Blog
/
/
March 14, 2023

Defending Against Crypto Thieves with DETECT + RESPOND

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Mar 2023
Cyber criminals steal from crypto-currency platforms. Learn how Darktrace uncovered Lapalas Clipper activity & defended against cryptocurrency thieves.

Between June 2021 and June 2022, crypto-currency platforms around the world lost an estimated 44 billion USD to cyber criminals, whose modus operandi range from stealing passwords and account recovery phrases, to cryptojacking and directly targeting crypto-currency transactions. 

There has been a recent rise in cases of cyber criminals’ using information stealer malware to gather and exfiltrate sensitive crypto-currency wallet details, ultimately leading to the theft of significant sums of digital currency. Having an autonomous decision maker able to detect and respond to potential compromises is crucial to safeguard crypto wallets and transactions against would-be attackers.

In late 2022, Darktrace observed several threat actors employing a novel attack method to target crypto-currency users across its customer base, specifically the latest version of the Laplas Clipper malware. Using Self-Learning AI, Darktrace DETECT/Network™ and Darktrace RESPOND/Network™ were able to uncover and mitigate Laplas Clipper activity and intervene to prevent the theft of large sums of digital currency.

Laplas Clipper Background

Laplas Clipper is a variant of information stealing malware which operates by diverting crypto-currency transactions from victims’ crypto wallets into the wallets of threat actors [1]. Laplas Clipper is a Malware-as-a-Service (MaaS) offering available for purchase and use by a variety of threat actors. It has been observed in the wild since October 2022, when 180 samples were identified and linked with another malware strain, namely SmokeLoader [2]. This loader has itself been observed since at least 2011 and acts as a delivery mechanism for popular malware strains [3]. 

SmokeLoader is typically distributed via malicious attachments sent in spam emails or targeted phishing campaigns but can also be downloaded directly by users from file hosting pages or spoofed websites. SmokeLoader is known to specifically deliver Laplas Clipper onto compromised devices via a BatLoader script downloaded as a Microsoft Word document or a PDF file attached to a phishing email. These examples of social engineering are relatively low effort methods intended to convince users to download the malware, which subsequently injects malicious code into the explorer.exe process and downloads Laplas Clipper.

Laplas Clipper activity observed across Darktrace’s customer base generally began with SmokeLoader making HTTP GET requests to Laplas Clipper command and control (C2) infrastructure. Once downloaded, the clipper loads a ‘build[.]exe’ module and begins monitoring the victim’s clipboard for crypto-currency wallet addresses. If a wallet address is identified, the infected device connects to a server associated with Laplas Clipper and downloads wallet addresses belonging to the threat actor. The actor’s addresses are typically spoofed to appear similar to those they replace in order to evade detection. The malware continues to update clipboard activity and replaces the user’s wallet addresses with a spoofed address each time one is copied for a for crypto-currency transactions.

Darktrace Coverage of Laplas Clipper and its Delivery Methods 

In October and November 2022, Darktrace observed a significant increase in suspicious activity associated with Laplas Clipper across several customer networks. The activity consisted largely of:  

  1. User devices connecting to a suspicious endpoint.  
  2. User devices making HTTP GET requests to an endpoint associated with the SmokeLoader loader malware, which was installed on the user’s device.
  3. User devices making HTTP connections to the Laplas Clipper download server “clipper[.]guru”, from which it downloads spoofed wallet addresses to divert crypto-currency payments. 

In one particular instance, a compromised device was observed connecting to endpoints associated with SmokeLoader shortly before connecting to a Laplas Clipper download server. In other instances, devices were detected connecting to other anomalous endpoints including the domains shonalanital[.]com, transfer[.]sh, and pc-world[.]uk, which appears to be mimicking the legitimate endpoint thepcworld[.]com. 

Additionally, some compromised devices were observed attempting to connect malicious IP addresses including 193.169.255[.]78 and 185.215.113[.]23, which are associated with the RedLine stealer malware. Additionally, Darktrace observed connections to the IP addresses 195.178.120[.]154 and 195.178.120[.]154, which are associated with SmokeLoader, and 5.61.62[.]241, which open-source intelligence has associated with Cobalt Strike. 

Figure 1: Beacon to Young Endpoint model breach demonstrating Darktrace’s ability to detect external connections that are considered extremely rare for the network.
Figure 2: The event log of an infected device attempting to connect to IP addresses associated with the RedLine stealer malware, and the actions RESPOND took to block these attempts.

The following DETECT/Network models breached in response to these connections:

  • Compromise / Beacon to Young Endpoint 
  • Compromise / Slow Beaconing Activity to External Rare 
  • Compromise / Beacon for 4 Days
  • Compromise / Beaconing Activity to External Rare
  • Compromise / Sustained TCP Beaconing Activity to Rare Endpoint 
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoints 
  • Compromise / Large Number of Suspicious Failed Connections 
  • Compromise / HTTP Beaconing to Rare Destination 
  • Compromise / Post and Beacon to Rare External 
  • Anomalous Connection / Callback on Web Facing Device 

DETECT/Network is able to identify such activity as its models operate based on a device’s usual pattern of behavior, rather than a static list of indicators of compromise (IOCs). As such, Darktrace can quickly identify compromised devices that deviate for their expected pattern of behavior by connecting to newly created malicious endpoints or C2 infrastructure, thereby triggering an alert.

In one example, RESPOND/Network autonomously intercepted a compromised device attempting to connect to the Laplas Clipper C2 server, preventing it from downloading SmokeLoader and subsequently, Laplas Clipper itself.

Figure 3: The event log of an infected device attempting to connect to the Laplas Clipper download server, and the actions RESPOND/Network took to block these attempts.

In another example, DETECT/Network observed an infected device attempting to perform numerous DNS Requests to a crypto-currency mining pool associated with the Monero digital currency.  

This activity caused the following DETECT/Network models to breach:

  • Compromise / Monero Mining
  • Compromise / High Priority Crypto Currency Mining 

RESPOND/Network quickly intervened, enforcing a previously established pattern of life on the device, ensuring it could not perform any unexpected activity, and blocking the connections to the endpoint in question for an hour. These actions carried out by Darktrace’s autonomous response technology prevented the infected device from carrying out crypto-mining activity, and ensured the threat actor could not perform any additional malicious activity.

Figure 4. The event log of an infected devices showing DNS requests to the Monero crypto-mining pool, and the actions taken to block them by RESPOND/Network.

Finally, in instances when RESPOND/Network was not activated, external connections to the Laplas Clipper C2 server were nevertheless monitored by DETECT/Network, and the customer’s security team were notified of the incident.

Conclusion 

The rise of information stealing malware variants such as Laplas Clipper highlights the importance of crypto-currency and crypto-mining in the malware ecosystem and more broadly as a significant cyber security concern. Crypto-mining is often discounted as background noise for security teams or compliance issues that can be left untriaged; however, malware strains like Laplas Clipper demonstrate the real security risks posed to digital estates from threat actors focused on crypto-currency. 

Leveraging its Self-Learning AI, DETECT/Network and RESPOND/Network are able to work in tandem to quickly identify connections to suspicious endpoints and block them before any malicious software can be downloaded, safeguarding customers.

Appendices

List of IOCs 

a720efe2b3ef7735efd77de698a5576b36068d07 - SHA1 Filehash - Laplas Malware Download

conhost.exe - URI - Laplas Malware Download

185.223.93.133 - IP Address - Laplas C2 Endpoint

185.223.93.251 - IP Address - Laplas C2 Endpoint

45.159.189.115 - IP Address - Laplas C2 Endpoint

79.137.204.208 - IP Address - Laplas C2 Endpoint

5.61.62.241 - IP Address - Laplas C2 Endpoint

clipper.guru - URI - Laplas C2 URI

/bot/online?guid= - URI - Laplas C2 URI

/bot/regex?key= - URI - Laplas C2 URI

/bot/get?address - URI - Laplas C2 URI

Mitre Attack and Mapping 

Initial Access:

T1189 – Drive By Compromise 

T1566/002 - Spearphishing

Resource Development:

T1588 / 001 - Malware

Ingress Tool Transfer:

T1105 – Ingress Tool Transfer

Command and Control:

T1071/001 – Web Protocols 

T1071 – Application Layer Protocol

T1008 – Fallback Channels

T1104 – Multi-Stage Channels

T1571 – Non-Standard Port

T1102/003 – One-Way Communication

T1573 – Encrypted Channel

Persistence:

T1176 – Browser Extensions

Collection:

T1185 – Man in the Browser

Exfiltration:

T1041 – Exfiltration over C2 Channel

References

[1] https://blog.cyble.com/2022/11/02/new-laplas-clipper-distributed-by-smokeloader/ 

[2] https://thehackernews.com/2022/11/new-laplas-clipper-malware-targeting.html

[3] https://attack.mitre.org/software/S0226/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Anna Gilbertson
Cyber Security Analyst
Hanah Darley
Director of Threat Research
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Network

/

March 18, 2025

Darktrace's Detection of State-Linked ShadowPad Malware

Default blog imageDefault blog image

An integral part of cybersecurity is anomaly detection, which involves identifying unusual patterns or behaviors in network traffic that could indicate malicious activity, such as a cyber-based intrusion. However, attribution remains one of the ever present challenges in cybersecurity. Attribution involves the process of accurately identifying and tracing the source to a specific threat actor(s).

Given the complexity of digital networks and the sophistication of attackers who often use proxies or other methods to disguise their origin, pinpointing the exact source of a cyberattack is an arduous task. Threat actors can use proxy servers, botnets, sophisticated techniques, false flags, etc. Darktrace’s strategy is rooted in the belief that identifying behavioral anomalies is crucial for identifying both known and novel threat actor campaigns.

The ShadowPad cluster

Between July 2024 and November 2024, Darktrace observed a cluster of activity threads sharing notable similarities. The threads began with a malicious actor using compromised user credentials to log in to the target organization's Check Point Remote Access virtual private network (VPN) from an attacker-controlled, remote device named 'DESKTOP-O82ILGG'.  In one case, the IP from which the initial login was carried out was observed to be the ExpressVPN IP address, 194.5.83[.]25. After logging in, the actor gained access to service account credentials, likely via exploitation of an information disclosure vulnerability affecting Check Point Security Gateway devices. Recent reporting suggests this could represent exploitation of CVE-2024-24919 [27,28]. The actor then used these compromised service account credentials to move laterally over RDP and SMB, with files related to the modular backdoor, ShadowPad, being delivered to the  ‘C:\PerfLogs\’ directory of targeted internal systems. ShadowPad was seen communicating with its command-and-control (C2) infrastructure, 158.247.199[.]185 (dscriy.chtq[.]net), via both HTTPS traffic and DNS tunneling, with subdomains of the domain ‘cybaq.chtq[.]net’ being used in the compromised devices’ TXT DNS queries.

Darktrace’s Advanced Search data showing the VPN-connected device initiating RDP connections to a domain controller (DC). The device subsequently distributes likely ShadowPad-related payloads and makes DRSGetNCChanges requests to a second DC.
Figure 1: Darktrace’s Advanced Search data showing the VPN-connected device initiating RDP connections to a domain controller (DC). The device subsequently distributes likely ShadowPad-related payloads and makes DRSGetNCChanges requests to a second DC.
Event Log data showing a DC making DNS queries for subdomains of ‘cbaq.chtq[.]net’ to 158.247.199[.]185 after receiving SMB and RDP connections from the VPN-connected device, DESKTOP-O82ILGG.
Figure 2: Event Log data showing a DC making DNS queries for subdomains of ‘cbaq.chtq[.]net’ to 158.247.199[.]185 after receiving SMB and RDP connections from the VPN-connected device, DESKTOP-O82ILGG.

Darktrace observed these ShadowPad activity threads within the networks of European-based customers in the manufacturing and financial sectors.  One of these intrusions was followed a few months later by likely state-sponsored espionage activity, as detailed in the investigation of the year in Darktrace’s Annual Threat Report 2024.

Related ShadowPad activity

Additional cases of ShadowPad were observed across Darktrace’s customer base in 2024. In some cases, common C2 infrastructure with the cluster discussed above was observed, with dscriy.chtq[.]net and cybaq.chtq[.]net both involved; however, no other common features were identified. These ShadowPad infections were observed between April and November 2024, with customers across multiple regions and sectors affected.  Darktrace’s observations align with multiple other public reports that fit the timeframe of this campaign.

Darktrace has also observed other cases of ShadowPad without common infrastructure since September 2024, suggesting the use of this tool by additional threat actors.

The data theft thread

One of the Darktrace customers impacted by the ShadowPad cluster highlighted above was a European manufacturer. A distinct thread of activity occurred within this organization’s network several months after the ShadowPad intrusion, in October 2024.

The thread involved the internal distribution of highly masqueraded executable files via Sever Message Block (SMB) and WMI (Windows Management Instrumentation), the targeted collection of sensitive information from an internal server, and the exfiltration of collected information to a web of likely compromised sites. This observed thread of activity, therefore, consisted of three phrases: lateral movement, collection, and exfiltration.

The lateral movement phase began when an internal user device used an administrative credential to distribute files named ‘ProgramData\Oracle\java.log’ and 'ProgramData\Oracle\duxwfnfo' to the c$ share on another internal system.  

Darktrace model alert highlighting an SMB write of a file named ‘ProgramData\Oracle\java.log’ to the c$ share on another device.
Figure 3: Darktrace model alert highlighting an SMB write of a file named ‘ProgramData\Oracle\java.log’ to the c$ share on another device.

Over the next few days, Darktrace detected several other internal systems using administrative credentials to upload files with the following names to the c$ share on internal systems:

ProgramData\Adobe\ARM\webservices.dll

ProgramData\Adobe\ARM\wksprt.exe

ProgramData\Oracle\Java\wksprt.exe

ProgramData\Oracle\Java\webservices.dll

ProgramData\Microsoft\DRM\wksprt.exe

ProgramData\Microsoft\DRM\webservices.dll

ProgramData\Abletech\Client\webservices.dll

ProgramData\Abletech\Client\client.exe

ProgramData\Adobe\ARM\rzrmxrwfvp

ProgramData\3Dconnexion\3DxWare\3DxWare.exe

ProgramData\3Dconnexion\3DxWare\webservices.dll

ProgramData\IDMComp\UltraCompare\updater.exe

ProgramData\IDMComp\UltraCompare\webservices.dll

ProgramData\IDMComp\UltraCompare\imtrqjsaqmm

Cyber AI Analyst highlighting an SMB write of a file named ‘ProgramData\Adobe\ARM\webservices.dll’ to the c$ share on an internal system.
Figure 4: Cyber AI Analyst highlighting an SMB write of a file named ‘ProgramData\Adobe\ARM\webservices.dll’ to the c$ share on an internal system.

The threat actor appears to have abused the Microsoft RPC (MS-RPC) service, WMI, to execute distributed payloads, as evidenced by the ExecMethod requests to the IWbemServices RPC interface which immediately followed devices’ SMB uploads.  

Cyber AI Analyst data highlighting a thread of activity starting with an SMB data upload followed by ExecMethod requests.
Figure 5: Cyber AI Analyst data highlighting a thread of activity starting with an SMB data upload followed by ExecMethod requests.

Several of the devices involved in these lateral movement activities, both on the source and destination side, were subsequently seen using administrative credentials to download tens of GBs of sensitive data over SMB from a specially selected server.  The data gathering stage of the threat sequence indicates that the threat actor had a comprehensive understanding of the organization’s system architecture and had precise objectives for the information they sought to extract.

Immediately after collecting data from the targeted server, devices went on to exfiltrate stolen data to multiple sites. Several other likely compromised sites appear to have been used as general C2 infrastructure for this intrusion activity. The sites used by the threat actor for C2 and data exfiltration purport to be sites for companies offering a variety of service, ranging from consultancy to web design.

Screenshot of one of the likely compromised sites used in the intrusion. 
Figure 6: Screenshot of one of the likely compromised sites used in the intrusion.

At least 16 sites were identified as being likely data exfiltration or C2 sites used by this threat actor in their operation against this organization. The fact that the actor had such a wide web of compromised sites at their disposal suggests that they were well-resourced and highly prepared.  

Darktrace model alert highlighting an internal device slowly exfiltrating data to the external endpoint, yasuconsulting[.]com.
Figure 7: Darktrace model alert highlighting an internal device slowly exfiltrating data to the external endpoint, yasuconsulting[.]com.
Darktrace model alert highlighting an internal device downloading nearly 1 GB of data from an internal system just before uploading a similar volume of data to another suspicious endpoint, www.tunemmuhendislik[.]com    
Figure 8: Darktrace model alert highlighting an internal device downloading nearly 1 GB of data from an internal system just before uploading a similar volume of data to another suspicious endpoint, www.tunemmuhendislik[.]com  

Cyber AI Analyst spotlight

Cyber AI Analyst identifying and piecing together the various steps of a ShadowPad intrusion.
Figure 9: Cyber AI Analyst identifying and piecing together the various steps of a ShadowPad intrusion.  
Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.
Figure 10: Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.

As shown in the above figures, Cyber AI Analyst’s ability to thread together the different steps of these attack chains are worth highlighting.

In the ShadowPad attack chains, Cyber AI Analyst was able to identify SMB writes from the VPN subnet to the DC, and the C2 connections from the DC. It was also able to weave together this activity into a single thread representing the attacker’s progression.

Similarly, in the data exfiltration attack chain, Cyber AI Analyst identified and connected multiple types of lateral movement over SMB and WMI and external C2 communication to various external endpoints, linking them in a single, connected incident.

These Cyber AI Analyst actions enabled a quicker understanding of the threat actor sequence of events and, in some cases, faster containment.

Attribution puzzle

Publicly shared research into ShadowPad indicates that it is predominantly used as a backdoor in People’s Republic of China (PRC)-sponsored espionage operations [5][6][7][8][9][10]. Most publicly reported intrusions involving ShadowPad  are attributed to the China-based threat actor, APT41 [11][12]. Furthermore, Google Threat Intelligence Group (GTIG) recently shared their assessment that ShadowPad usage is restricted to clusters associated with APT41 [13]. Interestingly, however, there have also been public reports of ShadowPad usage in unattributed intrusions [5].

The data theft activity that later occurred in the same Darktrace customer network as one of these ShadowPad compromises appeared to be the targeted collection and exfiltration of sensitive data. Such an objective indicates the activity may have been part of a state-sponsored operation. The tactics, techniques, and procedures (TTPs), artifacts, and C2 infrastructure observed in the data theft thread appear to resemble activity seen in previous Democratic People’s Republic of Korea (DPRK)-linked intrusion activities [15] [16] [17] [18] [19].

The distribution of payloads to the following directory locations appears to be a relatively common behavior in DPRK-sponsored intrusions.

Observed examples:

C:\ProgramData\Oracle\Java\  

C:\ProgramData\Adobe\ARM\  

C:\ProgramData\Microsoft\DRM\  

C:\ProgramData\Abletech\Client\  

C:\ProgramData\IDMComp\UltraCompare\  

C:\ProgramData\3Dconnexion\3DxWare\

Additionally, the likely compromised websites observed in the data theft thread, along with some of the target URI patterns seen in the C2 communications to these sites, resemble those seen in previously reported DPRK-linked intrusion activities.

No clear evidence was found to link the ShadowPad compromise to the subsequent data theft activity that was observed on the network of the manufacturing customer. It should be noted, however, that no clear signs of initial access were found for the data theft thread – this could suggest the ShadowPad intrusion itself represents the initial point of entry that ultimately led to data exfiltration.

Motivation-wise, it seems plausible for the data theft thread to have been part of a DPRK-sponsored operation. DPRK is known to pursue targets that could potentially fulfil its national security goals and had been publicly reported as being active in months prior to this intrusion [21]. Furthermore, the timing of the data theft aligns with the ratification of the mutual defense treaty between DPRK and Russia and the subsequent accused activities [20].

Darktrace assesses with medium confidence that a nation-state, likely DPRK, was responsible, based on our investigation, the threat actor applied resources, patience, obfuscation, and evasiveness combined with external reporting, collaboration with the cyber community, assessing the attacker’s motivation and world geopolitical timeline, and undisclosed intelligence.

Conclusion

When state-linked cyber activity occurs within an organization’s environment, previously unseen C2 infrastructure and advanced evasion techniques will likely be used. State-linked cyber actors, through their resources and patience, are able to bypass most detection methods, leaving anomaly-based methods as a last line of defense.

Two threads of activity were observed within Darktrace’s customer base over the last year: The first operation involved the abuse of Check Point VPN credentials to log in remotely to organizations’ networks, followed by the distribution of ShadowPad to an internal domain controller. The second operation involved highly targeted data exfiltration from the network of one of the customers impacted by the previously mentioned ShadowPad activity.

Despite definitive attribution remaining unresolved, both the ShadowPad and data exfiltration activities were detected by Darktrace’s Self-Learning AI, with Cyber AI Analyst playing a significant role in identifying and piecing together the various steps of the intrusion activities.  

Credit to Sam Lister (R&D Detection Analyst), Emma Foulger (Principal Cyber Analyst), Nathaniel Jones (VP), and the Darktrace Threat Research team.

Appendices

Darktrace / NETWORK model alerts

User / New Admin Credentials on Client

Anomalous Connection / Unusual Admin SMB Session

Compliance / SMB Drive Write  

Device / Anomalous SMB Followed By Multiple Model Breaches

Anomalous File / Internal / Unusual SMB Script Write

User / New Admin Credentials on Client  

Anomalous Connection / Unusual Admin SMB Session

Compliance / SMB Drive Write

Device / Anomalous SMB Followed By Multiple Model Breaches

Anomalous File / Internal / Unusual SMB Script Write

Device / New or Uncommon WMI Activity

Unusual Activity / Internal Data Transfer

Anomalous Connection / Download and Upload

Anomalous Server Activity / Rare External from Server

Compromise / Beacon to Young Endpoint

Compromise / Agent Beacon (Short Period)

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Connection / POST to PHP on New External Host

Compromise / Sustained SSL or HTTP Increase

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Device / Multiple C2 Model Alerts

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Download and Upload

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Low and Slow Exfiltration

Anomalous Connection / Uncommon 1 GiB Outbound  

MITRE ATT&CK mapping

(Technique name – Tactic ID)

ShadowPad malware threads

Initial Access - Valid Accounts: Domain Accounts (T1078.002)

Initial Access - External Remote Services (T1133)

Privilege Escalation - Exploitation for Privilege Escalation (T1068)

Privilege Escalation - Valid Accounts: Default Accounts (T1078.001)

Defense Evasion - Masquerading: Match Legitimate Name or Location (T1036.005)

Lateral Movement - Remote Services: Remote Desktop Protocol (T1021.001)

Lateral Movement - Remote Services: SMB/Windows Admin Shares (T1021.002)

Command and Control - Proxy: Internal Proxy (T1090.001)

Command and Control - Application Layer Protocol: Web Protocols (T1071.001)

Command and Control - Encrypted Channel: Asymmetric Cryptography (T1573.002)

Command and Control - Application Layer Protocol: DNS (T1071.004)

Data theft thread

Resource Development - Compromise Infrastructure: Domains (T1584.001)

Privilege Escalation - Valid Accounts: Default Accounts (T1078.001)

Privilege Escalation - Valid Accounts: Domain Accounts (T1078.002)

Execution - Windows Management Instrumentation (T1047)

Defense Evasion - Masquerading: Match Legitimate Name or Location (T1036.005)

Defense Evasion - Obfuscated Files or Information (T1027)

Lateral Movement - Remote Services: SMB/Windows Admin Shares (T1021.002)

Collection - Data from Network Shared Drive (T1039)

Command and Control - Application Layer Protocol: Web Protocols (T1071.001)

Command and Control - Encrypted Channel: Asymmetric Cryptography (T1573.002)

Command and Control - Proxy: External Proxy (T1090.002)

Exfiltration - Exfiltration Over C2 Channel (T1041)

Exfiltration - Data Transfer Size Limits (T1030)

List of indicators of compromise (IoCs)

IP addresses and/or domain names (Mid-high confidence):

ShadowPad thread

- dscriy.chtq[.]net • 158.247.199[.]185 (endpoint of C2 comms)

- cybaq.chtq[.]net (domain name used for DNS tunneling)  

Data theft thread

- yasuconsulting[.]com (45.158.12[.]7)

- hobivan[.]net (94.73.151[.]72)

- mediostresbarbas.com[.]ar (75.102.23[.]3)

- mnmathleague[.]org (185.148.129[.]24)

- goldenborek[.]com (94.138.200[.]40)

- tunemmuhendislik[.]com (94.199.206[.]45)

- anvil.org[.]ph (67.209.121[.]137)

- partnerls[.]pl (5.187.53[.]50)

- angoramedikal[.]com (89.19.29[.]128)

- awork-designs[.]dk (78.46.20[.]225)

- digitweco[.]com (38.54.95[.]190)

- duepunti-studio[.]it (89.46.106[.]61)

- scgestor.com[.]br (108.181.92[.]71)

- lacapannadelsilenzio[.]it (86.107.36[.]15)

- lovetamagotchith[.]com (203.170.190[.]137)

- lieta[.]it (78.46.146[.]147)

File names (Mid-high confidence):

ShadowPad thread:

- perflogs\1.txt

- perflogs\AppLaunch.exe

- perflogs\F4A3E8BE.tmp

- perflogs\mscoree.dll

Data theft thread

- ProgramData\Oracle\java.log

- ProgramData\Oracle\duxwfnfo

- ProgramData\Adobe\ARM\webservices.dll

- ProgramData\Adobe\ARM\wksprt.exe

- ProgramData\Oracle\Java\wksprt.exe

- ProgramData\Oracle\Java\webservices.dll

- ProgramData\Microsoft\DRM\wksprt.exe

- ProgramData\Microsoft\DRM\webservices.dll

- ProgramData\Abletech\Client\webservices.dll

- ProgramData\Abletech\Client\client.exe

- ProgramData\Adobe\ARM\rzrmxrwfvp

- ProgramData\3Dconnexion\3DxWare\3DxWare.exe

- ProgramData\3Dconnexion\3DxWare\webservices.dll

- ProgramData\IDMComp\UltraCompare\updater.exe

- ProgramData\IDMComp\UltraCompare\webservices.dll

- ProgramData\IDMComp\UltraCompare\imtrqjsaqmm

- temp\HousecallLauncher64.exe

Attacker-controlled device hostname (Mid-high confidence)

- DESKTOP-O82ILGG

References  

[1] https://www.kaspersky.com/about/press-releases/shadowpad-how-attackers-hide-backdoor-in-software-used-by-hundreds-of-large-companies-around-the-world  

[2] https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/08/07172148/ShadowPad_technical_description_PDF.pdf

[3] https://blog.avast.com/new-investigations-in-ccleaner-incident-point-to-a-possible-third-stage-that-had-keylogger-capacities

[4] https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/

[5] https://assets.sentinelone.com/c/Shadowpad?x=P42eqA

[6] https://www.cyfirma.com/research/the-origins-of-apt-41-and-shadowpad-lineage/

[7] https://www.csoonline.com/article/572061/shadowpad-has-become-the-rat-of-choice-for-several-state-sponsored-chinese-apts.html

[8] https://global.ptsecurity.com/analytics/pt-esc-threat-intelligence/shadowpad-new-activity-from-the-winnti-group

[9] https://cymulate.com/threats/shadowpad-privately-sold-malware-espionage-tool/

[10] https://www.secureworks.com/research/shadowpad-malware-analysis

[11] https://blog.talosintelligence.com/chinese-hacking-group-apt41-compromised-taiwanese-government-affiliated-research-institute-with-shadowpad-and-cobaltstrike-2/

[12] https://hackerseye.net/all-blog-items/tails-from-the-shadow-apt-41-injecting-shadowpad-with-sideloading/

[13] https://cloud.google.com/blog/topics/threat-intelligence/scatterbrain-unmasking-poisonplug-obfuscator

[14] https://www.domaintools.com/wp-content/uploads/conceptualizing-a-continuum-of-cyber-threat-attribution.pdf

[15] https://www.nccgroup.com/es/research-blog/north-korea-s-lazarus-their-initial-access-trade-craft-using-social-media-and-social-engineering/  

[16] https://www.microsoft.com/en-us/security/blog/2021/01/28/zinc-attacks-against-security-researchers/

[17] https://www.microsoft.com/en-us/security/blog/2022/09/29/zinc-weaponizing-open-source-software/  

[18] https://www.welivesecurity.com/en/eset-research/lazarus-luring-employees-trojanized-coding-challenges-case-spanish-aerospace-company/  

[19] https://blogs.jpcert.or.jp/en/2021/01/Lazarus_malware2.html  

[20] https://usun.usmission.gov/joint-statement-on-the-unlawful-arms-transfer-by-the-democratic-peoples-republic-of-korea-to-russia/

[21] https://media.defense.gov/2024/Jul/25/2003510137/-1/-1/1/Joint-CSA-North-Korea-Cyber-Espionage-Advance-Military-Nuclear-Programs.PDF  

[22] https://kyivindependent.com/first-north-korean-troops-deployed-to-front-line-in-kursk-oblast-ukraines-military-intelligence-says/

[23] https://www.microsoft.com/en-us/security/blog/2024/12/04/frequent-freeloader-part-i-secret-blizzard-compromising-storm-0156-infrastructure-for-espionage/  

[24] https://www.microsoft.com/en-us/security/blog/2024/12/11/frequent-freeloader-part-ii-russian-actor-secret-blizzard-using-tools-of-other-groups-to-attack-ukraine/  

[25] https://www.sentinelone.com/labs/chamelgang-attacking-critical-infrastructure-with-ransomware/    

[26] https://thehackernews.com/2022/06/state-backed-hackers-using-ransomware.html/  

[27] https://blog.checkpoint.com/security/check-point-research-explains-shadow-pad-nailaolocker-and-its-protection/

[28] https://www.orangecyberdefense.com/global/blog/cert-news/meet-nailaolocker-a-ransomware-distributed-in-europe-by-shadowpad-and-plugx-backdoors

Continue reading
About the author
Sam Lister
SOC Analyst

Blog

/

AI

/

March 11, 2025

Survey findings: AI Cyber Threats are a Reality, the People are Acting Now

Default blog imageDefault blog image

Artificial intelligence is changing the cybersecurity field as fast as any other, both on the offensive and defensive side. We surveyed over 1,500 cybersecurity professionals from around the world to uncover their attitudes, understanding, and priorities when it comes to AI cybersecurity in 2025. Our full report, unearthing some telling trends, is out now.

Download the full report to explore these findings in depth

How is AI impacting the threat landscape?

state of ai in cybersecurity report graphic showing ai powered cyber threats having an impact on organizations

Nearly 74% of participants say AI-powered threats are a major challenge for their organization and 90% expect these threats to have a significant impact over the next one to two years, a slight increase from last year. These statistics highlight that AI is not just an emerging risk but a present and evolving one.

As attackers harness AI to automate and scale their operations, security teams must adapt just as quickly. Organizations that fail to prioritize AI-specific security measures risk falling behind, making proactive defense strategies more critical than ever.

Some of the most pressing AI-driven cyber threats include:

  • AI-powered social engineering: Attackers are leveraging AI to craft highly personalized and convincing phishing emails, making them harder to detect and more likely to bypass traditional defenses.
  • More advanced attacks at speed and scale: AI lowers the barrier for less skilled threat actors, allowing them to launch sophisticated attacks with minimal effort.
  • Attacks targeting AI systems: Cybercriminals are increasingly going after AI itself, compromising machine learning models, tampering with training data, and exploiting vulnerabilities in AI-driven applications and APIs.

Safe and secure use of AI

AI is having an effect on the cyber-threat landscape, but it also is starting to impact every aspect of a business – from marketing to HR to operations. The accessibility of AI tools for employees improves workflows, but also poses risks like data privacy violations, shadow AI, and violation of industry regulations.

How are security practitioners accommodating for this uptick in AI use across business?

Among survey participants 45% of security practitioners say they had already established a policy on the safe and secure use of AI and around 50% are in discussions to do so.

While almost all participants acknowledge that this is a topic that needs to be addressed, the gap between discussion and execution could underscore a need for greater insight, stronger leadership commitment, and adaptable security frameworks to keep pace with AI advancements in the workplace. The most popular actions taken are:

  1. Implemented security controls to prevent unwanted exposure of corporate data when using AI technology (67%)
  2. Implemented security controls to protect against other threats/risks associated with using AI technology (62%)

This year specifically, we see further action being taken with the implementation of security controls, training, and oversight.

For a more detailed breakdown that includes results based on industry and organizational size, download the full report here.

AI threats are rising, but security teams still face major challenges

78% of CISOs say AI-powered cyber-threats are already having a significant impact on their organization, a 5% increase from last year.

While cyber professionals feel more prepared for AI powered threats than they did 12 months ago, 45% still say their organization is not adequately prepared—down from 60% last year.

Despite this optimism, key challenges remain, including:

  • A shortage of personnel to manage tools and alerts
  • Gaps in knowledge and skills related to AI-driven countermeasures

Confidence in traditional security tools vs. new AI based tools

This year, 73% of survey participants expressed confidence in their security team’s proficiency in using AI within their tool stack, marking an increase from the previous year.

However, only 50% of participants have confidence in traditional cybersecurity tools to detect and block AI-powered threats. In contrast, 75% of participants are confident in AI-powered security solutions for detecting and blocking such threats and attacks.

As leading organizations continue to implement and optimize their use of AI, they are incorporating it into an increasing number of workflows. This growing familiarity with AI is likely to boost the confidence levels of practitioners even further.

The data indicates a clear trend towards greater reliance on AI-powered security solutions over traditional tools. As organizations become more adept at integrating AI into their operations, their confidence in these advanced technologies grows.

This shift underscores the importance of staying current with AI advancements and ensuring that security teams are well-trained in utilizing these tools effectively. The increasing confidence in AI-driven solutions reflects their potential to enhance cybersecurity measures and better protect against sophisticated threats.

State of AI report

Download the full report to explore these findings in depth

The full report for Darktrace’s State of AI Cybersecurity is out now. Download the paper to dig deeper into these trends, and see how results differ by industry, region, organization size, and job title.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI