Blog
/

Inside the SOC

/
November 6, 2023

How PlugX Malware Has Evolved & Adapted

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Nov 2023
Discover how Darktrace effectively detected and thwarted the PlugX remote access trojan in 2023 despite its highly evasive and adaptive nature.

What is PlugX Remote Access Trojan?

Understanding remote access trojans (RATs)

As malicious actors across the threat landscape continue to pursue more efficient and effective ways of compromising target networks, all while remaining undetected by security measures, it is unsurprising to see an increase in the use of remote access trojans (RATs) in recent years. RATs typically operate stealthily, evading security tools while offering threat actors remote control over infected devices, allowing attackers to execute a wide range of malicious activities like data theft or installing additional malware.

Definition and general functionality of RATs: A Remote Access Trojan (RAT) is a type of malware that enables unauthorized remote control of an infected computer. Once installed, RATs allow attackers to monitor user activities, steal sensitive information, manipulate files, and execute commands. RATs are typically distributed via phishing emails, malicious attachments, drive-by downloads, or exploiting software vulnerabilities. Due to their ability to provide comprehensive control over a compromised system, RATs pose a significant security threat to individuals and organizations.

Historical overview of PlugX

PlugX is one such example of a RAT that has attributed to Chinese threat actors such as Mustang Panda, since it first appeared in the wild back in 2008. It is known for its use in espionage, a modular and plug-in style approach to malware development. It has the ability to evolve with the latest tactics, techniques, and procedures (TTPs) that allow it to avoid the detection of traditional security tools as it implants itself target devices.

How Does PlugX Work?

The ultimate goal of any RAT is to remotely control affected devices with a wide range of capabilities, which in PlugX’s case has typically included rebooting systems, keylogging, managing critical system processes, and file upload/downloads. One technique PlugX heavily relies on is dynamic-link library (DLL) sideloading to infiltrate devices. This technique involves executing a malicious payload that is embedded within a benign executable found in a data link library (DLL) [1]. The embedded payload within the DLL is often encrypted or obfuscated to prevent detection.

What’s more, a new variant of PlugX was observed in the wild across Papua New Guinea, Ghana, Mongolia, Zimbabwe, and Nigeria in August 2022, that added several new capabilities to its toolbox.

Key capabilities of PlugX

The new variation is reported to continuously monitor affected environments for new USB devices to infect, allowing it to spread further through compromised networks [2]. It is then able to hide malicious files within a USB device by using a novel technique that prevents them from being viewed on Windows operating systems (OS). These hidden files can only be viewed on a Unix-like (.nix) OS, or by analyzing an affected USB devices with a forensic tool [2]. The new PlugX variant also has the ability to create a hidden directory, “RECYCLER.BIN”, containing a collection of stolen documents, likely in preparation for exfiltration via its command and control (C2) channels. [3]

Since December 2022, PlugX has been observed targeting networks in Europe through malware delivery via HTML smuggling campaigns, a technique that has been dubbed SmugX [4].

This evasive tactic allows threat actors to prepare and deploy malware via phishing campaigns by exploiting legitimate HTML5 and JavaScript features [5].

Darktrace Coverage of PlugX

Between January and March 2023, Darktrace observed activity relating to the PlugX RAT on multiple customers across the fleet. While PlugX’s TTPs may have bypassed traditional security tools, the anomaly-based detection capabilities of Darktraceallowed it to identify and alert the subtle deviations in the behavior of affected devices, while Darktrace was able to take immediate mitigative action against such anomalous activity and stop attackers in their tracks.  

C2 Communication

Between January and March 2023, Darktrace detected multiple suspicious connections related to the PlugX RAT within customer environments. When a device has been infected, it will typically communicate through C2 infrastructure established for the PlugX RAT. In most cases observed by Darktrace, affected devices exhibited suspicious C2 connections to rare endpoints that were assessed with moderate to high confidence to be linked to PlugX.

On the network of one Darktrace customer the observed communication was a mix of successful and unsuccessful connections at a high volume to rare endpoints on ports such as 110, 443, 5938, and 80. These ports are commonly associated with POP3, HTTPS, TeamViewer RDP / DynGate, and HTTP, respectively.  Figure 1 below showcases this pattern of activity.

Figure 1: Model Breach Event Log demonstrating various successful and unsuccessful connections to the PlugX C2 endpoint 103.56.53[.]46 via various destination ports.

On another customer’s network, Darktrace observed C2 communication involving multiple failed connection attempts to another rare external endpoint associated with PlugX. The device in this case was detected attempting connections to the endpoint, 45.142.166[.]112 on ports 110, 80, and 443 which caused the DETECT model ‘Anomalous Connection / Multiple Failed Connections to Rare Endpoint’ to breach. This model examines devices attempting connections to a rare external endpoint over a short period of time, and it breached in response to almost all PlugX C2 related activity detected by Darktrace. This highlights Darktrace DETECT’s unique ability to identify anomalous activity which appears benign or uncertain, rather than relying on traditional signature-based detections.

Figure 2: Device Event Log demonstrating various successful and unsuccessful connections to the PlugX C2 endpoint 45.142.166[.]112 via various destination on January 27, 2023.

New User Agent

Darktrace's Self-Learning AI approach to threat detection also allowed it to recognize connections to PlugX associated endpoints that utilized a new user agent. In almost all connections to PlugX endpoints detected by Darktrace, the same user agent, Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36, was observed, illustrating a clear pattern in PlugX-related activity

In one example from February 2023, an affected device successfully connected to an endpoint associated with PlugX, 45.142.166[.]112, while using the aforementioned new user agent, as depicted in Figure 3.

Figure 3: The Device Event log above showcases a successful connection to the PlugX associated IP address, 45.142.166[.]112 using the new user agent ‘Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36’.

On March 21, 2023, Darktrace observed similar activity on a separate customer’s network affected by connections to PlugX. This activity included connections to the same endpoint, 45.142.166[.]112. The connection was an HTTP POST request made via proxy with the same new user agent, ‘Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36’. When investigated further this user agent actually reveals very little about itself and appears to be missing a couple of common features that are typically contained in a user agent string, such as a web browser and its version or the mention of Safari before its build ID (‘537.36’).

Additionally, for this connection the URI observed consisted of a random string of 8 hexadecimal characters, namely ‘d819f07a’. This is a technique often used by malware to communicate with its C2 servers, while evading the detection of signature-based detection tools. Darktrace, however, recognized that this external connection to an endpoint with no hostname constituted anomalous behavior, and could have been indicative of a threat actor communicating with malicious infrastructure, thus the ‘Anomalous Connection / Possible Callback URI’ model was breached.

Figure 4: An affected device was detected using the new user agent, ‘Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36’ while connecting to the rare external endpoint 45.142.166[.]112 via proxy.

Numeric File Download

Darktrace’s detection of PlugX activity on another customer’s network, in February 2023, helped to demonstrate related patterns of activity within the C2 communication and tooling attack phases. Observed PlugX activity on this network followed the subsequent pattern; a connection to a PlugX endpoints is made, followed by a HTTP POST request to a numeric URI with a random string of 8 hexadecimal characters, as previously highlighted. Darktrace identified that this activity represented unusual ‘New Activity’ for this device, and thus treated it with suspicion.

Figure 5: New activity was identified by Darktrace in the Device Event Log shown above for connections to the endpoint 45.142.166[.]112 followed by HTTP POSTs to URIs “/8891431c” and “/ba12b866” on February 15, 2023.

The device in question continued to connect to the endpoint and make HTTP POST connections to various URIs relating to PlugX. Additionally, the user agent `Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36` was again detected for these connections. Figure 6 details the activity captured by Darktrace’s Cyber AI Analyst.

Figure 6: The image above showcases activity captured by Darktrace’s AI Analyst for PlugX connections made on February 15, 2023.

Darktrace detected that during these connections, the device in question attempted to download a suspicious file named only with numbers. The use of numeric file names is a technique often used by threat actors to obfuscate the download of malicious files or programs and bypass traditional security tools. Darktrace understood that the download of a numeric file, coupled with the use of an anomalous new user agent, mean the incident should be treated with suspicion. Fortunately, Darktrace RESPOND was enabled in autonomous response mode during this attack, meaning it was able to automatically block the device from downloading the file, or any other files, from the suspicious external location for a two-hour period, potentially preventing the download of PlugX’s malicious tooling.

Conclusion

Amid the continued evolution of PlugX from an espionage tool to a more widely available malware, it is essential that threat detection does not rely on a set of characteristics or indicators, but rather is focused on anomalies. Throughout these cases, Darktrace demonstrated the efficacy of its detection and alerting on emerging activity pertaining to a particularly stealthy and versatile RAT. Over the years, PlugX has continually looked to evolve and survive in the ever-changing threat landscape by adapting new capabilities and TTPs through which it can infect a system and spread to new devices without being noticed by security teams and their tools.

However, Darktrace’s Self-Learning AI allows it to gain a strong understanding of customer networks, learning what constitutes expected network behavior which in turn allows it to recognize the subtle deviations indicative of an ongoing compromise.

Darktrace’s ability to identify emerging threats through anomaly-based detection, rather than relying on established threat intelligence, uniquely positions it to detect and respond to highly adaptable and dynamic threats, like the PlugX malware, regardless of how it may evolve in the future.

Credit to: Nahisha Nobregas, SOC Analyst & Dylan Hinz, Cyber Analyst

Appendices

MITRE ATT&CK Framework

Execution

  • T1059.003 Command and Scripting Interpreter: Windows Command Shell

Persistence and Privilege Escalation

  • T1547.001 Boot or Logon AutoStart Execution: Registry Run Keys / Startup Folder
  • T1574.001 Hijack Execution Flow: DLL Search Order Hijacking
  • T1574.002 Hijack Execution Flow: DLL Side-Loading
  • T1543.003 Create or Modify System Process: Windows Service
  • T1140 Deobfuscate / Decode Files or Information
  • T1083 File and Directory Discovery

Defense Evasion

  • T1564.001 Hide Artifacts: Hidden Files and Directories
  • T1036.004 Masquerading: Task or Service
  • T1036.005 Masquerading: Match Legitimate Name or Location
  • T1027.006 Obfuscated Files or Information: HTML Smuggling

Credential Access

  • T1056.001 Input Capture: Keylogging

Collection

  • T1105 Ingress Tool Transfer

Command and Control

  • T1573.001 Encrypted Channel: Symmetric Cryptography
  • T1070.003 Mail Protocols
  • T1071.001 Web Protocol

DETECT Model Breaches

  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / New User Agent Followed By Numeric File Download
  • Anomalous Connection / Possible Callback URL

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

45.142.166[.]112 - IP - PlugX C2 Endpoint / moderate - high

103.56.53[.]46 - IP - PlugX C2 Endpoint / moderate - high

Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36 - User Agent - PlugX User Agent / moderate – high

/8891431c - URI - PlugX URI / moderate-high

/ba12b866 - URI - PlugX URI / moderate -high

References

1. https://www.crowdstrike.com/blog/dll-side-loading-how-to-combat-threat-actor-evasion-techniques/

2. https://unit42.paloaltonetworks.com/plugx-variants-in-usbs/

3. https://news.sophos.com/en-us/2023/03/09/border-hopping-plugx-usb-worm/

4. https://thehackernews.com/2023/07/chinese-hackers-use-html-smuggling-to.html

5. https://www.cyfirma.com/outofband/html-smuggling-a-stealthier-approach-to-deliver-malware/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Nahisha Nobregas
SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

October 4, 2024

/

Inside the SOC

From Call to Compromise: Darktrace’s Response to a Vishing-Induced Network Attack

Default blog imageDefault blog image

What is vishing?

Vishing, or voice phishing, is a type of cyber-attack that utilizes telephone devices to deceive targets. Threat actors typically use social engineering tactics to convince targets that they can be trusted, for example, by masquerading as a family member, their bank, or trusted a government entity. One method frequently used by vishing actors is to intimidate their targets, convincing them that they may face monetary fines or jail time if they do not provide sensitive information.

What makes vishing attacks dangerous to organizations?

Vishing attacks utilize social engineering tactics that exploit human psychology and emotion. Threat actors often impersonate trusted entities and can make it appear as though a call is coming from a reputable or known source.  These actors often target organizations, specifically their employees, and pressure them to obtain sensitive corporate data, such as privileged credentials, by creating a sense of urgency, intimidation or fear. Corporate credentials can then be used to gain unauthorized access to an organization’s network, often bypassing traditional security measures and human security teams.

Darktrace’s coverage of vishing attack

On August 12, 2024, Darktrace / NETWORK identified malicious activity on the network of a customer in the hospitality sector. The customer later confirmed that a threat actor had gained unauthorized access through a vishing attack. The attacker successfully spoofed the IT support phone number and called a remote employee, eventually leading to the compromise.

Figure 1: Timeline of events in the kill chain of this attack.

Establishing a Foothold

During the call, the remote employee was requested to authenticate via multi-factor authentication (MFA). Believing the caller to be a member of their internal IT support, using the legitimate caller ID, the remote user followed the instructions and confirmed the MFA prompt, providing access to the customer’s network.

This authentication allowed the threat actor to login into the customer’s environment by proxying through their Virtual Private Network (VPN) and gain a foothold in the network. As remote users are assigned the same static IP address when connecting to the corporate environment, the malicious actor appeared on the network using the correct username and IP address. While this stealthy activity might have evaded traditional security tools and human security teams, Darktrace’s anomaly-based threat detection identified an unusual login from a different hostname by analyzing NTLM requests from the static IP address, which it determined to be anomalous.

Observed Activity

  • On 2024-08-12 the static IP was observed using a credential belonging to the remote user to initiate an SMB session with an internal domain controller, where the authentication method NTLM was used
  • A different hostname from the usual hostname associated with this remote user was identified in the NTLM authentication request sent from a device with the static IP address to the domain controller
  • This device does not appear to have been seen on the network prior to this event.

Darktrace, therefore, recognized that this login was likely made by a malicious actor.

Internal Reconnaissance

Darktrace subsequently observed the malicious actor performing a series of reconnaissance activities, including LDAP reconnaissance, device hostname reconnaissance, and port scanning:

  • The affected device made a 53-second-long LDAP connection to another internal domain controller. During this connection, the device obtained data about internal Active Directory (AD) accounts, including the AD account of the remote user
  • The device made HTTP GET requests (e.g., HTTP GET requests with the Target URI ‘/nice ports,/Trinity.txt.bak’), indicative of Nmap usage
  • The device started making reverse DNS lookups for internal IP addresses.
Figure 2: Model alert showing the IP address from which the malicious actor connected and performed network scanning activities via port 9401.
Figure 3: Model Alert Event Log showing the affected device connecting to multiple internal locations via port 9401.

Lateral Movement

The threat actor was also seen making numerous failed NTLM authentication requests using a generic default Windows credential, indicating an attempt to brute force and laterally move through the network. During this activity, Darktrace identified that the device was using a different hostname than the one typically used by the remote employee.

Cyber AI Analyst

In addition to the detection by Darktrace / NETWORK, Darktrace’s Cyber AI Analyst launched an autonomous investigation into the ongoing activity. The investigation was able to correlate the seemingly separate events together into a broader incident, continuously adding new suspicious linked activities as they occurred.

Figure 4: Cyber AI Analyst investigation showing the activity timeline, and the activities associated with the incident.

Upon completing the investigation, Cyber AI Analyst provided the customer with a comprehensive summary of the various attack phases detected by Darktrace and the associated incidents. This clear presentation enabled the customer to gain full visibility into the compromise and understand the activities that constituted the attack.

Figure 5: Cyber AI Analyst displaying the observed attack phases and associated model alerts.

Darktrace Autonomous Response

Despite the sophisticated techniques and social engineering tactics used by the attacker to bypass the customer’s human security team and existing security stack, Darktrace’s AI-driven approach prevented the malicious actor from continuing their activities and causing more harm.

Darktrace’s Autonomous Response technology is able to enforce a pattern of life based on what is ‘normal’ and learned for the environment. If activity is detected that represents a deviation from expected activity from, a model alert is triggered. When Darktrace’s Autonomous Response functionality is configured in autonomous response mode, as was the case with the customer, it swiftly applies response actions to devices and users without the need for a system administrator or security analyst to perform any actions.

In this instance, Darktrace applied a number of mitigative actions on the remote user, containing most of the activity as soon as it was detected:

  • Block all outgoing traffic
  • Enforce pattern of life
  • Block all connections to port 445 (SMB)
  • Block all connections to port 9401
Figure 6: Darktrace’s Autonomous Response actions showing the actions taken in response to the observed activity, including blocking all outgoing traffic or enforcing the pattern of life.

Conclusion

This vishing attack underscores the significant risks remote employees face and the critical need for companies to address vishing threats to prevent network compromises. The remote employee in this instance was deceived by a malicious actor who spoofed the phone number of internal IT Support and convinced the employee to perform approve an MFA request. This sophisticated social engineering tactic allowed the attacker to proxy through the customer’s VPN, making the malicious activity appear legitimate due to the use of static IP addresses.

Despite the stealthy attempts to perform malicious activities on the network, Darktrace’s focus on anomaly detection enabled it to swiftly identify and analyze the suspicious behavior. This led to the prompt determination of the activity as malicious and the subsequent blocking of the malicious actor to prevent further escalation.

While the exact motivation of the threat actor in this case remains unclear, the 2023 cyber-attack on MGM Resorts serves as a stark illustration of the potential consequences of such threats. MGM Resorts experienced significant disruptions and data breaches following a similar vishing attack, resulting in financial and reputational damage [1]. If the attack on the customer had not been detected, they too could have faced sensitive data loss and major business disruptions. This incident underscores the critical importance of robust security measures and vigilant monitoring to protect against sophisticated cyber threats.

Credit to Rajendra Rushanth (Cyber Security Analyst) and Ryan Traill (Threat Content Lead)

Appendices

Darktrace Model Detections

  • Device / Unusual LDAP Bind and Search Activity
  • Device / Attack and Recon Tools
  • Device / Network Range Scan
  • Device / Suspicious SMB Scanning Activity
  • Device / RDP Scan
  • Device / UDP Enumeration
  • Device / Large Number of Model Breaches
  • Device / Network Scan
  • Device / Multiple Lateral Movement Model Breaches (Enhanced Monitoring)
  • Device / Reverse DNS Sweep
  • Device / SMB Session Brute Force (Non-Admin)

List of Indicators of Compromise (IoCs)

IoC - Type – Description

/nice ports,/Trinity.txt.bak - URI – Unusual Nmap Usage

MITRE ATT&CK Mapping

Tactic – ID – Technique

INITIAL ACCESS – T1200 – Hardware Additions

DISCOVERY – T1046 – Network Service Scanning

DISCOVERY – T1482 – Domain Trust Discovery

RECONNAISSANCE – T1590 – IP Addresses

T1590.002 – DNS

T1590.005 – IP Addresses

RECONNAISSANCE – T1592 – Client Configurations

T1592.004 – Client Configurations

RECONNAISSANCE – T1595 – Scanning IP Blocks

T1595.001 – Scanning IP Blocks

T1595.002 – Vulnerability Scanning

References

[1] https://www.bleepingcomputer.com/news/security/securing-helpdesks-from-hackers-what-we-can-learn-from-the-mgm-breach/

Continue reading
About the author
Rajendra Rushanth
Cyber Analyst

Blog

/

October 3, 2024

/

Cloud

Introducing real-time multi-cloud detection & response powered by AI

Default blog imageDefault blog image

We are delighted to announce the general availability of Microsoft Azure support for Darktrace / CLOUD, enabling real-time cloud detection and response across dynamic multi-cloud environments. Built on Self-Learning AI, Darktrace / CLOUD leverages Microsoft’s new virtual network flow logs (VNet flow) to offer an agentless-first approach that dramatically simplifies detection and response within Azure, unifying cloud-native security with Darktrace’s innovative ActiveAI Security Platform.

As organizations increasingly adopt multi-cloud architectures, the need for advanced, real-time threat detection and response is critical to keep pace with evolving cloud threats. Security teams face significant challenges, including increased complexity, limited visibility, and siloed tools. The dynamic nature of multi-cloud environments introduces ever-changing blind spots, while traditional security tools struggle to provide real-time insights, often offering static snapshots of risk. Additionally, cloud security teams frequently operate in isolation from SOC teams, leading to fragmented visibility and delayed responses. This lack of coordination, especially in hybrid environments, hinders effective threat detection and response. Compounding these challenges, current security solutions are split between agent-based and agentless approaches, with agentless solutions often lacking real-time awareness and agent-based options adding complexity and scalability concerns. Darktrace / CLOUD helps to solve these challenges with real-time detection and response designed specifically for dynamic cloud environments like Azure and AWS.

Pioneering AI-led real-time cloud detection & response

Darktrace has been at the forefront of real-time detection and response for over a decade, continually pushing the boundaries of AI-driven cybersecurity. Our Self-Learning AI uniquely positions Darktrace with the ability to automatically understand and instantly adapt to changing cloud environments. This is critical in today’s landscape, where cloud infrastructures are highly dynamic and ever-changing.  

Built on years of market-leading network visibility, Darktrace / CLOUD understands ‘normal’ for your unique business across clouds and networks to instantly reveal known, unknown, and novel cloud threats with confidence. Darktrace Self-Learning AI continuously monitors activity across cloud assets, containers, and users, and correlates it with detailed identity and network context to rapidly detect malicious activity. Platform-native identity and network monitoring capabilities allow Darktrace / CLOUD to deeply understand normal patterns of life for every user and device, enabling instant, precise and proportionate response to abnormal behavior - without business disruption.

Leveraging platform-native Autonomous Response, AI-driven behavioral containment neutralizes malicious activity with surgical accuracy while preventing disruption to cloud infrastructure or services. As malicious behavior escalates, Darktrace correlates thousands of data points to identify and instantly respond to unusual activity by blocking specific connections and enforcing normal behavior.

Figure 1: AI-driven behavioral containment neutralizes malicious activity with surgical accuracy while preventing disruption to cloud infrastructure or services.

Unparalleled agentless visibility into Azure

As a long-term trusted partner of Microsoft, Darktrace leverages Azure VNet flow logs to provide agentless, high-fidelity visibility into cloud environments, ensuring comprehensive monitoring without disrupting workflows. By integrating seamlessly with Azure, Darktrace / CLOUD continues to push the envelope of innovation in cloud security. Our Self-learning AI not only improves the detection of traditional and novel threats, but also enhances real-time response capabilities and demonstrates our commitment to delivering cutting-edge, AI-powered multi-cloud security solutions.

  • Integration with Microsoft Virtual network flow logs for enhanced visibility
    Darktrace / CLOUD integrates seamlessly with Azure to provide agentless, high-fidelity visibility into cloud environments. VNet flow logs capture critical network traffic data, allowing Darktrace to monitor Azure workloads in real time without disrupting existing workflows. This integration significantly reduces deployment time by 95%1 and cloud security operational costs by up to 80%2 compared to traditional agent-based solutions. Organizations benefit from enhanced visibility across dynamic cloud infrastructures, scaling security measures effortlessly while minimizing blind spots, particularly in ephemeral resources or serverless functions.
  • High-fidelity agentless deployment
    Agentless deployment allows security teams to monitor and secure cloud environments without installing software agents on individual workloads. By using cloud-native APIs like AWS VPC flow logs or Azure VNet flow logs, security teams can quickly deploy and scale security measures across dynamic, multi-cloud environments without the complexity and performance overhead of agents. This approach delivers real-time insights, improving incident detection and response while reducing disruptions. For organizations, agentless visibility simplifies cloud security management, lowers operational costs, and minimizes blind spots, especially in ephemeral resources or serverless functions.
  • Real-time visibility into cloud assets and architectures
    With real-time Cloud Asset Enumeration and Dynamic Architecture Modeling, Darktrace / CLOUD generates up-to-date architecture diagrams, giving SecOps and DevOps teams a unified view of cloud infrastructures. This shared context enhances collaboration and accelerates threat detection and response, especially in complex environments like Kubernetes. Additionally, Cyber AI Analyst automates the investigation process, correlating data across networks, identities, and cloud assets to save security teams valuable time, ensuring continuous protection and efficient cloud migrations.
Figure 2: Real-time visibility into Azure assets and architectures built from network, configuration and identity and access roles.

Unified multi-cloud security at scale

As organizations increasingly adopt multi-cloud strategies, the complexity of managing security across different cloud providers introduces gaps in visibility. Darktrace / CLOUD simplifies this by offering agentless, real-time monitoring across multi-cloud environments. Building on our innovative approach to securing AWS environments, our customers can now take full advantage of robust real-time detection and response capabilities for Azure. Darktrace is one of the first vendors to leverage Microsoft’s virtual network flow logs to provide agentless deployment in Azure, enabling unparalleled visibility without the need for installing agents. In addition, Darktrace / CLOUD offers automated Cloud Security Posture Management (CSPM) that continuously assesses cloud configurations against industry standards.  Security teams can identify and prioritize misconfigurations, vulnerabilities, and policy violations in real-time. These capabilities give security teams a complete, live understanding of their cloud environments and help them focus their limited time and resources where they are needed most.

This approach offers seamless integration into existing workflows, reducing configuration efforts and enabling fast, flexible deployment across cloud environments. By extending its capabilities across multiple clouds, Darktrace / CLOUD ensures that no blind spots are left uncovered, providing holistic, multi-cloud security that scales effortlessly with your cloud infrastructure. diagrams, visualizes cloud assets, and prioritizes risks across cloud environments.

Figure 3: Unified view of AWS and Azure cloud posture and compliance over time.

The future of cloud security: Real-time defense in an unpredictable world

Darktrace / CLOUD’s support for Microsoft Azure, powered by Self-Learning AI and agentless deployment, sets a new standard in multi-cloud security. With real-time detection and autonomous response, organizations can confidently secure their Azure environments, leveraging innovation to stay ahead of the constantly evolving threat landscape. By combining Azure VNet flow logs with Darktrace’s AI-driven platform, we can provide customers with a unified, intelligent solution that transforms how security is managed across the cloud.

Learn More:

References

1. Based on internal research and customer data

2. Based on internal research

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security
Your data. Our AI.
Elevate your network security with Darktrace AI