https://areteir.com/article/malware-spotlight-ransomhub-ransomware/
[7] https://www.security.com/threat-intelligence/ransomhub-knight-ransomware

[8] https://darktrace.com/blog/ransomhub-ransomware-darktraces-investigation-of-the-newest-tool-in-shadowsyndicates-arsenal

Continue reading
About the author
Maria Geronikolou
Cyber Analyst

Blog

/

Network

/

February 6, 2025

Reimagining Your SOC: Unlocking a Proactive State of Security

Default blog imageDefault blog image

Part 1: How to Achieve Proactive Network Security

Part 2: Overcoming Alert Fatigue with AI-Led Investigations  

While the success of a SOC team is often measured through incident management effectiveness (E.g MTTD, MTTR), a true measure of maturity is the reduction of annual security incidents.

Organizations face an increasing number of alerts each year, yet the best SOC teams place focus on proactive operations which don’t reduce the threshold for what becomes an incident but targets the source risks that prevent them entirely.

Freeing up time to focus on cyber risk management is a challenge in and of itself, we cover this in the previous two blogs in this series (see above). However, when the time comes to manage risk, there are several challenges that are unique when compared to detection & response functions within cybersecurity.

Why do cyber risks matter?

While the volume of reported CVEs is increasing at an alarming rate[1], determining the criticality of each vulnerability is becoming increasingly challenging, especially when the likelihood and impact may be different for each organization. Yet vulnerabilities have stood as an important signpost in traditional security and mitigation strategies. Now, without clear prioritization, potentially severe risks may go unreported, leaving organizations exposed to significant threats.

Vulnerabilities also represent just one area of potential risks. Cyberattacks are no longer confined to a single technology type. They now traverse various platforms, including cloud services, email systems, and networks. As technology infrastructure continues to expand, so does the attack surface, making comprehensive visibility across all technology types essential for reducing risk and preventing multi-vector attacks.

However, achieving this visibility is increasingly difficult as infrastructure grows and the cyber risk market remains oversaturated. This visibility challenge extends beyond technology to include personnel and individual cyber hygiene which can still exacerbate broader cyberattacks whether malicious or not.

Organizations must adopt a holistic approach to preventative security. This includes improving visibility across all technology types, addressing human risks, and mobilizing swiftly against emerging security gaps.

“By 2026, 60% of cybersecurity functions will implement business-impact-focused risk assessment methods, aligning cybersecurity strategies with organizational objectives.” [2]

The costs of a fragmented approach

siloed preventative security measures or technologies
Figure 1: Organizations may have a combination of siloed preventative security measures or technologies in place

Unlike other security tools (like SIEM, NDR or SOAR) which contain an established set of capabilities, cyber risk reduction has not traditionally been defined by a single market, rather a variety of products and practices that each provide their own value and are overwhelming if too many are adopted. Just some examples include:

  • Threat and Vulnerability management: Leverages threat intelligence, CVEs and asset management; however, leaves teams with significant patching workflows, ignores business & human factors and is reliant on the speed of teams to keep up with each passing update.  
  • Continuous Controls Monitoring (CCM): Automatically audits the effectiveness of security controls based on industry frameworks but requires careful prioritization and human calculations to set-up effectively. Focuses solely on mobilization.
  • Breach and Attack Simulation (BAS): Automates security posture testing through mock scenarios but require previous prioritization and might not tell you how your specific technologies can be mitigated to reduce that risk.
  • Posture Management technologies: Siloed approaches across Cloud, SaaS, Data Security and even Gen AI that reactively assess misconfigurations and suggest improvements but with only industry frameworks to validate the importance of the risks.
  • Red teaming & Penetration testing: Required by several regulations including (GDPR, HIPPA, PCI, DSS), many organizations hire 'red teams' to perform real breaches in trusted conditions. Penetration tests reveal many flaws, but are not continuous, requiring third-party input and producing long to-do lists with input of broader business risk dependent on the cost of the service.
  • Third-party auditors: Organizations also use third-party auditors to identify assets with vulnerabilities, grade compliance, and recommend improvements. At best, these exercises become tick-box exercises for companies to stay in compliance with the responsibility still on the client to perform further discovery and actioning.

Many of these individual solutions on the market offer simple enhancement, or an automated version of an existing human security task. Ultimately, they lack an understanding of the most critical assets at your organization and are limited in scope, only working in a specific technology area or with the data you provide.

Even when these strategies are complete, implementation of the results require resources, coordination, and buy-in from IT, cybersecurity, and compliance departments. Given the nature of modern business structures, this can be labor and time intensive as responsibilities are shared by organizational segmentation spread across IT, governance, risk and compliance (GRC), and security teams.

Prioritize your true cyber risk with a CTEM approach

Organizations with robust security programs benefit from well-defined policies, standards, key risk indicators (KRIs), and operational metrics, making it easier to measure and report cyber risk accurately.

Implementing a framework like Gartner’s CTEM (Continuous Threat Exposure Management) can help governance by defining the most relevant risks to each organization and which specific solutions meet your improvement needs.

This five-step approach—scoping, discovery, prioritization, validation, and mobilization—encourages focused management cycles, better delegation of responsibilities and a firm emphasis on validating potential risks through technological methods like attack path modeling or breach and attack simulation to add credibility.

Implementing CTEM requires expertise and structure. This begins with an exposure management solution developed uniquely alongside a core threat detection and response offering, to provide visibility of an organization’s most critical risks, whilst linking directly to their incident-based workflows.

“By 2026, organizations prioritizing their security investments, based on a continuous threat exposure management program, will realize a two-third reduction in breaches.” [3]

Achieving a proactive security posture across the whole estate

Unlike conventional tools that focus on isolated risks, Darktrace / Proactive Exposure Management breaks down traditional barriers. Teams can define risk scopes with full, prioritized visibility of the critical risks between: IT/OT networks, email, Active Directory, cloud resources, operational groups, (or even the external attack surface by integrating with Darktrace / Attack Surface Management).

Our innovative, AI-led risk discovery provides a view that mirrors actual attacker methodologies. It does this through advanced algorithms that determine risk based on business importance, rather than traditional device-type prioritization. By implementing a sophisticated damage assessment methodology, security teams don’t just prioritize via severity but instead, the inherent impact, damage, weakness and external exposure of an asset or user.

These calculations also revolutionize vulnerability management by combining industry standard CVE measurements with that organization-specific context to ensure patch management efforts are efficient, rather than an endless list.

Darktrace also integrates MITRE ATT&CK framework mappings to connect all risks through attack path modeling. This offers validation to our AI’s scoring by presenting real world incident scenarios that could occur across your technologies, and the actionable mitigations to mobilize against them.

For those human choke points, security may also deploy targeted phishing engagements. These send real but harmless email ‘attacks’ to test employee susceptibility, strengthening your ability to identify weak points in your security posture, while informing broader governance strategies.

Combining risk with live detection and response

Together, each of these capabilities let teams take the best steps towards reducing risk and the volume of incidents they face. However, getting proactive also sharpens your ability to handle live threats if they occur.  

During real incidents Darktrace users can quickly evaluate the potential impact of affected assets, create their own risk detections based on internal policies, strengthen their autonomous response along critical attack paths, or even see the possible stage of the next attack.

By continually ingesting risk information into live triage workflows, security teams will develop a proactive-first mindset, prioritizing the assets and alerts that have the most impact to the business. This lets them utilize their resource in the most efficient way, freeing up even more time for risk management, mitigation and ensuring continuity for the business.

Whether your organization is laying the foundation for a cybersecurity program or enhancing an advanced one, Darktrace’s self-learning AI adapts to your needs:

  • Foundational stage: For organizations establishing visibility and automating detection and response.
  • Integrated stage: For teams expanding coverage across domains and consolidating tools for simplicity.
  • Proactive stage: For mature security programs enhancing posture with vulnerability management and risk prioritization.

The Darktrace ActiveAI Security Platform empowers security teams to adopt a preventative defense strategy by using Cyber AI Analyst and autonomous response to fuel quicker triage, incident handling and give time back for proactive efforts designed around business impact. The platform encapsulates the critical capabilities that help organizations be proactive and stay ahead of evolving threats.

darktrace proactive exposure management solution brief reduce risk cyber risk

Download the solution brief

Maximize security visibility and reduce risk:

  • Unify risk exposure across all technologies with AI-driven scoring for CVEs, human communications, and architectures.
  • Gain cost and ROI insights on CVE risks, breach costs, patch latency, and blind spots.
  • Strengthen employee awareness with targeted phishing simulations and training.
  • Align proactive and reactive security by assessing device compromises and prevention strategies.
  • Reduce risk with tailored guidance that delivers maximum impact with minimal effort.

Take control of your security posture today. Download here!

References

[1] https://nvd.nist.gov/vuln/search, Search all, Statistics, Total matches By Year 2023 against 2024

[2] https://www.gartner.com/en/documents/5598859

[3] https://www.gartner.com/en/articles/gartner-top-10-strategic-technology-trends-for-2024

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness
Your data. Our AI.
Elevate your network security with Darktrace AI