Blog
/
/
October 9, 2022

Piloting Airline Cyber Security With Artificial Intelligence (AI)

The airline industry is constantly exposed to cyber threats. Darktrace has some tips to help airline professionals bolster their cyber-security efforts.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tony Jarvis
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Oct 2022

A Thin Margin for Error

The airline industry has long been known for its thin profit margins, and the high costs of unexpected downtime. 2010’s Eyjafjallajökull eruption in Iceland and the resulting six-day airspace ban across Europe cost airlines $1.7 billion, just a taste of the impact that would come ten years later as a result of the pandemic. The industry collectively amassed more than $180 billion in debt in 2020, and some predictions suggest that by 2024 the industry's debt could exceed its revenue.

Given the impact that further sustained downtime could have on an already ailing industry, airlines are having to take cyber security seriously. Last year’s Colonial Pipeline ransomware attack in the US led to a six-day shutdown of pipeline operations – the same length of time that flights were grounded by the Eyjafjallajökull eruption. But while the industry hasn’t seen a volcanic eruption on that scale in over twelve years, ransomware attacks are striking airlines weekly. Just this year a ransomware attack on SpiceJet left hundreds of passengers stranded at airports across India, despite being contained relatively quickly.  

Fraud, Fines and Safety Risks

It isn’t just ransomware which is concerning many in the industry. Data breaches remain one of the biggest threats to airlines, organizations which are responsible at any one time for the personal and financial information of millions of customers. In 2019, British Airways had the data of 380,000 customers stolen, including addresses, birth dates and credit card information, and was fined £20 million (reduced from £183 million due in part to the impact of the pandemic) by the UK’s Information Commissioner’s Office (ICO), the largest issued fine in the ICO’s history. The European airline EasyJet is currently facing a class-action suit seeking £18 billion in damages after failing to properly disclose the loss of 2,208 customers’ credit-card information in 2020. 

Airlines are also losing out to card and air mile fraud, with thousands of fraudulent loyalty program accounts being sold on the dark web, as well as the usual roster of attacks including phishing and insider threats which affect businesses of every size and industry. The airlines themselves are not being complacent. In a 2021 report by SITA, 100% of airlines surveyed named cyber security as a key investment for the next three years. Making sure that those investments count will be the next challenge.

There are few industries for which safety and security measures are so important, and while no impact on flight safety as a result of a cyber-attack has yet been reported, agencies like Eurocontrol are already urging caution. Airlines and airports should look at smarter ways to proactively protect their digital environments. 

As attacks grow faster and less predictable, organizations are increasingly turning to preventative AI security measures. For airlines, which operate with broad attack surfaces and plenty of valuable data, using tools which can identify and monitor every asset and potential attack path in an organization and take the necessary steps to secure them is the best way to stay ahead of attackers.

Securing Airspace, Securing Cyberspace

As a recreational pilot myself, I understand the extent of the safety measures that go into every flight: the flight plans, pre-flight checks and all of the long-practiced, deep-embedded knowledge. It is this comprehensive and meticulous approach which ought to be reflected in organizations’ cyber security efforts – whether they be airlines, airports or any other type of business. The parallels between the processes of flying and running a digital organization safely give us a helpful way to understand what proper, AI-driven cyber security can do for any organization, airlines included.

Cleared for Takeoff 

For the pilot, safety measures start long before they’re sat in the cockpit. Flight planning, which includes planning heading and bearing, taking things like elevation, terrain, and weather conditions into consideration, must be completed in addition to plenty of pre-flight checks. The checklist the pilot works through when performing a walk around and pre-flight inspection will often be ordered so that they work in a circle around the perimeter of the whole plane. These checks prevent potential threats, covering everything from water having mixed with the fuel to birds making nests inside the engine cowling.

Darktrace PREVENT, released in July 2022, serves a similar purpose. The AI autonomously identifies and tests every single user and asset that makes up a business in order to spot potential vulnerabilities and harden defenses where necessary. Like a walk around, PREVENT/Attack Surface Management examines the full range of external assets for threats. Then, by identifying and testing potential attack pathways and mitigating against weak points and worst-case scenarios, PREVENT/End-to-End takes steps to win the fight before an attack has been launched. 

Maintaining Good Visibility

When you’re piloting a plane, first and foremost you need a way to detect key variables. Your fundamental flight instruments in the cockpit are known as the six pack:

1. Airspeed Indicator
2. Attitude Indicator or Artificial Horizon 
3. Altimeter
4. Turn Coordinator 
5. Heading Indicator
6. Vertical Speed Indicator

These six instruments provide the critical information needed by any pilot to safely fly the aircraft. While additional instruments are required to conduct flights In low-visibility or ‘Instrument Meteorological Conditions’ (IMC) conditions, these will be essential when getting out of dangerous situations such as inadvertently flying into cloud.

Understanding an environment and adapting to its changes is also fundamental to Darktrace DETECT: an AI-driven technology which focuses on building a comprehensive knowledge of an organization’s environment in order to spot threats the moment they appear. Because it understands what is ‘normal’ for the organization, Darktrace DETECT is able to correlate multiple subtle anomalies in order to expose emerging attacks – even those which have never been seen before. Like those essential flight instruments, DETECT offers visibility into otherwise obscure regions of the environment, and ensures that any potential problems are spotted as early as possible. 

Mayday, Mayday

In aviation and security, moving quickly once a threat has been detected is critical. When an engine stalls at 3,000 feet above ground level, you don’t have time to get the training books out and start figuring out what to do. Pilots are taught to “always have an out” and be ready to use it.

In aviation, an effective response relies for the most part on the knowledge and quick reactions of the pilot, but in cyber security, AI is making response faster and more effective than ever. Darktrace RESPOND uses DETECT’s contextual understanding in order to take the optimum action to mitigate a threat. Adaptability of this response is crucial: a single cyber-attack can come in any number of configurations, and Darktrace RESPOND is able to tailor its actions appropriately. Attacks today move too fast for human teams to be expected to keep up, but with AI taking actions at machine speed organizations can remain protected. 

Always Learning

One of the best pieces of advice a pilot can take is to always be learning. Every flight is an opportunity to learn something new and become a better and safer pilot.

Darktrace DETECT, RESPOND, and PREVENT are all driven by Self-Learning AI, a technology which not only builds but continuously evolves its understanding of each business. This means that as an organization grows, adding more users, assets, or applications, its Darktrace coverage grows too, using each new data point to enhance its understanding and the accuracy of its actions and detections. Darktrace’s separate technologies also learn from each other. Each of the three product families continuously feeds data into the others, helping to enhance their capabilities and improving their ability to keep organizations secured against threats. 

As cyber-attacks proliferate and increase in sophistication, they will continue to target organizations like airlines, which have large attack surfaces and copious amounts of customer data, and which cannot afford to weather sustained downtime. But with AI offering effective, proactive measures and clear-sky visibility, security teams can be confident in their ability to fight back.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tony Jarvis
VP, Field CISO

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI