Blog
/
Network
/
November 6, 2023

How PlugX Malware Has Evolved & Adapted

Discover how Darktrace effectively detected and thwarted the PlugX remote access trojan in 2023 despite its highly evasive and adaptive nature.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Nov 2023

What is PlugX Remote Access Trojan?

Understanding remote access trojans (RATs)

As malicious actors across the threat landscape continue to pursue more efficient and effective ways of compromising target networks, all while remaining undetected by security measures, it is unsurprising to see an increase in the use of remote access trojans (RATs) in recent years. RATs typically operate stealthily, evading security tools while offering threat actors remote control over infected devices, allowing attackers to execute a wide range of malicious activities like data theft or installing additional malware.

Definition and general functionality of RATs: A Remote Access Trojan (RAT) is a type of malware that enables unauthorized remote control of an infected computer. Once installed, RATs allow attackers to monitor user activities, steal sensitive information, manipulate files, and execute commands. RATs are typically distributed via phishing emails, malicious attachments, drive-by downloads, or exploiting software vulnerabilities. Due to their ability to provide comprehensive control over a compromised system, RATs pose a significant security threat to individuals and organizations.

Historical overview of PlugX

PlugX is one such example of a RAT that has attributed to Chinese threat actors such as Mustang Panda, since it first appeared in the wild back in 2008. It is known for its use in espionage, a modular and plug-in style approach to malware development. It has the ability to evolve with the latest tactics, techniques, and procedures (TTPs) that allow it to avoid the detection of traditional security tools as it implants itself target devices.

How does PlugX work?

The ultimate goal of any RAT is to remotely control affected devices with a wide range of capabilities, which in PlugX’s case has typically included rebooting systems, keylogging, managing critical system processes, and file upload/downloads. One technique PlugX heavily relies on is dynamic-link library (DLL) sideloading to infiltrate devices. This technique involves executing a malicious payload that is embedded within a benign executable found in a data link library (DLL) [1]. The embedded payload within the DLL is often encrypted or obfuscated to prevent detection.

What’s more, a new variant of PlugX was observed in the wild across Papua New Guinea, Ghana, Mongolia, Zimbabwe, and Nigeria in August 2022, that added several new capabilities to its toolbox.

Key capabilities of PlugX

The new variation is reported to continuously monitor affected environments for new USB devices to infect, allowing it to spread further through compromised networks [2]. It is then able to hide malicious files within a USB device by using a novel technique that prevents them from being viewed on Windows operating systems (OS). These hidden files can only be viewed on a Unix-like (.nix) OS, or by analyzing an affected USB devices with a forensic tool [2]. The new PlugX variant also has the ability to create a hidden directory, “RECYCLER.BIN”, containing a collection of stolen documents, likely in preparation for exfiltration via its command and control (C2) channels. [3]

Since December 2022, PlugX has been observed targeting networks in Europe through malware delivery via HTML smuggling campaigns, a technique that has been dubbed SmugX [4].

This evasive tactic allows threat actors to prepare and deploy malware via phishing campaigns by exploiting legitimate HTML5 and JavaScript features [5].

Darktrace Coverage of PlugX

Between January and March 2023, Darktrace observed activity relating to the PlugX RAT on multiple customers across the fleet. While PlugX’s TTPs may have bypassed traditional security tools, the anomaly-based detection capabilities of Darktrace allowed it to identify and alert the subtle deviations in the behavior of affected devices, while Darktrace was able to take immediate mitigative action against such anomalous activity and stop attackers in their tracks.  

C2 Communication

Between January and March 2023, Darktrace detected multiple suspicious connections related to the PlugX RAT within customer environments. When a device has been infected, it will typically communicate through C2 infrastructure established for the PlugX RAT. In most cases observed by Darktrace, affected devices exhibited suspicious C2 connections to rare endpoints that were assessed with moderate to high confidence to be linked to PlugX.

On the network of one Darktrace customer the observed communication was a mix of successful and unsuccessful connections at a high volume to rare endpoints on ports such as 110, 443, 5938, and 80. These ports are commonly associated with POP3, HTTPS, TeamViewer RDP / DynGate, and HTTP, respectively.  Figure 1 below showcases this pattern of activity.

Figure 1: Model Breach Event Log demonstrating various successful and unsuccessful connections to the PlugX C2 endpoint 103.56.53[.]46 via various destination ports.

On another customer’s network, Darktrace observed C2 communication involving multiple failed connection attempts to another rare external endpoint associated with PlugX. The device in this case was detected attempting connections to the endpoint, 45.142.166[.]112 on ports 110, 80, and 443 which caused the DETECT model ‘Anomalous Connection / Multiple Failed Connections to Rare Endpoint’ to breach. This model examines devices attempting connections to a rare external endpoint over a short period of time, and it breached in response to almost all PlugX C2 related activity detected by Darktrace. This highlights Darktrace DETECT’s unique ability to identify anomalous activity which appears benign or uncertain, rather than relying on traditional signature-based detections.

Figure 2: Device Event Log demonstrating various successful and unsuccessful connections to the PlugX C2 endpoint 45.142.166[.]112 via various destination on January 27, 2023.

New User Agent

Darktrace's Self-Learning AI approach to threat detection also allowed it to recognize connections to PlugX associated endpoints that utilized a new user agent. In almost all connections to PlugX endpoints detected by Darktrace, the same user agent, Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36, was observed, illustrating a clear pattern in PlugX-related activity

In one example from February 2023, an affected device successfully connected to an endpoint associated with PlugX, 45.142.166[.]112, while using the aforementioned new user agent, as depicted in Figure 3.

Figure 3: The Device Event log above showcases a successful connection to the PlugX associated IP address, 45.142.166[.]112 using the new user agent ‘Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36’.

On March 21, 2023, Darktrace observed similar activity on a separate customer’s network affected by connections to PlugX. This activity included connections to the same endpoint, 45.142.166[.]112. The connection was an HTTP POST request made via proxy with the same new user agent, ‘Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36’. When investigated further this user agent actually reveals very little about itself and appears to be missing a couple of common features that are typically contained in a user agent string, such as a web browser and its version or the mention of Safari before its build ID (‘537.36’).

Additionally, for this connection the URI observed consisted of a random string of 8 hexadecimal characters, namely ‘d819f07a’. This is a technique often used by malware to communicate with its C2 servers, while evading the detection of signature-based detection tools. Darktrace, however, recognized that this external connection to an endpoint with no hostname constituted anomalous behavior, and could have been indicative of a threat actor communicating with malicious infrastructure, thus the ‘Anomalous Connection / Possible Callback URI’ model was breached.

Figure 4: An affected device was detected using the new user agent, ‘Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36’ while connecting to the rare external endpoint 45.142.166[.]112 via proxy.

Numeric File Download

Darktrace’s detection of PlugX activity on another customer’s network, in February 2023, helped to demonstrate related patterns of activity within the C2 communication and tooling attack phases. Observed PlugX activity on this network followed the subsequent pattern; a connection to a PlugX endpoints is made, followed by a HTTP POST request to a numeric URI with a random string of 8 hexadecimal characters, as previously highlighted. Darktrace identified that this activity represented unusual ‘New Activity’ for this device, and thus treated it with suspicion.

Figure 5: New activity was identified by Darktrace in the Device Event Log shown above for connections to the endpoint 45.142.166[.]112 followed by HTTP POSTs to URIs “/8891431c” and “/ba12b866” on February 15, 2023.

The device in question continued to connect to the endpoint and make HTTP POST connections to various URIs relating to PlugX. Additionally, the user agent `Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36` was again detected for these connections. Figure 6 details the activity captured by Darktrace’s Cyber AI Analyst.

Figure 6: The image above showcases activity captured by Darktrace’s AI Analyst for PlugX connections made on February 15, 2023.

Darktrace detected that during these connections, the device in question attempted to download a suspicious file named only with numbers. The use of numeric file names is a technique often used by threat actors to obfuscate the download of malicious files or programs and bypass traditional security tools. Darktrace understood that the download of a numeric file, coupled with the use of an anomalous new user agent, mean the incident should be treated with suspicion. Fortunately, Darktrace RESPOND was enabled in autonomous response mode during this attack, meaning it was able to automatically block the device from downloading the file, or any other files, from the suspicious external location for a two-hour period, potentially preventing the download of PlugX’s malicious tooling.

Conclusion

Amid the continued evolution of PlugX from an espionage tool to a more widely available malware, it is essential that threat detection does not rely on a set of characteristics or indicators, but rather is focused on anomalies. Throughout these cases, Darktrace demonstrated the efficacy of its detection and alerting on emerging activity pertaining to a particularly stealthy and versatile RAT. Over the years, PlugX has continually looked to evolve and survive in the ever-changing threat landscape by adapting new capabilities and TTPs through which it can infect a system and spread to new devices without being noticed by security teams and their tools.

However, Darktrace’s Self-Learning AI allows it to gain a strong understanding of customer networks, learning what constitutes expected network behavior which in turn allows it to recognize the subtle deviations indicative of an ongoing compromise.

Darktrace’s ability to identify emerging threats through anomaly-based detection, rather than relying on established threat intelligence, uniquely positions it to detect and respond to highly adaptable and dynamic threats, like the PlugX malware, regardless of how it may evolve in the future.

Credit to: Nahisha Nobregas, SOC Analyst & Dylan Hinz, Cyber Analyst

Appendices

MITRE ATT&CK Framework

Execution

  • T1059.003 Command and Scripting Interpreter: Windows Command Shell

Persistence and Privilege Escalation

  • T1547.001 Boot or Logon AutoStart Execution: Registry Run Keys / Startup Folder
  • T1574.001 Hijack Execution Flow: DLL Search Order Hijacking
  • T1574.002 Hijack Execution Flow: DLL Side-Loading
  • T1543.003 Create or Modify System Process: Windows Service
  • T1140 Deobfuscate / Decode Files or Information
  • T1083 File and Directory Discovery

Defense Evasion

  • T1564.001 Hide Artifacts: Hidden Files and Directories
  • T1036.004 Masquerading: Task or Service
  • T1036.005 Masquerading: Match Legitimate Name or Location
  • T1027.006 Obfuscated Files or Information: HTML Smuggling

Credential Access

  • T1056.001 Input Capture: Keylogging

Collection

  • T1105 Ingress Tool Transfer

Command and Control

  • T1573.001 Encrypted Channel: Symmetric Cryptography
  • T1070.003 Mail Protocols
  • T1071.001 Web Protocol

DETECT Model Breaches

  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / New User Agent Followed By Numeric File Download
  • Anomalous Connection / Possible Callback URL

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

45.142.166[.]112 - IP - PlugX C2 Endpoint / moderate - high

103.56.53[.]46 - IP - PlugX C2 Endpoint / moderate - high

Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36 - User Agent - PlugX User Agent / moderate – high

/8891431c - URI - PlugX URI / moderate-high

/ba12b866 - URI - PlugX URI / moderate -high

References

1. https://www.crowdstrike.com/blog/dll-side-loading-how-to-combat-threat-actor-evasion-techniques/

2. https://unit42.paloaltonetworks.com/plugx-variants-in-usbs/

3. https://news.sophos.com/en-us/2023/03/09/border-hopping-plugx-usb-worm/

4. https://thehackernews.com/2023/07/chinese-hackers-use-html-smuggling-to.html

5. https://www.cyfirma.com/outofband/html-smuggling-a-stealthier-approach-to-deliver-malware/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst

More in this series

No items found.

Blog

/

Email

/

April 14, 2025

Email bombing exposed: Darktrace’s email defense in action

picture of a computer screen showing a password loginDefault blog imageDefault blog image

What is email bombing?

An email bomb attack, also known as a "spam bomb," is a cyberattack where a large volume of emails—ranging from as few as 100 to as many as several thousand—are sent to victims within a short period.

How does email bombing work?

Email bombing is a tactic that typically aims to disrupt operations and conceal malicious emails, potentially setting the stage for further social engineering attacks. Parallels can be drawn to the use of Domain Generation Algorithm (DGA) endpoints in Command-and-Control (C2) communications, where an attacker generates new and seemingly random domains in order to mask their malicious connections and evade detection.

In an email bomb attack, threat actors typically sign up their targeted recipients to a large number of email subscription services, flooding their inboxes with indirectly subscribed content [1].

Multiple threat actors have been observed utilizing this tactic, including the Ransomware-as-a-Service (RaaS) group Black Basta, also known as Storm-1811 [1] [2].

Darktrace detection of email bombing attack

In early 2025, Darktrace detected an email bomb attack where malicious actors flooded a customer's inbox while also employing social engineering techniques, specifically voice phishing (vishing). The end goal appeared to be infiltrating the customer's network by exploiting legitimate administrative tools for malicious purposes.

The emails in these attacks often bypass traditional email security tools because they are not technically classified as spam, due to the assumption that the recipient has subscribed to the service. Darktrace / EMAIL's behavioral analysis identified the mass of unusual, albeit not inherently malicious, emails that were sent to this user as part of this email bombing attack.

Email bombing attack overview

In February 2025, Darktrace observed an email bombing attack where a user received over 150 emails from 107 unique domains in under five minutes. Each of these emails bypassed a widely used and reputable Security Email Gateway (SEG) but were detected by Darktrace / EMAIL.

Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.
Figure 1: Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.

The emails varied in senders, topics, and even languages, with several identified as being in German and Spanish. The most common theme in the subject line of these emails was account registration, indicating that the attacker used the victim’s address to sign up to various newsletters and subscriptions, prompting confirmation emails. Such confirmation emails are generally considered both important and low risk by email filters, meaning most traditional security tools would allow them without hesitation.

Additionally, many of the emails were sent using reputable marketing tools, such as Mailchimp’s Mandrill platform, which was used to send almost half of the observed emails, further adding to their legitimacy.

 Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Figure 2: Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.
Figure 3: Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.

While the individual emails detected were typically benign, such as the newsletter from a legitimate UK airport shown in Figure 3, the harmful aspect was the swarm effect caused by receiving many emails within a short period of time.

Traditional security tools, which analyze emails individually, often struggle to identify email bombing incidents. However, Darktrace / EMAIL recognized the unusual volume of new domain communication as suspicious. Had Darktrace / EMAIL been enabled in Autonomous Response mode, it would have automatically held any suspicious emails, preventing them from landing in the recipient’s inbox.

Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.
Figure 4: Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.

Following the initial email bombing, the malicious actor made multiple attempts to engage the recipient in a call using Microsoft Teams, while spoofing the organizations IT department in order to establish a sense of trust and urgency – following the spike in unusual emails the user accepted the Teams call. It was later confirmed by the customer that the attacker had also targeted over 10 additional internal users with email bombing attacks and fake IT calls.

The customer also confirmed that malicious actor successfully convinced the user to divulge their credentials with them using the Microsoft Quick Assist remote management tool. While such remote management tools are typically used for legitimate administrative purposes, malicious actors can exploit them to move laterally between systems or maintain access on target networks. When these tools have been previously observed in the network, attackers may use them to pursue their goals while evading detection, commonly known as Living-off-the-Land (LOTL).

Subsequent investigation by Darktrace’s Security Operations Centre (SOC) revealed that the recipient's device began scanning and performing reconnaissance activities shortly following the Teams call, suggesting that the user inadvertently exposed their credentials, leading to the device's compromise.

Darktrace’s Cyber AI Analyst was able to identify these activities and group them together into one incident, while also highlighting the most important stages of the attack.

Figure 5: Cyber AI Analyst investigation showing the initiation of the reconnaissance/scanning activities.

The first network-level activity observed on this device was unusual LDAP reconnaissance of the wider network environment, seemingly attempting to bind to the local directory services. Following successful authentication, the device began querying the LDAP directory for information about user and root entries. Darktrace then observed the attacker performing network reconnaissance, initiating a scan of the customer’s environment and attempting to connect to other internal devices. Finally, the malicious actor proceeded to make several SMB sessions and NTLM authentication attempts to internal devices, all of which failed.

Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Figure 6: Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.
Figure 7: Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.

While Darktrace’s Autonomous Response capability suggested actions to shut down this suspicious internal connectivity, the deployment was configured in Human Confirmation Mode. This meant any actions required human approval, allowing the activities to continue until the customer’s security team intervened. If Darktrace had been set to respond autonomously, it would have blocked connections to port 445 and enforced a “pattern of life” to prevent the device from deviating from expected activities, thus shutting down the suspicious scanning.

Conclusion

Email bombing attacks can pose a serious threat to individuals and organizations by overwhelming inboxes with emails in an attempt to obfuscate potentially malicious activities, like account takeovers or credential theft. While many traditional gateways struggle to keep pace with the volume of these attacks—analyzing individual emails rather than connecting them and often failing to distinguish between legitimate and malicious activity—Darktrace is able to identify and stop these sophisticated attacks without latency.

Thanks to its Self-Learning AI and Autonomous Response capabilities, Darktrace ensures that even seemingly benign email activity is not lost in the noise.

Credit to Maria Geronikolou (Cyber Analyst and SOC Shift Supervisor) and Cameron Boyd (Cyber Security Analyst), Steven Haworth (Senior Director of Threat Modeling), Ryan Traill (Analyst Content Lead)

Appendices

[1] https://www.microsoft.com/en-us/security/blog/2024/05/15/threat-actors-misusing-quick-assist-in-social-engineering-attacks-leading-to-ransomware/

[2] https://thehackernews.com/2024/12/black-basta-ransomware-evolves-with.html

Darktrace Models Alerts

Internal Reconnaissance

·      Device / Suspicious SMB Scanning Activity

·      Device / Anonymous NTLM Logins

·      Device / Network Scan

·      Device / Network Range Scan

·      Device / Suspicious Network Scan Activity

·      Device / ICMP Address Scan

·      Anomalous Connection / Large Volume of LDAP Download

·      Device / Suspicious LDAP Search Operation

·      Device / Large Number of Model Alerts

Continue reading
About the author
Maria Geronikolou
Cyber Analyst

Blog

/

Email

/

April 11, 2025

FedRAMP High-compliant email security protects federal agencies from nation-state attacks

U.S. government building with flag against blue skyDefault blog imageDefault blog image

What is FedRAMP High Authority to Operate (ATO)?

Federal Risk and Authorization Management Program (FedRAMP®) High is a government-wide program that promotes the adoption of secure cloud services across the federal government by providing a standardized approach to security and risk assessment for cloud technologies and federal agencies, ensuring the protection of federal information.  

Cybersecurity is paramount in the Defense Industrial Base (DIB), where protecting sensitive information and ensuring operational resilience from the most sophisticated adversaries has national security implications. Organizations within the DIB must comply with strict security standards to work with the U.S. federal government, and FedRAMP High is one of those standards.

Darktrace achieves FedRAMP High ATO across IT, OT, and email

Last week, Darktrace Federal shared that we achieved FedRAMP® High ATO, a significant milestone that recognizes our ability to serve federal customers across IT, OT, and email via secure cloud-native deployments.  

Achieving the FedRAMP High ATO indicates that Darktrace Federal has achieved the highest standard for cloud security controls and can handle the U.S. federal government’s most sensitive, unclassified data in cloud environments.

Azure Government email security with FedRAMP High ATO

Darktrace has now released Darktrace Commercial Government Cloud High/Email (DCGC High/Email). This applies our email coverage to systems hosted in Microsoft's Azure Government, which adheres to NIST SP 800-53 controls and other federal standards. DCGC High/Email both meets and exceeds the compliance requirements of the Department of Defense’s Cybersecurity Maturity Model Certification (CMMC), providing organizations with a much-needed email security solution that delivers unparalleled, AI-driven protection against sophisticated cyber threats.

In these ways, DCGC High/Email enhances compliance, security, and operational resilience for government and federally-affiliated customers. Notably, it is crucial for securing contractors and suppliers within DIB, helping those organizations implement necessary cybersecurity practices to protect Controlled Unclassified Information (CUI) and Federal Contract Information (FCI).

Adopting DCGC High/Email ensures organizations within the DIB can work with the government without needing to invest extensive time and money into meeting the strict compliance standards.

Building DCGC High/Email to ease DIB work with the government

DCGC High/Email was built to achieve FedRAMP High standards and meet the most rigorous security standards required of our customers. This level of compliance not only allows more organizations than ever to leverage our AI-driven technology, but also ensures that customer data is protected by the highest security measures available.

The DIB has never been more critical to national security, which means they are under constant threats from nation state and cyber criminals. We built DCGC High/Email to FedRAMP High controls to ensure sensitive company and federal government communications are secured at the highest level possible.” – Marcus Fowler, CEO of Darktrace Federal

Evolving threats now necessitate DCGC High/Email

According to Darktrace’s 2025 State of AI Cybersecurity report, more than half (54%) of global government cybersecurity professionals report seeing a significant impact from AI-powered cyber threats.  

These aren’t the only types of sophisticated threats. Advanced Persistent Threats (APTs) are launched by nation-states or cyber-criminal groups with the resources to coordinate and achieve long-term objectives.  

These attacks are carefully tailored to specific targets, using techniques like social engineering and spear phishing to gain initial access via the inbox. Once inside, attackers move laterally through networks, often remaining undetected for months or even years, silently gathering intelligence or preparing for a decisive strike.  

However, the barrier for entry for these threat actors has been lowered immensely, likely related to the observed impact of AI-powered cyber threats. Securing email environments is more important than ever.  

Darktrace’s 2025 State of AI Cybersecurity report also found that 89% of government cybersecurity professionals believe AI can help significantly improve their defensive capabilities.  

Darktrace's AI-powered defensive tools are uniquely capable of detecting and neutralizing APTs and other sophisticated threats, including ones that enter via the inbox. Our Self-Learning AI continuously adapts to evolving threats, providing real-time protection.

Darktrace builds to secure the DIB to the highest degree

In summary, Darktrace Federal's achievement of FedRAMP High ATO and the introduction of DCGC High/Email mark significant advancements in our ability to protect defense contractors and federal customers against sophisticated threats that other solutions miss.

For a technical review of Darktrace Federal’s Cyber AI Mission Defense™ solution, download an independent evaluation from the Technology Advancement Center here.

[related-resource]

Continue reading
About the author
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats
Your data. Our AI.
Elevate your network security with Darktrace AI