Blog
/
/
June 2, 2019

How Cyberseer Detected Advanced Red Team Activity

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Jun 2019
This guest-authored blog post examines how Cyberseer detected highly advanced red team activities with Darktrace’s Enterprise Immune System.

The following guest-authored blog post examines how Cyberseer detected highly advanced red team activities with Darktrace’s Enterprise Immune System.

At Cyberseer, a managed security provider, our analysts know that thwarting sophisticated cyber-criminals requires being prepared for any eventuality. A red team attack today could easily be replicated by far less benign actors tomorrow, which is why we treat these exercises with the same gravity we would a genuine threat, employing the world’s most advanced AI cyber defenses like Darktrace to leave the bad guys without anywhere to hide.

Recently, one of our customers was involved in a red team assessment, partly as a means to see how their security team would react and contain the attack, and partly to determine the visibility of the different attack techniques across their security stack. During the engagement, the red team leveraged a number of stealthy “Living off the Land” (LotL) techniques. LotL refers to the malicious use of legitimate tools present on a system — such as PowerShell scripting, WMI, or PsExec — in order to execute attacks. It should be noted that these techniques are not just limited to red teamers: threat-actors are making use of such tools on compromised systems, a notable example being the 2017 Petya/NotPetya attack.

Here’s an example of how Cyberseer’s analysts used Darktrace to detect the red team, without prior knowledge of their techniques, in real time:

Invoke — Bloodhound

Created by professional penetration tester Andy Robbins, Bloodhound is an open source tool that uses graph theory to understand the relationships in an Active Directory (AD) environment. It can be harnessed to quickly gain deep insights into AD by enumerating all the computers for which a given user has admin rights, in addition to ascertaining group membership information. In the right hands, security teams can use Bloodhound to identify and then limit attack vectors. In the wrong hands, attackers can easily exploit these same pathways if left unaddressed.

To collect data, Bloodhound is complemented by a data ingestor called Sharphound, which comes either as a PowerShell script or an executable. Sharphound makes use of native Windows APIs to query and retrieve information from target hosts. For example, to enumerate Local Admin users, it calls ‘NetLocalGroupGetMember’ API to interact with the Security Account Manager (SAM) database file on the remote host.

These tools typically produce a number of artifacts that we would expect to see from the host device within network traffic:

  • Increase in connections to LDAP (389) and SMB (445) ports
  • Increase in connections to IPC$ shares
  • Increase in Distributed Computing Environment / Remote Procedure Calls (DCE_RPC) Connections to the following named pipes:
  • \PIPE\wkssvc - Query logged-in users
  • \PIPE\srvsvc - Query system information
  • \PIPE\svcctl - Query services with stored credentials
  • \PIPE\atsvc - Query scheduled tasks
  • \PIPE\samr - Enumerate domain and user information
  • \PIPE\lsass - Extract credential information

Associating this back to the red team engagement, upon execution of the Bloodhound tool the attacking device began reaching out to a large number of internal devices, causing a spike in internal connections:

Figure 1: Darktrace visualizing the increase in internal connections, with each dot representing a unique model breach triggered by Bloodhound activity.

In fact, the large volume of anomalous connections triggered a number of Darktrace’s behavioral models, including:

  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / New Service Control
  • Device / Network Scan
  • Device / Expanded Network Scan
  • Unusual Activity / Unusual Activity from Multiple Metrics
  • Unusual Activity / Sustained Suspicious Activity
  • Unusual Activity / Sustained Unusual Activity

Drilling deeper into these connections, it was possible to identify the named \PIPE\ connections that were detailed above:

Figure 2: Reviewing the raw connection logs within Darktrace’s Advanced Search.

Looking from top to bottom, we see scanning of devices on ports 139 and 445, access to remote IPC$ shares, SMB read / writes of the srvsvc, and samr pipes and lsass binds. Although these protocols have legitimate applications within a typical network, a device initiating so many of them within a short time frame warrants further investigation.

Darktrace AI not only shined a light on these activities, it automatically determined that they were potentially threatening despite being benign under most circumstances. Rooted in an ever-evolving understanding of our customer’s normal ‘pattern of life’, Darktrace correlated numerous weak indicators of anomalous behavior to flag the activity as a significant risk within seconds.

Invoke — PasswordSpray

“Password spraying” is an attack that targets a large number of accounts with a few commonly used passwords. In this case, for instance, the red team attempted to brute-force access to a file share. Although this tactic may seem rudimentary, a recent study by the NCSC found that 75% of organizations had accounts with passwords that featured in the top 1,000 passwords, while 87% had accounts with passwords that featured in the top 10,000.

Similar to the previous Bloodhound attack, the password spraying attack began with an increase in SMB connections on port 445. Darktrace alerted to even this relatively small number of connections, since it was anomalous for our customer’s unique network:

Figure 3: Volume of SMB session failures made to file shares from the attacker’s device.

Each of these connections was making use of a user credential and random password. From the logs below it is possible to see all of the SMB session failures:

Figure 4: A device event log showing repeated SMB session failures for each of the unsuccessful authentication attempts.

Even with only 50 total attempts seen, Darktrace quickly alerted upon both SMB enumeration and brute-force behaviors.

Both of these scenarios highlight the benefits of an AI-powered approach. Rather than focusing on hash or string matches for such tools, Darktrace is able to quickly identify anomalous patterns of behavior linked with their usage. This nuance is particularly critical in this case, given that all of these activities are not malicious in many situations. By differentiating between subtle threats and harmless traffic, Darktrace helps us defeat red teams and real criminals alike.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Michael Green
Lead Security Analyst at Cyberseer (Guest Contributor)
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Cloud

/

April 2, 2025

Fusing Vulnerability and Threat Data: Enhancing the Depth of Attack Analysis

Default blog imageDefault blog image

Cado Security, recently acquired by Darktrace, is excited to announce a significant enhancement to its data collection capabilities, with the addition of a vulnerability discovery feature for Linux-based cloud resources. According to Darktrace’s Annual Threat Report 2024, the most significant campaigns observed in 2024 involved the ongoing exploitation of significant vulnerabilities in internet-facing systems. Cado’s new vulnerability discovery capability further deepens its ability to provide extensive context to security teams, enabling them to make informed decisions about threats, faster than ever.

Deep context to accelerate understanding and remediation

Context is critical when understanding the circumstances surrounding a threat. It can also take many forms – alert data, telemetry, file content, business context (for example asset criticality, core function of the resource), and risk context, such as open vulnerabilities.

When performing an investigation, it is common practice to understand the risk profile of the resource impacted, specifically determining open vulnerabilities and how they may relate to the threat. For example, if an analyst is triaging an alert related to an internet-facing Webserver running Apache, it would greatly benefit the analyst to understand open vulnerabilities in the Apache version that is running, if any of them are exploitable, whether a fix is available, etc. This dataset also serves as an invaluable source when developing a remediation plan, identifying specific vulnerabilities to be prioritised for patching.

Data acquisition in Cado

Cado is the only platform with the ability to perform full forensic captures as well as utilize instant triage collection methods, which is why fusing host-based artifact data with vulnerability data is such an exciting and compelling development.

The vulnerability discovery feature can be run as part of an acquisition – full or triage – as well as independently using a fast ‘Scan only’ mode.

Figure 1: A fast vulnerability scan being performed on the acquired evidence

Once the acquisition has completed, the user will have access to a ‘Vulnerabilities’ table within their investigation, where they are able to view and filter open vulnerabilities (by Severity, CVE ID, Resource, and other properties), as well as pivot to the full Event Timeline. In the Event Timeline, the user will be able to identify whether there is any malicious, suspicious or other interesting activity surrounding the vulnerable package, given the unified timeline presents a complete chronological dataset of all evidence and context collected.

Figure 2: Vulnerabilities discovered on the acquired evidence
Figure 3: Pivot from the Vulnerabilities table to the Event Timeline provides an in-depth view of file and process data associated with the vulnerable package selected. In this example, Apache2.

Future work

In the coming months, we’ll be releasing initial versions of highly anticipated integrations between Cado and Darktrace, including the ability to ingest Darktrace / CLOUD alerts which will automatically trigger a forensic capture (as well as a vulnerability discovery) of the impacted assets.

To learn more about how Cado and Darktrace will combine forces, request a demo today.

Continue reading
About the author
Paul Bottomley
Director of Product Management, Cado

Blog

/

OT

/

March 28, 2025

Darktrace Recognized as the Only Visionary in the 2025 Gartner® Magic Quadrant™ for CPS Protection Platforms

Default blog imageDefault blog image

We are thrilled to announce that Darktrace has been named the only Visionary in the inaugural Gartner® Magic Quadrant™ for Cyber-Physical Systems (CPS) Protection Platforms. We feel This recognition highlights Darktrace’s AI-driven approach to securing industrial environments, where conventional security solutions struggle to keep pace with increasing cyber threats.

A milestone for CPS security

It's our opinion that the first-ever Gartner Magic Quadrant for CPS Protection Platforms reflects a growing industry shift toward purpose-built security solutions for critical infrastructure. As organizations integrate IT, OT, and cloud-connected systems, the cyber risk landscape continues to expand. Gartner evaluated 17 vendors based on their Ability to Execute and Completeness of Vision, establishing a benchmark for security leaders looking to enhance cyber resilience in industrial environments.

We believe the Gartner recognition of Darktrace as the only Visionary reaffirms the platform’s ability to proactively defend against cyber risks through AI-driven anomaly detection, autonomous response, and risk-based security strategies. With increasingly sophisticated attacks targeting industrial control systems, organizations need a solution that continuously evolves to defend against both known and unknown threats.

AI-driven security for CPS environments

Securing CPS environments requires an approach that adapts to the dynamic nature of industrial operations. Traditional security tools rely on static signatures and predefined rules, leaving gaps in protection against novel and sophisticated threats. Darktrace / OT takes a different approach, leveraging Self-Learning AI to detect and neutralize threats in real time, even in air-gapped or highly regulated environments.

Darktrace / OT continuously analyzes network behaviors to establish a deep understanding of what is “normal” for each industrial environment. This enables it to autonomously identify deviations that signal potential cyber threats, providing early warning and proactive defense before attacks can disrupt operations. Unlike rule-based security models that require constant manual updates, Darktrace / OT improves with the environment, ensuring long-term resilience against emerging cyber risks.

Bridging the IT-OT security gap

A major challenge for organizations protecting CPS environments is the disconnect between IT and OT security. While IT security has traditionally focused on data

protection and compliance, OT security is driven by operational uptime and safety, leading to siloed security programs that leave critical gaps in visibility and response.

Darktrace / OT eliminates these silos by providing unified visibility across IT, OT, and IoT assets, ensuring that security teams have a complete picture of their attack surface. Its AI-driven approach enables cross-domain threat detection, recognizing risks that move laterally between IT and OT environments. By seamlessly integrating with existing security architectures, Darktrace / OT helps organizations close security gaps without disrupting industrial processes.

Proactive OT risk management and resilience

Beyond detection and response, Darktrace / OT strengthens organizations’ ability to manage cyber risk proactively. By mapping vulnerabilities to real-world attack paths, it prioritizes remediation actions based on actual exploitability and business impact, rather than relying on isolated CVE scores. This risk-based approach enables security teams to focus resources where they matter most, reducing overall exposure to cyber threats.

With autonomous threat response capabilities, Darktrace / OT not only identifies risks but also contains them in real time, preventing attackers from escalating intrusions. Whether mitigating ransomware, insider threats, or sophisticated nation-state attacks, Darktrace / OT ensures that industrial environments remain secure, operational, and resilient, no matter how threats evolve.

AI-powered incident response and SOC automation

Security teams are facing an overwhelming volume of alerts, making it difficult to prioritize threats and respond effectively. Darktrace / OT’s Cyber AI Analyst acts as a force multiplier for security teams by automating threat investigation, alert triage, and response actions. By mimicking the workflow of a human SOC analyst, Cyber AI Analyst provides contextual insights that accelerate incident response and reduce the manual workload on security teams.

With 24/7 autonomous monitoring, Darktrace / OT ensures that threats are continuously detected and investigated in real time. Whether facing ransomware, insider threats, or sophisticated nation-state attacks, organizations can rely on AI-driven security to contain threats before they disrupt operations.

Trusted by customers: Darktrace / OT recognized in Gartner Peer Insights

Source: Gartner Peer Insights (Oct 28th)

Beyond our recognition in the Gartner Magic Quadrant, we feel Darktrace / OT is one of the highest-rated CPS security solutions on Gartner Peer Insights, reflecting strong customer trust and validation. With a 4.9/5 overall rating and the highest "Willingness to Recommend" score among CPS vendors, organizations across critical infrastructure and industrial sectors recognize the impact of our AI-driven security approach. Source: Gartner Peer Insights (Oct 28th)

This strong customer endorsement underscores why leading enterprises trust Darktrace / OT to secure their CPS environments today and in the future.

Redefining the future of CPS security

It's our view that Darktrace’s recognition as the only Visionary in the Gartner Magic Quadrant for CPS Protection Platforms validates its leadership in next-generation industrial security. As cyber threats targeting critical infrastructure continue to rise, organizations must adopt AI-driven security solutions that can adapt, respond, and mitigate risks in real time.

We believe this recognition reinforces our commitment to innovation and our mission to secure the world’s most essential systems. This recognition reinforces our commitment to innovation and our mission to secure the world’s most essential systems.

® Download the full Gartner Magic Quadrant for CPS Protection Platforms

® Request a demo to see Darktrace OT in action.

Gartner, Magic Quadrant for CPS Protection Platforms , Katell Thielemann, Wam Voster, Ruggero Contu 12 February 2025

Gartner does not endorse any vendor, product or service depicted in its research publications and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner and Magic Quadrant and Peer Insights are a registered trademark, of Gartner, Inc. and/or its affiliates in the U.S. and internationally and are used herein with permission. All rights reserved. Gartner Peer Insights content consists of the opinions of individual end users based on their own experiences with the vendors listed on the platform, should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI