Blog
/
/
July 26, 2022

Identifying PrivateLoader Network Threats

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jul 2022
Learn how Darktrace identifies network-based indicators of compromise for the PrivateLoader malware. Gain insights into advanced threat detection.

Instead of delivering their malicious payloads themselves, threat actors can pay certain cybercriminals (known as pay-per-install (PPI) providers) to deliver their payloads for them. Since January 2022, Darktrace’s SOC has observed several cases of PPI providers delivering their clients’ payloads using a modular malware downloader known as ‘PrivateLoader’.

This blog will explore how these PPI providers installed PrivateLoader onto systems and outline the steps which the infected PrivateLoader bots took to install further malicious payloads. The details provided here are intended to provide insight into the operations of PrivateLoader and to assist security teams in identifying PrivateLoader bots within their own networks.  

Threat Summary 

Between January and June 2022, Darktrace identified the following sequence of network behaviours within the environments of several Darktrace clients. Patterns of activity involving these steps are paradigmatic examples of PrivateLoader activity:

1. A victim’s device is redirected to a page which instructs them to download a password-protected archive file from a file storage service — typically Discord Content Delivery Network (CDN)

2. The device contacts a file storage service (typically Discord CDN) via SSL connections

3. The device either contacts Pastebin via SSL connections, makes an HTTP GET request with the URI string ‘/server.txt’ or ‘server_p.txt’ to 45.144.225[.]57, or makes an HTTP GET request with the URI string ‘/proxies.txt’ to 212.193.30[.]45

4. The device makes an HTTP GET request with the URI string ‘/base/api/statistics.php’ to either 212.193.30[.]21, 85.202.169[.]116, 2.56.56[.]126 or 2.56.59[.]42

5. The device contacts a file storage service (typically Discord CDN) via SSL connections

6. The device makes a HTTP POST request with the URI string ‘/base/api/getData.php’ to either 212.193.30[.]21, 85.202.169[.]116, 2.56.56[.]126 or 2.56.59[.]42

7. The device finally downloads malicious payloads from a variety of endpoints

The PPI Business 

Before exploring PrivateLoader in more detail, the pay-per-install (PPI) business should be contextualized. This consists of two parties:  

1. PPI clients - actors who want their malicious payloads to be installed onto a large number of target systems. PPI clients are typically entry-level threat actors who seek to widely distribute commodity malware [1]

2. PPI providers - actors who PPI clients can pay to install their malicious payloads 

As the smugglers of the cybercriminal world, PPI providers typically advertise their malware delivery services on underground web forums. In some cases, PPI services can even be accessed via Clearnet websites such as InstallBest and InstallShop [2] (Figure 1).  

Figure 1: A snapshot of the InstallBest PPI login page [2]


To utilize a PPI provider’s service, a PPI client must typically specify: 

(A)  the URLs of the payloads which they want to be installed

(B)  the number of systems onto which they want their payloads to be installed

(C)  their geographical targeting preferences. 

Payment of course, is also required. To fulfil their clients’ requests, PPI providers typically make use of downloaders - malware which instructs the devices on which it is running to download and execute further payloads. PPI providers seek to install their downloaders onto as many systems as possible. Follow-on payloads are usually determined by system information garnered and relayed back to the PPI providers’ command and control (C2) infrastructure. PPI providers may disseminate their downloaders themselves, or they may outsource the dissemination to third parties called ‘affiliates’ [3].  

Back in May 2021, Intel 471 researchers became aware of PPI providers using a novel downloader (dubbed ‘PrivateLoader’) to conduct their operations. Since Intel 471’s public disclosure of the downloader back in Feb 2022 [4], several other threat research teams, such as the Walmart Cyber Intel Team [5], Zscaler ThreatLabz [6], and Trend Micro Research [7] have all provided valuable insights into the downloader’s behaviour. 

Anatomy of a PrivateLoader Infection

The PrivateLoader downloader, which is written in C++, was originally monolithic (i.e, consisted of only one module). At some point, however, the downloader became modular (i.e, consisting of multiple modules). The modules communicate via HTTP and employ various anti-analysis methods. PrivateLoader currently consists of the following three modules [8]: 

  • The loader module: Instructs the system on which it is running to retrieve the IP address of the main C2 server and to download and execute the PrivateLoader core module
  • The core module: Instructs the system on which it is running to send system information to the main C2 server, to download and execute further malicious payloads, and to relay information regarding installed payloads back to the main C2 server
  • The service module: Instructs the system on which it is running to keep the PrivateLoader modules running

Kill Chain Deep-Dive 

The chain of activity starts with the user’s browser being redirected to a webpage which instructs them to download a password-protected archive file from a file storage service such as Discord CDN. Discord is a popular VoIP and instant messaging service, and Discord CDN is the service’s CDN infrastructure. In several cases, the webpages to which users’ browsers were redirected were hosted on ‘hero-files[.]com’ (Figure 2), ‘qd-files[.]com’, and ‘pu-file[.]com’ (Figure 3). 

Figure 2: An image of a page hosted on hero-files[.]com - an endpoint which Darktrace observed systems contacting before downloading PrivateLoader from Discord CDN
Figure 3: An image of a page hosted on pu-file[.]com- an endpoint which Darktrace observed systems contacting before downloading PrivateLoader from Discord CDN


On attempting to download cracked/pirated software, users’ browsers were typically redirected to download instruction pages. In one case however, a user’s device showed signs of being infected with the malicious Chrome extension, ChromeBack [9], immediately before it contacted a webpage providing download instructions (Figure 4). This may suggest that cracked software downloads are not the only cause of users’ browsers being redirected to these download instruction pages (Figure 5). 

Figure 4: The event log for this device (taken from the Darktrace Threat Visualiser interface) shows that the device contacted endpoints associated with ChromeBack ('freychang[.]fun') prior to visiting a page ('qd-file[.]com') which instructed the device’s user to download an archive file from Discord CDN
 Figure 5: An image of the website 'crackright[.]com'- a provider of cracked software. Systems which attempted to download software from this website were subsequently led to pages providing instructions to download a password-protected archive from Discord CDN


After users’ devices were redirected to pages instructing them to download a password-protected archive, they subsequently contacted cdn.discordapp[.]com over SSL. The archive files which users downloaded over these SSL connections likely contained the PrivateLoader loader module. Immediately after contacting the file storage endpoint, users’ devices were observed either contacting Pastebin over SSL, making an HTTP GET request with the URI string ‘/server.txt’ or ‘server_p.txt’ to 45.144.225[.]57, or making an HTTP GET request with the URI string ‘/proxies.txt’ to 212.193.30[.]45 (Figure 6).

Distinctive user-agent strings such as those containing question marks (e.g. ‘????ll’) and strings referencing outdated Chrome browser versions were consistently seen in these HTTP requests. The following chrome agent was repeatedly observed: ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36’.

In some cases, devices also displayed signs of infection with other strains of malware such as the RedLine infostealer and the BeamWinHTTP malware downloader. This may suggest that the password-protected archives embedded several payloads.

Figure 6: This figure, obtained from Darktrace's Advanced Search interface, represents the post-infection behaviour displayed by a PrivateLoader bot. After visiting hero-files[.]com and downloading the PrivateLoader loader module from Discord CDN, the device can be seen making HTTP GET requests for ‘/proxies.txt’ and ‘/server.txt’ and contacting pastebin[.]com

It seems that PrivateLoader bots contact Pastebin, 45.144.225[.]57, and 212.193.30[.]45 in order to retrieve the IP address of PrivateLoader’s main C2 server - the server which provides PrivateLoader bots with payload URLs. This technique used by the operators of PrivateLoader closely mirrors the well-known espionage tactic known as ‘dead drop’.

The dead drop is a method of espionage tradecraft in which an individual leaves a physical object such as papers, cash, or weapons in an agreed hiding spot so that the intended recipient can retrieve the object later on without having to come in to contact with the source. When threat actors host information about core C2 infrastructure on intermediary endpoints, the hosted information is analogously called a ‘Dead Drop Resolver’ or ‘DDR’. Example URLs of DDRs used by PrivateLoader:

  • https://pastebin[.]com/...
  • http://212.193.30[.]45/proxies.txt
  • http://45.144.225[.]57/server.txt
  • http://45.144.255[.]57/server_p.txt

The ‘proxies.txt’ DDR hosted on 212.193.40[.]45 contains a list of 132 IP address / port pairs. The 119th line of this list includes a scrambled version of the IP address of PrivateLoader’s main C2 server (Figures 7 & 8). Prior to June, it seems that the main C2 IP address was ‘212.193.30[.]21’, however, the IP address appears to have recently changed to ‘85.202.169[.]116’. In a limited set of cases, Darktrace also observed PrivateLoader bots retrieving payload URLs from 2.56.56[.]126 and 2.56.59[.]42 (rather than from 212.193.30[.]21 or 85.202.169[.]116). These IP addresses may be hardcoded secondary C2 address which PrivateLoader bots use in cases where they are unable to retrieve the primary C2 address from Pastebin, 212.193.30[.]45 or 45.144.255[.]57 [10]. 

Figure 7: Before June, the 119th entry of the ‘proxies.txt’ file lists '30.212.21.193' -  a scrambling of the ‘212.193.30[.]21’ main C2 IP address
Figure 8: Since June, the 119th entry of the ‘proxies.txt’ file lists '169.85.116.202' - a scrambling of the '85.202.169[.]116' main C2 IP address

Once PrivateLoader bots had retrieved C2 information from either Pastebin, 45.144.225[.]57, or 212.193.30[.]45, they went on to make HTTP GET requests for ‘/base/api/statistics.php’ to either 212.193.30[.]21, 85.202.169[.]116, 2.56.56[.]126, or 2.56.59[.]42 (Figure 9). The server responded to these requests with an XOR encrypted string. The strings were encrypted using a 1-byte key [11], such as 0001101 (Figure 10). Decrypting the string revealed a URL for a BMP file hosted on Discord CDN, such as ‘hxxps://cdn.discordapp[.]com/attachments/978284851323088960/986671030670078012/PL_Client.bmp’. These encrypted URLs appear to be file download paths for the PrivateLoader core module. 

Figure 9: HTTP response from server to an HTTP GET request for '/base/api/statistics.php'
Figure 10: XOR decrypting the string with the one-byte key, 00011101, outputs a URL in CyberChef

After PrivateLoader bots retrieved the 'cdn.discordapp[.]com’ URL from 212.193.30[.]21, 85.202.169[.]116, 2.56.56[.]126, or 2.56.59[.]42, they immediately contacted Discord CDN via SSL connections in order to obtain the PrivateLoader core module. Execution of this module resulted in the bots making HTTP POST requests (with the URI string ‘/base/api/getData.php’) to the main C2 address (Figures 11 & 12). Both the data which the PrivateLoader bots sent over these HTTP POST requests and the data returned via the C2 server’s HTTP responses were heavily encrypted using a combination of password-based key derivation, base64 encoding, AES encryption, and HMAC validation [12]. 

Figure 11: The above image, taken from Darktrace's Advanced Search interface, shows a PrivateLoader bot carrying out the following steps: contact ‘hero-files[.]com’ --> contact ‘cdn.discordapp[.]com’ --> retrieve ‘/proxies.txt’ from 212.193.30[.]45 --> retrieve ‘/base/api/statistics.php’ from 212.193.30[.]21 --> contact ‘cdn.discordapp[.]com --> make HTTP POST request with the URI ‘base/api/getData.php’ to 212.193.30[.]21
Figure 12: A PCAP of the data sent via the HTTP POST (in red), and the data returned by the C2 endpoint (in blue)

These ‘/base/api/getData.php’ POST requests contain a command, a campaign name and a JSON object. The response may either contain a simple status message (such as “success”) or a JSON object containing URLs of payloads. After making these HTTP connections, PrivateLoader bots were observed downloading and executing large volumes of payloads (Figure 13), ranging from crypto-miners to infostealers (such as Mars stealer), and even to other malware downloaders (such as SmokeLoader). In some cases, bots were also seen downloading files with ‘.bmp’ extensions, such as ‘Service.bmp’, ‘Cube_WW14.bmp’, and ‘NiceProcessX64.bmp’, from 45.144.225[.]57 - the same DDR endpoint from which PrivateLoader bots retrieved main C2 information. These ‘.bmp’ payloads are likely related to the PrivateLoader service module [13]. Certain bots made follow-up HTTP POST requests (with the URI string ‘/service/communication.php’) to either 212.193.30[.]21 or 85.202.169[.]116, indicating the presence of the PrivateLoader service module, which has the purpose of establishing persistence on the device (Figure 14). 

Figure 13: The above image, taken from Darktrace's Advanced Search interface, outlines the plethora of malware payloads downloaded by a PrivateLoader bot after it made an HTTP POST request to the ‘/base/api/getData.php’ endpoint. The PrivateLoader service module is highlighted in red
Figure 14: The event log for a PrivateLoader bot, obtained from the Threat Visualiser interface, shows a device making HTTP POST requests to ‘/service/communication.php’ and connecting to the NanoPool mining pool, indicating successful execution of downloaded payloads

In several observed cases, PrivateLoader bots downloaded another malware downloader called ‘SmokeLoader’ (payloads named ‘toolspab2.exe’ and ‘toolspab3.exe’) from “Privacy Tools” endpoints [14], such as ‘privacy-tools-for-you-802[.]com’ and ‘privacy-tools-for-you-783[.]com’. These “Privacy Tools” domains are likely impersonation attempts of the legitimate ‘privacytools[.]io’ website - a website run by volunteers who advocate for data privacy [15]. 

After downloading and executing malicious payloads, PrivateLoader bots were typically seen contacting crypto-mining pools, such as NanoPool, and making HTTP POST requests to external hosts associated with SmokeLoader, such as hosts named ‘host-data-coin-11[.]com’ and ‘file-coin-host-12[.]com’ [16]. In one case, a PrivateLoader bot went on to exfiltrate data over HTTP to an external host named ‘cheapf[.]link’, which was registered on the 14th March 2022 [17]. The name of the file which the PrivateLoader bot used to exfiltrate data was ‘NOP8QIMGV3W47Y.zip’, indicating information stealing activities by Mars Stealer (Figure 15) [18]. By saving the HTTP stream as raw data and utilizing a hex editor to remove the HTTP header portions, the hex data of the ZIP file was obtained. Saving the hex data using a ‘.zip’ extension and extracting the contents, a file directory consisting of system information and Chrome and Edge browsers’ Autofill data in cleartext .txt file format could be seen (Figure 16).

Figure 15: A PCAP of a PrivateLoader bot’s HTTP POST request to cheapf[.]link, with data sent by the bot appearing to include Chrome and Edge autofill data, as well as system information
Figure 16: File directory structure and files of the ZIP archive 

When left unattended, PrivateLoader bots continued to contact C2 infrastructure in order to relay details of executed payloads and to retrieve URLs of further payloads. 

Figure 17: Timeline of the attack

Darktrace Coverage 

Most of the incidents surveyed for this article belonged to prospective customers who were trialling Darktrace with RESPOND in passive mode, and thus without the ability for autonomous intervention. However in all observed cases, Darktrace DETECT was able to provide visibility into the actions taken by PrivateLoader bots. In one case, despite the infected bot being disconnected from the client’s network, Darktrace was still able to provide visibility into the device’s network behaviour due to the client’s usage of Darktrace/Endpoint. 

If a system within an organization’s network becomes infected with PrivateLoader, it will display a range of anomalous network behaviours before it downloads and executes malicious payloads. For example, it will contact Pastebin or make HTTP requests with new and unusual user-agent strings to rare external endpoints. These network behaviours will generate some of the following alerts on the Darktrace UI:

  • Compliance / Pastebin 
  • Device / New User Agent and New IP
  • Device / New User Agent
  • Device / Three or More New User Agents
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / POST to PHP on New External Host
  • Anomalous Connection / Posting HTTP to IP Without Hostname

Once the infected host obtains URLs for malware payloads from a C2 endpoint, it will likely start to download and execute large volumes of malicious files. These file downloads will usually cause Darktrace to generate some of the following alerts:

  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric Exe Download
  • Anomalous File / Masqueraded File Transfer
  • Anomalous File / Multiple EXE from Rare External Locations
  • Device / Initial Breach Chain Compromise

If RESPOND is deployed in active mode, Darktrace will be able to autonomously block the download of additional malware payloads onto the target machine and the subsequent beaconing or crypto-mining activities through network inhibitors such as ‘Block matching connections’, ‘Enforce pattern of life’ and ‘Block all outgoing traffic’. The ‘Enforce pattern of life’ action results in a device only being able to make connections and data transfers which Darktrace considers normal for that device. The ‘Block all outgoing traffic’ action will cause all traffic originating from the device to be blocked. If the customer has Darktrace’s Proactive Threat Notification (PTN) service, then a breach of an Enhanced Monitoring model such as ‘Device / Initial Breach Chain Compromise’ will result in a Darktrace SOC analyst proactively notifying the customer of the suspicious activity. Below is a list of Darktrace RESPOND (Antigena) models which would be expected to breach due to PrivateLoader activity. Such models can seriously hamper attempts made by PrivateLoader bots to download malicious payloads. 

  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block 
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

In one observed case, the infected bot began to download malicious payloads within one minute of becoming infected with PrivateLoader. Since RESPOND was correctly configured, it was able to immediately intervene by autonomously enforcing the device’s pattern of life for 2 hours and blocking all of the device’s outgoing traffic for 10 minutes (Figure 17). When malware moves at such a fast pace, the availability of autonomous response technology, which can respond immediately to detected threats, is key for the prevention of further damage.  

Figure 18: The event log for a Darktrace RESPOND (Antigena) model breach shows Darktrace RESPOND performing inhibitive actions once the PrivateLoader bot begins to download payloads

Conclusion

By investigating PrivateLoader infections over the past couple of months, Darktrace has observed PrivateLoader operators making changes to the downloader’s main C2 IP address and to the user-agent strings which the downloader uses in its C2 communications. It is relatively easy for the operators of PrivateLoader to change these superficial network-based features of the malware in order to evade detection [19]. However, once a system becomes infected with PrivateLoader, it will inevitably start to display anomalous patterns of network behaviour characteristic of the Tactics, Techniques and Procedures (TTPs) discussed in this blog.

Throughout 2022, Darktrace observed overlapping patterns of network activity within the environments of several customers, which reveal the archetypal steps of a PrivateLoader infection. Despite the changes made to PrivateLoader’s network-based features, Darktrace’s Self-Learning AI was able to continually identify infected bots, detecting every stage of an infection without relying on known indicators of compromise. When configured, RESPOND was able to immediately respond to such infections, preventing further advancement in the cyber kill chain and ultimately preventing the delivery of floods of payloads onto infected devices.

IoCs

MITRE ATT&CK Techniques Observed

References

[1], [8],[13] https://www.youtube.com/watch?v=Ldp7eESQotM  

[2] https://news.sophos.com/en-us/2021/09/01/fake-pirated-software-sites-serve-up-malware-droppers-as-a-service/

[3] https://www.researchgate.net/publication/228873118_Measuring_Pay-per Install_The_Commoditization_of_Malware_Distribution 

[4], [15] https://intel471.com/blog/privateloader-malware

[5] https://medium.com/walmartglobaltech/privateloader-to-anubis-loader-55d066a2653e 

[6], [10],[11], [12] https://www.zscaler.com/blogs/security-research/peeking-privateloader 

[7] https://www.trendmicro.com/en_us/research/22/e/netdooka-framework-distributed-via-privateloader-ppi.html

[9] https://www.gosecure.net/blog/2022/02/10/malicious-chrome-browser-extension-exposed-chromeback-leverages-silent-extension-loading/

[14] https://www.proofpoint.com/us/blog/threat-insight/malware-masquerades-privacy-tool 

[16] https://asec.ahnlab.com/en/30513/ 

[17]https://twitter.com/0xrb/status/1515956690642161669

[18] https://isc.sans.edu/forums/diary/Arkei+Variants+From+Vidar+to+Mars+Stealer/28468

[19] http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Sam Lister
SOC Analyst
Shuh Chin Goh
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

OT

/

March 28, 2025

Darktrace Recognized as the Only Visionary in the 2025 Gartner® Magic Quadrant™ for CPS Protection Platforms

Default blog imageDefault blog image

We are thrilled to announce that Darktrace has been named the only Visionary in the inaugural Gartner® Magic Quadrant™ for Cyber-Physical Systems (CPS) Protection Platforms. We feel This recognition highlights Darktrace’s AI-driven approach to securing industrial environments, where conventional security solutions struggle to keep pace with increasing cyber threats.

A milestone for CPS security

It's our opinion that the first-ever Gartner Magic Quadrant for CPS Protection Platforms reflects a growing industry shift toward purpose-built security solutions for critical infrastructure. As organizations integrate IT, OT, and cloud-connected systems, the cyber risk landscape continues to expand. Gartner evaluated 17 vendors based on their Ability to Execute and Completeness of Vision, establishing a benchmark for security leaders looking to enhance cyber resilience in industrial environments.

We believe the Gartner recognition of Darktrace as the only Visionary reaffirms the platform’s ability to proactively defend against cyber risks through AI-driven anomaly detection, autonomous response, and risk-based security strategies. With increasingly sophisticated attacks targeting industrial control systems, organizations need a solution that continuously evolves to defend against both known and unknown threats.

AI-driven security for CPS environments

Securing CPS environments requires an approach that adapts to the dynamic nature of industrial operations. Traditional security tools rely on static signatures and predefined rules, leaving gaps in protection against novel and sophisticated threats. Darktrace / OT takes a different approach, leveraging Self-Learning AI to detect and neutralize threats in real time, even in air-gapped or highly regulated environments.

Darktrace / OT continuously analyzes network behaviors to establish a deep understanding of what is “normal” for each industrial environment. This enables it to autonomously identify deviations that signal potential cyber threats, providing early warning and proactive defense before attacks can disrupt operations. Unlike rule-based security models that require constant manual updates, Darktrace / OT improves with the environment, ensuring long-term resilience against emerging cyber risks.

Bridging the IT-OT security gap

A major challenge for organizations protecting CPS environments is the disconnect between IT and OT security. While IT security has traditionally focused on data

protection and compliance, OT security is driven by operational uptime and safety, leading to siloed security programs that leave critical gaps in visibility and response.

Darktrace / OT eliminates these silos by providing unified visibility across IT, OT, and IoT assets, ensuring that security teams have a complete picture of their attack surface. Its AI-driven approach enables cross-domain threat detection, recognizing risks that move laterally between IT and OT environments. By seamlessly integrating with existing security architectures, Darktrace / OT helps organizations close security gaps without disrupting industrial processes.

Proactive OT risk management and resilience

Beyond detection and response, Darktrace / OT strengthens organizations’ ability to manage cyber risk proactively. By mapping vulnerabilities to real-world attack paths, it prioritizes remediation actions based on actual exploitability and business impact, rather than relying on isolated CVE scores. This risk-based approach enables security teams to focus resources where they matter most, reducing overall exposure to cyber threats.

With autonomous threat response capabilities, Darktrace / OT not only identifies risks but also contains them in real time, preventing attackers from escalating intrusions. Whether mitigating ransomware, insider threats, or sophisticated nation-state attacks, Darktrace / OT ensures that industrial environments remain secure, operational, and resilient, no matter how threats evolve.

AI-powered incident response and SOC automation

Security teams are facing an overwhelming volume of alerts, making it difficult to prioritize threats and respond effectively. Darktrace / OT’s Cyber AI Analyst acts as a force multiplier for security teams by automating threat investigation, alert triage, and response actions. By mimicking the workflow of a human SOC analyst, Cyber AI Analyst provides contextual insights that accelerate incident response and reduce the manual workload on security teams.

With 24/7 autonomous monitoring, Darktrace / OT ensures that threats are continuously detected and investigated in real time. Whether facing ransomware, insider threats, or sophisticated nation-state attacks, organizations can rely on AI-driven security to contain threats before they disrupt operations.

Trusted by customers: Darktrace / OT recognized in Gartner Peer Insights

Source: Gartner Peer Insights (Oct 28th)

Beyond our recognition in the Gartner Magic Quadrant, we feel Darktrace / OT is one of the highest-rated CPS security solutions on Gartner Peer Insights, reflecting strong customer trust and validation. With a 4.9/5 overall rating and the highest "Willingness to Recommend" score among CPS vendors, organizations across critical infrastructure and industrial sectors recognize the impact of our AI-driven security approach. Source: Gartner Peer Insights (Oct 28th)

This strong customer endorsement underscores why leading enterprises trust Darktrace / OT to secure their CPS environments today and in the future.

Redefining the future of CPS security

It's our view that Darktrace’s recognition as the only Visionary in the Gartner Magic Quadrant for CPS Protection Platforms validates its leadership in next-generation industrial security. As cyber threats targeting critical infrastructure continue to rise, organizations must adopt AI-driven security solutions that can adapt, respond, and mitigate risks in real time.

We believe this recognition reinforces our commitment to innovation and our mission to secure the world’s most essential systems. This recognition reinforces our commitment to innovation and our mission to secure the world’s most essential systems.

® Download the full Gartner Magic Quadrant for CPS Protection Platforms

® Request a demo to see Darktrace OT in action.

Gartner, Magic Quadrant for CPS Protection Platforms , Katell Thielemann, Wam Voster, Ruggero Contu 12 February 2025

Gartner does not endorse any vendor, product or service depicted in its research publications and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner and Magic Quadrant and Peer Insights are a registered trademark, of Gartner, Inc. and/or its affiliates in the U.S. and internationally and are used herein with permission. All rights reserved. Gartner Peer Insights content consists of the opinions of individual end users based on their own experiences with the vendors listed on the platform, should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

AI

/

March 28, 2025

Survey Findings: AI Cybersecurity Priorities and Objectives in 2025

Default blog imageDefault blog image

AI is changing the cybersecurity field, both on the offensive and defensive sides. We surveyed over 1,500 cybersecurity professionals from around the world to uncover their attitudes, understanding, and priorities when it comes to AI cybersecurity in 2025. Our full report, unearthing some telling trends, is available now.  

Download the full report to explore these findings in depth

It is clear that security professionals know their field is changing fast, and that AI will continue to influence those changes. Our survey results show that they are aware that the rise of AI will require them to adopt new tools and learn to use them effectively. Still, they aren’t always certain about how to plan for the future, or what to invest in.

The top priorities of security stakeholders for improving their defenses against AI-powered threats include augmenting their existing tool stacks with AI-powered solutions and improving integration among their security tools.

Figure 1: Year-over-year changes to the priorities of securitystakeholders.

Increasing cybersecurity staff

As was also the case last year, security stakeholders are less interested in hiring additional staff than in adding new AI-powered tools onto their existing security stacks, with only with 11% (and only 8% of executives) planning to increase cybersecurity staff in 2025.

This suggests that leaders are looking for new methods to overcome talent resource shortages.

Adding AI-powered security tools to supplement existing solutions

Executives are particularly enthusiastic about adopting AI-driven tools. Within that goal, there is consensus about the qualities cyber professionals are looking for when purchasing new security capabilities or replacing existing products.

  • 87% of survey respondents prefer solutions that are part of a broader platform over individual point products

These results are similar to last year’s, where again, almost nine out of ten agreed that a platform-oriented security solution was more effective at stopping cyber threats than a collection of individual products.

  • 88% of survey respondents agree that the use of AI within the security stack is critical to freeing up time for security teams to become more proactive, compared to reactive

AI itself can contribute to this shift from reactive to proactive security, improving risk prioritization and automating preventative strategies like Attack Surface Management (ASM) and proactive exposure management.

  • 84% of survey respondents prefer defensive AI solutions that do not require the organization’s data to be shared externally

This preference may reflect increasing attention to the data privacy and security risks posed by generative AI (gen AI) adoption. It may also reflect growing awareness of data residency requirements and other restrictions that regulators are imposing.

Improving cybersecurity awareness training for end users

Based on the survey results, practitioners in SecOps are more interested in improving security awareness training.

This goal is not necessarily mutually exclusive from the addition of AI tools. For example, teams can leverage AI to build more effective security awareness training programs, and as gen AI tools are adopted, users will need to be taught about data privacy and associated security risks.

Looking towards the future

One conclusion we can draw from the attitudinal shifts from last year’s survey to this year’s: while hiring more security staff might be a nice-to-have, implementing AI-powered tools so that existing employees can work smarter is increasingly viewed as a must-have.

However, trending goals are not just about managing resources, whether headcount or AI investments, to keep up with workloads. Existing end users must also be trained to follow safe practices while using established and newly adopted tools.

Security professionals, including executives, SecOps, and every role in between, continue to shift their identified challenges and priorities as they gear up for the coming year in the Era of AI.

State of AI report

Download the full report to explore these findings in depth

The full report for Darktrace’s State of AI Cybersecurity is out now. Download the paper to dig deeper into these trends, and see how results differ by industry, region, organization size, and job title.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI