Darktrace continues to innovate with Microsoft in the shared mission to deliver proactive cyber protection tailored to every organization. Joint customers benefit from two distinct, complementary security approaches – combining large scale threat intelligence with enterprise-native security insights – to address the full range of email threats.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Francesca Bowen
Global VP, Strategic Alliances
Share
27
Jun 2024
Darktrace has been named as Microsoft UK Partner of the Year for 2024! The Microsoft Partner Awards recognize winners for their commitment to customers, impact of solutions, and exemplary use of Microsoft technologies.
Whilst the award was granted based on our innovations combining Darktrace / EMAIL and Microsoft Defender for Office 365, our shared values go beyond technology. Darktrace stood out for the integration of our products to deliver exceptional security value to customers, as well as our investment in partnerships, marketplace and go to market. Microsoft was also impressed with our strong commitment to diversity and inclusion and our broader contribution to both the UK economy and the UK tech sector.
Microsoft Defender for Office 365 + Darktrace / EMAIL leave attackers nowhere to hide
The email threat landscape is constantly evolving. Attacks are becoming more sophisticated, more targeted and increasing in multi-stage payload attacks. Across the Darktrace customer base in 2023 alone, we have seen a 135% increase in ‘novel social engineering attacks’, corresponding with the rise of ChatGPT, 45% of phishing emails were identified as spear phishing attempts and a 59% increase in multi-stage payload attacks.
Legacy defenses were built to address a high volume of unsophisticated attacks, but generative AI has shifted the threats towards lower quantity yet very sophisticated, high impact targeted attacks. Microsoft Defender for Office 365’s rapid innovation has outpaced the Secure Email Gateway’s rule and signature based historical data approach. Customers no longer need email gateways which duplicate workflows and add expense native to their Defender for O365 solution.
Point email solutions overlap with Microsoft in 3 key areas: detection approach, workflows, capabilities
Detection - Microsoft receives trillions threat signals daily, giving customers the broadest scope of the attack landscape. Darktrace combined with Microsoft unites business and attack centric approaches
Workflows – any Microsoft configurations are reflected automatically in Darktrace/Email. Users can keep daily workflow in Microsoft, while a traditional SEG requires duplicated workflows
Capabilities – Microsoft handles foundational elements like archiving/encryption/signature matching while Darktrace handles advanced threat security
Darktrace / EMAIL is built to elevate, not duplicate, Microsoft email security – removing the burden of operating legacy point solutions and blocking 25% more threats. Robust account takeover protections to stop the 38% of sophisticated threats other tools miss. Customers can seamlessly correlate activity and insights across Microsoft email, DMARC and Teams to stop threats on average 13 days earlier.
Azure Marketplace
Microsoft Azure customers can access Darktrace in the Azure Marketplace to take advantage of the scalability, reliability, and agility of Azure to drive rapid IT operations and security integrations across the enterprise. Customers can leverage their Microsoft Azure Consumption Commitments (MACC), making procurement simple. As UK Partner of the Year winner, customers know they have a trusted partner with Darktrace and a proven solution to work seamlessly with Azure.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email
Modern data loss doesn’t always look like a regex match. It can look like everyday communication slightly out of context. Here’s how a domain specific language model paired with behavioral learning protects labeled and unlabeled data without slowing business down.
Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace
During a customer trial of Darktrace / EMAIL and Darktrace / IDENTITY, Darktrace detected an adversary-in-the-middle (AiTM) attack that compromised a user’s Office 365 account via a business email compromise (BEC) phishing email. Following the breach, the compromised account was used to launch both internal and external phishing campaigns.
How Darktrace is ending email security silos with new capabilities in cross-domain detection, DLP, and native Microsoft integrations
Darktrace is delivering a major evolution in email security, uniting true AI-powered cross-domain detection, label-free behavioral DLP, and Microsoft-native automation – to catch the 17% of threats that SEGs miss.
CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding
Note: Darktrace's Threat Research team is publishing now to help defenders. We will update continue updating this blog as our investigations unfold.
Background
On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests. This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].
A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].
Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].
Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.
Darktrace Detections
Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:
- Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation. Associated Darktrace models include:
o Compromise / Possible Tunnelling to Bin Services
o Compromise / High Priority Crypto Currency Mining
And model alerts for:
o Compromise / Rare Domain Pointing to Internal IP
IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.
Appendices
Potential indicators of post-exploitation behavior:
AI/LLM-Generated Malware Used to Exploit React2Shell
Introduction
To observe adversary behavior in real time, Darktrace operates a global honeypot network known as “CloudyPots”, designed to capture malicious activity across a wide range of services, protocols, and cloud platforms. These honeypots provide valuable insights into the techniques, tools, and malware actively targeting internet‑facing infrastructure.
A recently observed intrusion against Darktrace’s Cloudypots environment revealed a fully AI‑generated malware sample exploiting CVE-2025-55182, also known as React2Shell. As AI‑assisted software development (“vibecoding”) becomes more widespread, attackers are increasingly leveraging large language models to rapidly produce functional tooling. This incident illustrates a broader shift: AI is now enabling even low-skill operators to generate effective exploitation frameworks at speed. This blog examines the attack chain, analyzes the AI-generated payload, and outlines what this evolution means for defenders.
Initial access
The intrusion was observed against the Darktrace Docker honeypot, which intentionally exposes the Docker daemon internet-facing with no authentication. This configuration allows any attacker to discover the daemon and create a container via the Docker API.
The attacker was observed spawning a container named “python-metrics-collector”, configured with a start up command that first installed prerequisite tools including curl, wget, and python 3.
Figure 1: Container spawned with the name ‘python-metrics-collector’.
Subsequently, it will download a list of required python packages from
hxxps://pastebin[.]com/raw/Cce6tjHM,
Finally it will download and run a python script from:
hxxps://smplu[.]link/dockerzero.
This link redirects to a GitHub Gist hosted by user “hackedyoulol”, who has since been banned from GitHub at time of writing.
Notably the script did not contain a docker spreader – unusual for Docker-focused malware – indicating that propagation was likely handled separately from a centralized spreader server.
Deployed components and execution chain
The downloaded Python payload was the central execution component for the intrusion. Obfuscation by design within the sample was reinforced between the exploitation script and any spreading mechanism. Understanding that docker malware samples typically include their own spreader logic, the omission suggests that the attacker maintained and executed a dedicated spreading tool remotely.
The script begins with a multi-line comment: """ Network Scanner with Exploitation Framework Educational/Research Purpose Only Docker-compatible: No external dependencies except requests """
This is very telling, as the overwhelming majority of samples analysed do not feature this level of commentary in files, as they are often designed to be intentionally difficult to understand to hinder analysis. Quick scripts written by human operators generally prioritize speed and functionality over clarity. LLMs on the other hand will document all code with comments very thoroughly by design, a pattern we see repeated throughout the sample. Further, AI will refuse to generate malware as part of its safeguards.
The presence of the phrase “Educational/Research Purpose Only” additionally suggests that the attacker likely jailbroke an AI model by framing the malicious request as educational.
When portions of the script were tested in AI‑detection software, the output further indicated that the code was likely generated by a large language model.
Figure 2: GPTZero AI-detection results indicating that the script was likely generated using an AI model.
The script is a well constructed React2Shell exploitation toolkit, which aims to gain remote code execution and deploy a XMRig (Monero) crypto miner. It uses an IP‑generation loop to identify potential targets and executes a crafted exploitation request containing:
A deliberately structured Next.js server component payload
A chunk designed to force an exception and reveal command output
A child process invocation to run arbitrary shell commands
def execute_rce_command(base_url, command, timeout=120): """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE DO NOT MODIFY THIS FUNCTION Returns: (success, output) """ try: # Disable SSL warnings urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)
This function is initially invoked with ‘whoami’ to determine if the host is vulnerable, before using wget to download XMRig from its GitHub repository and invoking it with a configured mining pool and wallet address.
Many attackers do not realise that while Monero uses an opaque blockchain (so transactions cannot be traced and wallet balances cannot be viewed), mining pools such as supportxmr will publish statistics for each wallet address that are publicly available. This makes it trivial to track the success of the campaign and the earnings of the attacker.
Figure 3: The supportxmr mining pool overview for the attackers wallet address
Based on this information we can determine the attacker has made approx 0.015 XMR total since the beginning of this campaign, which as of writing is valued at £5. Per day, the attacker is generating 0.004 XMR, which is £1.33 as of writing. The worker count is 91, meaning that 91 hosts have been infected by this sample.
Conclusion
While the amount of money generated by the attacker in this case is relatively low, and cryptomining is far from a new technique, this campaign is proof that AI based LLMs have made cybercrime more accessible than ever. A single prompting session with a model was sufficient for this attacker to generate a functioning exploit framework and compromise more than ninety hosts, demonstrating that the operational value of AI for adversaries should not be underestimated.
CISOs and SOC leaders should treat this event as a preview of the near future. Threat actors can now generate custom malware on demand, modify exploits instantly, and automate every stage of compromise. Defenders must prioritize rapid patching, continuous attack surface monitoring, and behavioral detection approaches. AI‑generated malware is no longer theoretical — it is operational, scalable, and accessible to anyone.
Analyst commentary
It is worth noting that the downloaded script does not appear to include a Docker spreader, meaning the malware will not replicate to other victims from an infected host. This is uncommon for Docker malware, based on other samples analyzed by Darktrace researchers. This indicates that there is a separate script responsible for spreading, likely deployed by the attacker from a central spreader server. This theory is supported by the fact that the IP that initiated the connection, 49[.]36.33.11, is registered to a residential ISP in India. While it is possible the attacker is using a residential proxy server to cover their tracks, it is also plausible that they are running the spreading script from their home computer. However, this should not be taken as confirmed attribution.
Credit to Nathaniel Bill (Malware Research Engineer), Nathaniel Jones ( VP Threat Research | Field CISO AI Security)