Blog
/
AI
/
October 9, 2022

Piloting Airline Cyber Security With Artificial Intelligence (AI)

The airline industry is constantly exposed to cyber threats. Darktrace has some tips to help airline professionals bolster their cyber-security efforts.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tony Jarvis
VP, Field CISO | Darktrace
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Oct 2022

A Thin Margin for Error

The airline industry has long been known for its thin profit margins, and the high costs of unexpected downtime. 2010’s Eyjafjallajökull eruption in Iceland and the resulting six-day airspace ban across Europe cost airlines $1.7 billion, just a taste of the impact that would come ten years later as a result of the pandemic. The industry collectively amassed more than $180 billion in debt in 2020, and some predictions suggest that by 2024 the industry's debt could exceed its revenue.

Given the impact that further sustained downtime could have on an already ailing industry, airlines are having to take cyber security seriously. Last year’s Colonial Pipeline ransomware attack in the US led to a six-day shutdown of pipeline operations – the same length of time that flights were grounded by the Eyjafjallajökull eruption. But while the industry hasn’t seen a volcanic eruption on that scale in over twelve years, ransomware attacks are striking airlines weekly. Just this year a ransomware attack on SpiceJet left hundreds of passengers stranded at airports across India, despite being contained relatively quickly.  

Fraud, Fines and Safety Risks

It isn’t just ransomware which is concerning many in the industry. Data breaches remain one of the biggest threats to airlines, organizations which are responsible at any one time for the personal and financial information of millions of customers. In 2019, British Airways had the data of 380,000 customers stolen, including addresses, birth dates and credit card information, and was fined £20 million (reduced from £183 million due in part to the impact of the pandemic) by the UK’s Information Commissioner’s Office (ICO), the largest issued fine in the ICO’s history. The European airline EasyJet is currently facing a class-action suit seeking £18 billion in damages after failing to properly disclose the loss of 2,208 customers’ credit-card information in 2020. 

Airlines are also losing out to card and air mile fraud, with thousands of fraudulent loyalty program accounts being sold on the dark web, as well as the usual roster of attacks including phishing and insider threats which affect businesses of every size and industry. The airlines themselves are not being complacent. In a 2021 report by SITA, 100% of airlines surveyed named cyber security as a key investment for the next three years. Making sure that those investments count will be the next challenge.

There are few industries for which safety and security measures are so important, and while no impact on flight safety as a result of a cyber-attack has yet been reported, agencies like Eurocontrol are already urging caution. Airlines and airports should look at smarter ways to proactively protect their digital environments. 

As attacks grow faster and less predictable, organizations are increasingly turning to preventative AI security measures. For airlines, which operate with broad attack surfaces and plenty of valuable data, using tools which can identify and monitor every asset and potential attack path in an organization and take the necessary steps to secure them is the best way to stay ahead of attackers.

Securing Airspace, Securing Cyberspace

As a recreational pilot myself, I understand the extent of the safety measures that go into every flight: the flight plans, pre-flight checks and all of the long-practiced, deep-embedded knowledge. It is this comprehensive and meticulous approach which ought to be reflected in organizations’ cyber security efforts – whether they be airlines, airports or any other type of business. The parallels between the processes of flying and running a digital organization safely give us a helpful way to understand what proper, AI-driven cyber security can do for any organization, airlines included.

Cleared for Takeoff 

For the pilot, safety measures start long before they’re sat in the cockpit. Flight planning, which includes planning heading and bearing, taking things like elevation, terrain, and weather conditions into consideration, must be completed in addition to plenty of pre-flight checks. The checklist the pilot works through when performing a walk around and pre-flight inspection will often be ordered so that they work in a circle around the perimeter of the whole plane. These checks prevent potential threats, covering everything from water having mixed with the fuel to birds making nests inside the engine cowling.

Darktrace PREVENT, released in July 2022, serves a similar purpose. The AI autonomously identifies and tests every single user and asset that makes up a business in order to spot potential vulnerabilities and harden defenses where necessary. Like a walk around, PREVENT/Attack Surface Management examines the full range of external assets for threats. Then, by identifying and testing potential attack pathways and mitigating against weak points and worst-case scenarios, PREVENT/End-to-End takes steps to win the fight before an attack has been launched. 

Maintaining Good Visibility

When you’re piloting a plane, first and foremost you need a way to detect key variables. Your fundamental flight instruments in the cockpit are known as the six pack:

1. Airspeed Indicator
2. Attitude Indicator or Artificial Horizon 
3. Altimeter
4. Turn Coordinator 
5. Heading Indicator
6. Vertical Speed Indicator

These six instruments provide the critical information needed by any pilot to safely fly the aircraft. While additional instruments are required to conduct flights In low-visibility or ‘Instrument Meteorological Conditions’ (IMC) conditions, these will be essential when getting out of dangerous situations such as inadvertently flying into cloud.

Understanding an environment and adapting to its changes is also fundamental to Darktrace DETECT: an AI-driven technology which focuses on building a comprehensive knowledge of an organization’s environment in order to spot threats the moment they appear. Because it understands what is ‘normal’ for the organization, Darktrace DETECT is able to correlate multiple subtle anomalies in order to expose emerging attacks – even those which have never been seen before. Like those essential flight instruments, DETECT offers visibility into otherwise obscure regions of the environment, and ensures that any potential problems are spotted as early as possible. 

Mayday, Mayday

In aviation and security, moving quickly once a threat has been detected is critical. When an engine stalls at 3,000 feet above ground level, you don’t have time to get the training books out and start figuring out what to do. Pilots are taught to “always have an out” and be ready to use it.

In aviation, an effective response relies for the most part on the knowledge and quick reactions of the pilot, but in cyber security, AI is making response faster and more effective than ever. Darktrace RESPOND uses DETECT’s contextual understanding in order to take the optimum action to mitigate a threat. Adaptability of this response is crucial: a single cyber-attack can come in any number of configurations, and Darktrace RESPOND is able to tailor its actions appropriately. Attacks today move too fast for human teams to be expected to keep up, but with AI taking actions at machine speed organizations can remain protected. 

Always Learning

One of the best pieces of advice a pilot can take is to always be learning. Every flight is an opportunity to learn something new and become a better and safer pilot.

Darktrace DETECT, RESPOND, and PREVENT are all driven by Self-Learning AI, a technology which not only builds but continuously evolves its understanding of each business. This means that as an organization grows, adding more users, assets, or applications, its Darktrace coverage grows too, using each new data point to enhance its understanding and the accuracy of its actions and detections. Darktrace’s separate technologies also learn from each other. Each of the three product families continuously feeds data into the others, helping to enhance their capabilities and improving their ability to keep organizations secured against threats. 

As cyber-attacks proliferate and increase in sophistication, they will continue to target organizations like airlines, which have large attack surfaces and copious amounts of customer data, and which cannot afford to weather sustained downtime. But with AI offering effective, proactive measures and clear-sky visibility, security teams can be confident in their ability to fight back.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tony Jarvis
VP, Field CISO | Darktrace

More in this series

No items found.

Blog

/

/

May 8, 2025

Anomaly-based threat hunting: Darktrace's approach in action

person working on laptopDefault blog imageDefault blog image

What is threat hunting?

Threat hunting in cybersecurity involves proactively and iteratively searching through networks and datasets to detect threats that evade existing automated security solutions. It is an important component of a strong cybersecurity posture.

There are several frameworks that Darktrace analysts use to guide how threat hunting is carried out, some of which are:

  • MITRE Attack
  • Tactics, Techniques, Procedures (TTPs)
  • Diamond Model for Intrusion Analysis
  • Adversary, Infrastructure, Victims, Capabilities
  • Threat Hunt Model – Six Steps
  • Purpose, Scope, Equip, Plan, Execute, Feedback
  • Pyramid of Pain

These frameworks are important in baselining how to run a threat hunt. There are also a combination of different methods that allow defenders diversity– regardless of whether it is a proactive or reactive threat hunt. Some of these are:

  • Hypothesis-based threat hunting
  • Analytics-driven threat hunting
  • Automated/machine learning hunting
  • Indicator of Compromise (IoC) hunting
  • Victim-based threat hunting

Threat hunting with Darktrace

At its core, Darktrace relies on anomaly-based detection methods. It combines various machine learning types that allows it to characterize what constitutes ‘normal’, based on the analysis of many different measures of a device or actor’s behavior. Those types of learning are then curated into what are called models.

Darktrace models leverage anomaly detection and integrate outputs from Darktrace Deep Packet Inspection, telemetry inputs, and additional modules, creating tailored activity detection.

This dynamic understanding allows Darktrace to identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign.  On top of machine learning models for detection, there is also the ability to change and create models showcasing the tool’s diversity. The Model Editor allows security teams to specify values, priorities, thresholds, and actions they want to detect. That means a team can create custom detection models based on specific use cases or business requirements. Teams can also increase the priority of existing detections based on their own risk assessments to their environment.

This level of dexterity is particularly useful when conducting a threat hunt. As described above, and in previous ‘Inside the SOC’ blogs such a threat hunt can be on a specific threat actor, specific sector, or a  hypothesis-based threat hunt combined with ‘experimenting’ with some of Darktrace’s models.

Conducting a threat hunt in the energy sector with experimental models

In Darktrace’s recent Threat Research report “AI & Cybersecurity: The state of cyber in UK and US energy sectors” Darktrace’s Threat Research team crafted hypothesis-driven threat hunts, building experimental models and investigating existing models to test them and detect malicious activity across Darktrace customers in the energy sector.

For one of the hunts, which hypothesised utilization of PerfectData software and multi-factor authentication (MFA) bypass to compromise user accounts and destruct data, an experimental model was created to detect a Software-as-a-Service (SaaS) user performing activity relating to 'PerfectData Software’, known to allow a threat actor to exfiltrate whole mailboxes as a PST file. Experimental model alerts caused by this anomalous activity were analyzed, in conjunction with existing SaaS and email-related models that would indicate a multi-stage attack in line with the hypothesis.

Whilst hunting, Darktrace researchers found multiple model alerts for this experimental model associated with PerfectData software usage, within energy sector customers, including an oil and gas investment company, as well as other sectors. Upon further investigation, it was also found that in June 2024, a malicious actor had targeted a renewable energy infrastructure provider via a PerfectData Software attack and demonstrated intent to conduct an Operational Technology (OT) attack.

The actor logged into Azure AD from a rare US IP address. They then granted Consent to ‘eM Client’ from the same IP. Shortly after, the actor granted ‘AddServicePrincipal’ via Azure to PerfectData Software. Two days later, the actor created a  new email rule from a London IP to move emails to an RSS Feed Folder, stop processing rules, and mark emails as read. They then accessed mail items in the “\Sent” folder from a malicious IP belonging to anonymization network,  Private Internet Access Virtual Private Network (PIA VPN) [1]. The actor then conducted mass email deletions, deleting multiple instances of emails with subject “[Name] shared "[Company Name] Proposal" With You” from the  “\Sent folder”. The emails’ subject suggests the email likely contains a link to file storage for phishing purposes. The mass deletion likely represented an attempt to obfuscate a potential outbound phishing email campaign.

The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.
Figure 1: The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.

A month later, the same user was observed downloading mass mLog CSV files related to proprietary and Operational Technology information. In September, three months after the initial attack, another mass download of operational files occurred by this actor, pertaining to operating instructions and measurements, The observed patience and specific file downloads seemingly demonstrated an intent to conduct or research possible OT attack vectors. An attack on OT could have significant impacts including operational downtime, reputational damage, and harm to everyday operations. Darktrace alerted the impacted customer once findings were verified, and subsequent actions were taken by the internal security team to prevent further malicious activity.

Conclusion

Harnessing the power of different tools in a security stack is a key element to cyber defense. The above hypothesis-based threat hunt and custom demonstrated intent to conduct an experimental model creation demonstrates different threat hunting approaches, how Darktrace’s approach can be operationalized, and that proactive threat hunting can be a valuable complement to traditional security controls and is essential for organizations facing increasingly complex threat landscapes.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO at Darktrace) and Zoe Tilsiter (EMEA Consultancy Lead)

References

  1. https://spur.us/context/191.96.106.219

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

May 6, 2025

Combatting the Top Three Sources of Risk in the Cloud

woman working on laptopDefault blog imageDefault blog image

With cloud computing, organizations are storing data like intellectual property, trade secrets, Personally Identifiable Information (PII), proprietary code and statistics, and other sensitive information in the cloud. If this data were to be accessed by malicious actors, it could incur financial loss, reputational damage, legal liabilities, and business disruption.

Last year data breaches in solely public cloud deployments were the most expensive type of data breach, with an average of $5.17 million USD, a 13.1% increase from the year before.

So, as cloud usage continues to grow, the teams in charge of protecting these deployments must understand the associated cybersecurity risks.

What are cloud risks?

Cloud threats come in many forms, with one of the key types consisting of cloud risks. These arise from challenges in implementing and maintaining cloud infrastructure, which can expose the organization to potential damage, loss, and attacks.

There are three major types of cloud risks:

1. Misconfigurations

As organizations struggle with complex cloud environments, misconfiguration is one of the leading causes of cloud security incidents. These risks occur when cloud settings leave gaps between cloud security solutions and expose data and services to unauthorized access. If discovered by a threat actor, a misconfiguration can be exploited to allow infiltration, lateral movement, escalation, and damage.

With the scale and dynamism of cloud infrastructure and the complexity of hybrid and multi-cloud deployments, security teams face a major challenge in exerting the required visibility and control to identify misconfigurations before they are exploited.

Common causes of misconfiguration come from skill shortages, outdated practices, and manual workflows. For example, potential misconfigurations can occur around firewall zones, isolated file systems, and mount systems, which all require specialized skill to set up and diligent monitoring to maintain

2. Identity and Access Management (IAM) failures

IAM has only increased in importance with the rise of cloud computing and remote working. It allows security teams to control which users can and cannot access sensitive data, applications, and other resources.

Cybersecurity professionals ranked IAM skills as the second most important security skill to have, just behind general cloud and application security.

There are four parts to IAM: authentication, authorization, administration, and auditing and reporting. Within these, there are a lot of subcomponents as well, including but not limited to Single Sign-On (SSO), Two-Factor Authentication (2FA), Multi-Factor Authentication (MFA), and Role-Based Access Control (RBAC).

Security teams are faced with the challenge of allowing enough access for employees, contractors, vendors, and partners to complete their jobs while restricting enough to maintain security. They may struggle to track what users are doing across the cloud, apps, and on-premises servers.

When IAM is misconfigured, it increases the attack surface and can leave accounts with access to resources they do not need to perform their intended roles. This type of risk creates the possibility for threat actors or compromised accounts to gain access to sensitive company data and escalate privileges in cloud environments. It can also allow malicious insiders and users who accidentally violate data protection regulations to cause greater damage.

3. Cross-domain threats

The complexity of hybrid and cloud environments can be exploited by attacks that cross multiple domains, such as traditional network environments, identity systems, SaaS platforms, and cloud environments. These attacks are difficult to detect and mitigate, especially when a security posture is siloed or fragmented.  

Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.  

Challenges in securing against cross-domain threats often come from a lack of unified visibility. If a security team does not have unified visibility across the organization’s domains, gaps between various infrastructures and the teams that manage them can leave organizations vulnerable.

Adopting AI cybersecurity tools to reduce cloud risk

For security teams to defend against misconfigurations, IAM failures, and insecure APIs, they require a combination of enhanced visibility into cloud assets and architectures, better automation, and more advanced analytics. These capabilities can be achieved with AI-powered cybersecurity tools.

Such tools use AI and automation to help teams maintain a clear view of all their assets and activities and consistently enforce security policies.

Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that makes cloud security accessible to all security teams and SOCs by using AI to identify and correct misconfigurations and other cloud risks in public, hybrid, and multi-cloud environments.

It provides real-time, dynamic architectural modeling, which gives SecOps and DevOps teams a unified view of cloud infrastructures to enhance collaboration and reveal possible misconfigurations and other cloud risks. It continuously evaluates architecture changes and monitors real-time activity, providing audit-ready traceability and proactive risk management.

Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.
Figure 1: Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.

Darktrace / CLOUD also offers attack path modeling for the cloud. It can identify exposed assets and highlight internal attack paths to get a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace’s Self-Learning AI ensures continuous cloud resilience, helping teams move from reactive to proactive defense.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI