Blog

Inside the SOC

Laplas Clipper: Defending against crypto-currency thieves with DETECT + RESPOND

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Mar 2023
14
Mar 2023
Between June 2021 and June 2022, crypto-currency platforms around the world lost an estimated 44 billion USD to cyber criminals, whose modus operandi range from stealing passwords and account recovery phrases, to cryptojacking and directly targeting crypto-currency transactions.

Between June 2021 and June 2022, crypto-currency platforms around the world lost an estimated 44 billion USD to cyber criminals, whose modus operandi range from stealing passwords and account recovery phrases, to cryptojacking and directly targeting crypto-currency transactions. 

There has been a recent rise in cases of cyber criminals’ using information stealer malware to gather and exfiltrate sensitive crypto-currency wallet details, ultimately leading to the theft of significant sums of digital currency. Having an autonomous decision maker able to detect and respond to potential compromises is crucial to safeguard crypto wallets and transactions against would-be attackers.

In late 2022, Darktrace observed several threat actors employing a novel attack method to target crypto-currency users across its customer base, specifically the latest version of the Laplas Clipper malware. Using Self-Learning AI, Darktrace DETECT/Network™ and Darktrace RESPOND/Network™ were able to uncover and mitigate Laplas Clipper activity and intervene to prevent the theft of large sums of digital currency.

Laplas Clipper Background

Laplas Clipper is a variant of information stealing malware which operates by diverting crypto-currency transactions from victims’ crypto wallets into the wallets of threat actors [1]. Laplas Clipper is a Malware-as-a-Service (MaaS) offering available for purchase and use by a variety of threat actors. It has been observed in the wild since October 2022, when 180 samples were identified and linked with another malware strain, namely SmokeLoader [2]. This loader has itself been observed since at least 2011 and acts as a delivery mechanism for popular malware strains [3]. 

SmokeLoader is typically distributed via malicious attachments sent in spam emails or targeted phishing campaigns but can also be downloaded directly by users from file hosting pages or spoofed websites. SmokeLoader is known to specifically deliver Laplas Clipper onto compromised devices via a BatLoader script downloaded as a Microsoft Word document or a PDF file attached to a phishing email. These examples of social engineering are relatively low effort methods intended to convince users to download the malware, which subsequently injects malicious code into the explorer.exe process and downloads Laplas Clipper.

Laplas Clipper activity observed across Darktrace’s customer base generally began with SmokeLoader making HTTP GET requests to Laplas Clipper command and control (C2) infrastructure. Once downloaded, the clipper loads a ‘build[.]exe’ module and begins monitoring the victim’s clipboard for crypto-currency wallet addresses. If a wallet address is identified, the infected device connects to a server associated with Laplas Clipper and downloads wallet addresses belonging to the threat actor. The actor’s addresses are typically spoofed to appear similar to those they replace in order to evade detection. The malware continues to update clipboard activity and replaces the user’s wallet addresses with a spoofed address each time one is copied for a for crypto-currency transactions.

Darktrace Coverage of Laplas Clipper and its Delivery Methods 

In October and November 2022, Darktrace observed a significant increase in suspicious activity associated with Laplas Clipper across several customer networks. The activity consisted largely of:  

  1. User devices connecting to a suspicious endpoint.  
  2. User devices making HTTP GET requests to an endpoint associated with the SmokeLoader loader malware, which was installed on the user’s device.
  3. User devices making HTTP connections to the Laplas Clipper download server “clipper[.]guru”, from which it downloads spoofed wallet addresses to divert crypto-currency payments. 

In one particular instance, a compromised device was observed connecting to endpoints associated with SmokeLoader shortly before connecting to a Laplas Clipper download server. In other instances, devices were detected connecting to other anomalous endpoints including the domains shonalanital[.]com, transfer[.]sh, and pc-world[.]uk, which appears to be mimicking the legitimate endpoint thepcworld[.]com. 

Additionally, some compromised devices were observed attempting to connect malicious IP addresses including 193.169.255[.]78 and 185.215.113[.]23, which are associated with the RedLine stealer malware. Additionally, Darktrace observed connections to the IP addresses 195.178.120[.]154 and 195.178.120[.]154, which are associated with SmokeLoader, and 5.61.62[.]241, which open-source intelligence has associated with Cobalt Strike. 

Figure 1: Beacon to Young Endpoint model breach demonstrating Darktrace’s ability to detect external connections that are considered extremely rare for the network.
Figure 2: The event log of an infected device attempting to connect to IP addresses associated with the RedLine stealer malware, and the actions RESPOND took to block these attempts.

The following DETECT/Network models breached in response to these connections:

  • Compromise / Beacon to Young Endpoint 
  • Compromise / Slow Beaconing Activity to External Rare 
  • Compromise / Beacon for 4 Days
  • Compromise / Beaconing Activity to External Rare
  • Compromise / Sustained TCP Beaconing Activity to Rare Endpoint 
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoints 
  • Compromise / Large Number of Suspicious Failed Connections 
  • Compromise / HTTP Beaconing to Rare Destination 
  • Compromise / Post and Beacon to Rare External 
  • Anomalous Connection / Callback on Web Facing Device 

DETECT/Network is able to identify such activity as its models operate based on a device’s usual pattern of behavior, rather than a static list of indicators of compromise (IOCs). As such, Darktrace can quickly identify compromised devices that deviate for their expected pattern of behavior by connecting to newly created malicious endpoints or C2 infrastructure, thereby triggering an alert.

In one example, RESPOND/Network autonomously intercepted a compromised device attempting to connect to the Laplas Clipper C2 server, preventing it from downloading SmokeLoader and subsequently, Laplas Clipper itself.

Figure 3: The event log of an infected device attempting to connect to the Laplas Clipper download server, and the actions RESPOND/Network took to block these attempts.

In another example, DETECT/Network observed an infected device attempting to perform numerous DNS Requests to a crypto-currency mining pool associated with the Monero digital currency.  

This activity caused the following DETECT/Network models to breach:

  • Compromise / Monero Mining
  • Compromise / High Priority Crypto Currency Mining 

RESPOND/Network quickly intervened, enforcing a previously established pattern of life on the device, ensuring it could not perform any unexpected activity, and blocking the connections to the endpoint in question for an hour. These actions carried out by Darktrace’s autonomous response technology prevented the infected device from carrying out crypto-mining activity, and ensured the threat actor could not perform any additional malicious activity.

Figure 4. The event log of an infected devices showing DNS requests to the Monero crypto-mining pool, and the actions taken to block them by RESPOND/Network.

Finally, in instances when RESPOND/Network was not activated, external connections to the Laplas Clipper C2 server were nevertheless monitored by DETECT/Network, and the customer’s security team were notified of the incident.

Conclusion 

The rise of information stealing malware variants such as Laplas Clipper highlights the importance of crypto-currency and crypto-mining in the malware ecosystem and more broadly as a significant cyber security concern. Crypto-mining is often discounted as background noise for security teams or compliance issues that can be left untriaged; however, malware strains like Laplas Clipper demonstrate the real security risks posed to digital estates from threat actors focused on crypto-currency. 

Leveraging its Self-Learning AI, DETECT/Network and RESPOND/Network are able to work in tandem to quickly identify connections to suspicious endpoints and block them before any malicious software can be downloaded, safeguarding customers.

Appendices

List of IOCs 

a720efe2b3ef7735efd77de698a5576b36068d07 - SHA1 Filehash - Laplas Malware Download

conhost.exe - URI - Laplas Malware Download

185.223.93.133 - IP Address - Laplas C2 Endpoint

185.223.93.251 - IP Address - Laplas C2 Endpoint

45.159.189.115 - IP Address - Laplas C2 Endpoint

79.137.204.208 - IP Address - Laplas C2 Endpoint

5.61.62.241 - IP Address - Laplas C2 Endpoint

clipper.guru - URI - Laplas C2 URI

/bot/online?guid= - URI - Laplas C2 URI

/bot/regex?key= - URI - Laplas C2 URI

/bot/get?address - URI - Laplas C2 URI

Mitre Attack and Mapping 

Initial Access:

T1189 – Drive By Compromise 

T1566/002 - Spearphishing

Resource Development:

T1588 / 001 - Malware

Ingress Tool Transfer:

T1105 – Ingress Tool Transfer

Command and Control:

T1071/001 – Web Protocols 

T1071 – Application Layer Protocol

T1008 – Fallback Channels

T1104 – Multi-Stage Channels

T1571 – Non-Standard Port

T1102/003 – One-Way Communication

T1573 – Encrypted Channel

Persistence:

T1176 – Browser Extensions

Collection:

T1185 – Man in the Browser

Exfiltration:

T1041 – Exfiltration over C2 Channel

References

[1] https://blog.cyble.com/2022/11/02/new-laplas-clipper-distributed-by-smokeloader/ 

[2] https://thehackernews.com/2022/11/new-laplas-clipper-malware-targeting.html

[3] https://attack.mitre.org/software/S0226/

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Anna Gilbertson
Cyber Security Analyst
Hanah Darley
Director of Threat Research
Book a 1-1 meeting with one of our experts
share this article
USE CASES
No items found.
COre coverage
No items found.

More in this series

No items found.

Blog

Inside the SOC

Gootloader Malware: Detecting and Containing Multi-Functional Threats with Darktrace

Default blog imageDefault blog image
15
Feb 2024

What is multi-functional malware?

While traditional malware variants were designed with one specific objective in mind, the emergence of multi-functional malware, such as loader malware, means that organizations are likely to be confronted with multiple malicious tools and strains of malware at once. These threats often have non-linear attack patterns and kill chains that can quickly adapt and progress quicker than human security teams are able to react. Therefore, it is more important than ever for organizations to adopt an anomaly approach to combat increasingly versatile and fast-moving threats.

Example of Multi-functional malware

One example of a multi-functional malware recently observed by Darktrace can be seen in Gootloader, a multi-payload loader variant that has been observed in the wild since 2020. It is known to primarily target Windows-based systems across multiple industries in the US, Canada, France, Germany, and South Korea [1].  

How does Gootloader malware work?

Once installed on a target network, Gootloader can download additional malicious payloads that allow threat actors to carry out a range of harmful activities, such as stealing sensitive information or encrypting files for ransom.

The Gootloader malware is known to infect networks via search engine optimization (SEO) poisoning, directing users searching for legitimate documents to compromised websites hosting a malicious payload masquerading as the desired file.

If the malware remains undetected, it paves the way for a second stage payload known as Gootkit, which functions as a banking trojan and information-stealer, or other malware tools including Cobalt Strike and Osiris [2].

Darktrace detection of Gootloader malware

In late 2023, Darktrace observed one instance of Gootloader affecting a customer in the US. Thanks to its anomaly-focused approach, Darktrace DETECT™ quickly identified the anomalous activity surrounding this emerging attack and brought it to the immediate attention of the customer’s security team. All the while, Darktrace RESPOND™ was in place and able to autonomously intervene, containing the suspicious activity and ensuring the Gootloader compromise could not progress any further.

In September 2023, Darktrace identified an instance of the Gootloader malware attempting to propagate within the network of a customer in the US. Darktrace identified the first indications of the compromise when it detected a device beaconing to an unusual external location and performing network scanning. Following this, the device was observed making additional command-and-control (C2) connections, before finally downloading an executable (.exe) file which likely represented the download of a further malicious payload.

As this customer had subscribed to the Proactive Notification Service (PTN), the suspicious activity was escalated to the Darktrace Security Operations Center (SOC) for further investigation by Darktrace’s expert analysts. The SOC team were able to promptly triage the incident and advise urgent follow-up actions.

Gootloader Attack Overview

Figure 1: Timeline of Anomalous Activities seen on the breach device.

Initial Beaconing and Scanning Activity

On September 21, 2023, Darktrace observed the first indications of compromise on the network when a device began to make regular connections to an external endpoint that was considered extremely rare for the network, namely ‘analyzetest[.]ir’.

Although the endpoint did not overtly seem malicious in nature (it appeared to be related to laboratory testing), Darktrace recognized that it had never previously been seen on the customer’s network and therefore should be treated with caution.  This initial beaconing activity was just the beginning of the malicious C2 communications, with several additional instances of beaconing detected to numerous suspicious endpoints, including funadhoo.gov[.]mv, tdgroup[.]ru’ and ‘army.mil[.]ng.

Figure 2: Initial beaconing activity detected on the breach device.

Soon thereafter, Darktrace detected the device performing internal reconnaissance, with an unusually large number of connections to other internal locations observed. This scanning activity appeared to primarily be targeting the SMB protocol by scanning port 445.

Within seconds of DETECT’s detection of this suspicious SMB scanning activity, Darktrace RESPOND moved to contain the compromise by blocking the device from connecting to port 445 and enforcing its ‘pattern of life’. Darktrace’s Self-Learning AI enables it to learn a device’s normal behavior and recognize if it deviates from this; by enforcing a pattern of life on an affected device, malicious activity is inhibited but the device is allowed to continue its expected activity, minimizing disruption to business operations.

Figure 3: The breach device Model Breach Event Log showing Darktrace DETECT identifying suspicious SMB scanning activity and the corresponding RESPOND actions.

Following the initial detection of this anomalous activity, Darktrace’s Cyber AI Analyst launched an autonomous investigation into the beaconing and scanning activity and was able to connect these seemingly separate events into one incident. AI Analyst analyzes thousands of connections to hundreds of different endpoints at machine speed and then summarizes its findings in a single pane of glass, giving customers the necessary information to assess the threat and begin remediation if necessary. This significantly lessens the burden for human security teams, saving them previous time and resources, while ensuring they maintain full visibility over any suspicious activity on their network.

Figure 4: Cyber AI Analyst incident log summarizing the technical details of the device’s beaconing and scanning behavior.

Beaconing Continues

Darktrace continued to observe the device carrying out beaconing activity over the next few days, likely representing threat actors attempting to establish communication with their malicious infrastructure and setting up a foothold within the customer’s environment. In one such example, the device was seen connecting to the suspicious endpoint ‘fysiotherapie-panken[.]nl’. Multiple open-source intelligence (OSINT) vendors reported this endpoint to be a known malware delivery host [3].

Once again, Darktrace RESPOND was in place to quickly intervene in response to these suspicious external connection attempts. Over the course of several days, RESPOND blocked the offending device from connecting to suspicious endpoints via port 443 and enforced its pattern of life. These autonomous actions by RESPOND effectively mitigated and contained the attack, preventing it from escalating further along the kill chain and providing the customer’s security team crucial time to take act and employ their own remediation.

Figure 5: A sample of the autonomous RESPOND actions that was applied on the affected device.

Possible Payload Retrieval

A few days later, on September 26, 2023, Darktrace observed the affected device attempting to download a Windows Portable Executable via file transfer protocol (FTP) from the external location ‘ftp2[.]sim-networks[.]com’, which had never previously been seen on the network. This download likely represented the next step in the Gootloader infection, wherein additional malicious tooling is downloaded to further cement the malicious actors’ control over the device. In response, Darktrace RESPOND immediately blocked the device from making any external connections, ensuring it could not download any suspicious files that may have rapidly escalated the attackers’ efforts.

Figure 6: DETECT’s identification of the offending device downloading a suspicious executable file via FTP.

The observed combination of beaconing activity and a suspicious file download triggered an Enhanced Monitoring breach, a high-fidelity DETECT model designed to detect activities that are more likely to be indicative of compromise. These models are monitored by the Darktrace SOC round the clock and investigated by Darktrace’s expert team of analysts as soon as suspicious activity emerges.

In this case, Darktrace’s SOC triaged the emerging activity and sent an additional notice directly to the customer’s security team, informing them of the compromise and advising on next steps. As this customer had subscribed to Darktrace’s Ask the Expert (ATE) service, they also had a team of expert analysts available to them at any time to aid their investigations.

Figure 7: Enhanced Monitoring Model investigated by the Darktrace SOC.

Conclusion

Loader malware variants such as Gootloader often lay the groundwork for further, potentially more severe threats to be deployed within compromised networks. As such, it is crucial for organizations and their security teams to identify these threats as soon as they emerge and ensure they are effectively contained before additional payloads, like information-stealing malware or ransomware, can be downloaded.

In this instance, Darktrace demonstrated its value when faced with a multi-payload threat by detecting Gootloader at the earliest stage and responding to it with swift targeted actions, halting any suspicious connections and preventing the download of any additional malicious tooling.

Darktrace DETECT recognized that the beaconing and scanning activity performed by the affected device represented a deviation from its expected behavior and was indicative of a potential network compromise. Meanwhile, Darktrace RESPOND ensured that any suspicious activity was promptly shut down, buying crucial time for the customer’s security team to work with Darktrace’s SOC to investigate the threat and quarantine the compromised device.

Credit to: Ashiq Shafee, Cyber Security Analyst, Qing Hong Kwa, Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore

Appendices

Darktrace DETECT Model Detections

Anomalous Connection / Rare External SSL Self-Signed

Device / Suspicious SMB Scanning Activity

Anomalous Connection / Young or Invalid Certificate SSL Connections to Rare

Compromise / High Volume of Connections with Beacon Score

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / Slow Beaconing Activity To External Rare

Compromise / Beacon for 4 Days

Anomalous Connection / Suspicious Expired SSL

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Compromise / Sustained SSL or HTTP Increase

Compromise / Large Number of Suspicious Successful Connections

Compromise / Large Number of Suspicious Failed Connections

Device / Large Number of Model Breaches

Anomalous File / FTP Executable from Rare External Location

Device / Initial Breach Chain Compromise

RESPOND Models

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network/Insider Threat/Antigena Network Scan Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

List of Indicators of Compromise (IoCs)

Type

Hostname

IoCs + Description

explorer[.]ee - C2 Endpoint

fysiotherapie-panken[.]nl- C2 Endpoint

devcxp2019.theclearingexperience[.]com- C2 Endpoint

campsite.bplaced[.]net- C2 Endpoint

coup2pompes[.]fr- C2 Endpoint

analyzetest[.]ir- Possible C2 Endpoint

tdgroup[.]ru- C2 Endpoint

ciedespuys[.]com- C2 Endpoint

fi.sexydate[.]world- C2 Endpoint

funadhoo.gov[.]mv- C2 Endpoint

geying.qiwufeng[.]com- C2 Endpoint

goodcomix[.]fun- C2 Endpoint

ftp2[.]sim-networks[.]com- Possible Payload Download Host

MITRE ATT&CK Mapping

Tactic – Technique

Reconnaissance - Scanning IP blocks (T1595.001, T1595)

Command and Control - Web Protocols , Application Layer Protocol, One-Way Communication, External Proxy, Non-Application Layer Protocol, Non-Standard Port (T1071.001/T1071, T1071, T1102.003/T1102, T1090.002/T1090, T1095, T1571)

Collection – Man in the Browser (T1185)

Resource Development - Web Services, Malware (T1583.006/T1583, T1588.001/T1588)

Persistence - Browser Extensions (T1176)

References

1.     https://www.blackberry.com/us/en/solutions/endpoint-security/ransomware-protection/gootloader

2.     https://redcanary.com/threat-detection-report/threats/gootloader/

3.     https://www.virustotal.com/gui/domain/fysiotherapie-panken.nl

Continue reading
About the author
Ashiq Shafee
Cyber Security Analyst

Blog

No items found.

Seven Cyber Security Predictions for 2024

Default blog imageDefault blog image
13
Feb 2024

2024 Cyber Threat Predictions

After analyzing the observed threats and trends that have affected customers across the Darktrace fleet in the second half of 2023, the Darktrace Threat Research team have made a series of predictions. These assessments highlight the threats that are expected to impact Darktrace customers and the wider threat landscape in 2024.  

1. Initial access broker malware, especially loader malware, is likely to be a prominent threat.  

Initial access malware such as loaders, information stealers, remote access trojans (RATs), and downloaders, will probably remain some of the most relevant threats to most organizations, especially when noted in the context that many are interoperable, tailorable Malware-as-a-Service (MaaS) tools.  

These types of malware often serve as a gateway for threat actors to compromise a target network before launching subsequent, and often more severe, attacks. Would-be cyber criminals are now able to purchase and deploy these malware without the need for technical expertise.  

2. Infrastructure complexity will increase SaaS attacks and leave cloud environments vulnerable.

The increasing reliance on SaaS solutions and platforms for business operations, coupled with larger attack surfaces than ever before, make it likely that attackers will continue targeting organizations’ cloud environments with account takeovers granting unauthorized access to privileged accounts. These account hijacks can be further exploited to perform a variety of nefarious activities, such as data exfiltration or launching phishing campaigns.  

It is paramount for organizations to not only fortify their SaaS environments with security strategies including multifactor authentication (MFA), regular monitoring of credential usage, and strict access control, but moreover augment SaaS security using anomaly detection.  

3. The prevalence and evolution of ransomware will surge.

The Darktrace Threat Research team anticipates a surge in Ransomware-as-a-Service (RaaS) attacks, marking a shift away from conventional ransomware. The uptick in RaaS observed in 2023 evidences that ransomware itself is becoming increasingly accessible, lowering the barrier to entry for threat actors. This surge also demonstrates how lucrative RaaS is for ransomware operators in the current threat landscape, further reinforcing a rise in RaaS.  

This development is likely to coincide with a pivot away from traditional encryption-centric ransomware tactics towards more sophisticated and advanced extortion methods. Rather than relying solely on encrypting a target’s data for ransom, malicious actors are expected to employ double or even triple extortion strategies, encrypting sensitive data but also threatening to leak or sell stolen data unless their ransom demands are met.  

4. Threat actors will continue to rely on living-off-the-land techniques.

With evolving sophistication of security tools and greater industry adoption of AI techniques, threat actors have focused more and more on living-off-the-land. The extremely high volume of vulnerabilities discovered in 2023 highlights threat actors’ persistent need to compromise trusted organizational mechanisms and infrastructure to gain a foothold in networks. Although inbox intrusions remain prevalent, the exploitation of edge infrastructure has demonstrably expanded compared to previously endpoint-focused attacks.

Given the prevalence of endpoint evasion techniques and the high proportion of tactics utilizing native programs, threat actors will likely progressively live off the land, even utilizing new techniques or vulnerabilities to do so, rather than relying on unidentified malicious programs which evade traditional detection.

5. The “as-a-Service” marketplace will contribute to an increase in multi-phase compromises.

With the increasing “as-a-Service” marketplaces, it is likely that organizations will face more multi-phase compromises, where one strain of malware is observed stealing information and that data is sold to additional threat actors or utilized for second and/or third-stage malware or ransomware.  

This trend builds on the concept of initial access brokers but utilizes basic browser scraping and data harvesting to make as much profit throughout the compromise process as possible. This will likely result in security teams observing multiple malicious tools and strains of malware during incident response and/or multi-functional malware, with attack cycles and kill chains morphing into less linear and more abstract chains of activity. This makes it more essential than ever for security teams to apply an anomaly approach to stay ahead of asymmetric threats.  

6. Generative AI will let attackers phish across language barriers.

Classic phishing scams play a numbers game, targeting as many inboxes as possible and hoping that some users take the bait, even if there are spelling and grammar errors in the email. Now, Generative AI has reduced the barrier for entry, so malicious actors do not have to speak English to produce a convincing phishing email.  

In 2024, we anticipate this to extend to other languages and regions. For example, many countries in Asia have not yet been greatly impacted by phishing. Yet Generative AI continues to develop, with improved data input yielding improved output. More phishing emails will start to be generated in various languages with increasing sophistication.    

7. AI regulation and data privacy rules will stifle AI adoption.

AI regulation, like the European Union’s AI Act and NIS2, is starting to be implemented around the world. As policies continue to come out about AI and data privacy, practical and pragmatic AI adoption becomes more complex.  

Businesses will likely have to take a second look at AI they are adopting into their tech stacks to consider what may happen if a tool is suddenly deprecated because it is no longer fit for purpose or loses the approvals in place. Many will also have to use completely different supply chain evaluations from their usual ones based on developing compliance registrars. This increased complication may make businesses reticent to adopt innovative AI solutions as legislation scrambles to keep up.  

Learn more about observed threat trends and future predictions in the 2023 End of Year Threat Report

Continue reading
About the author
The Darktrace Threat Research Team

Good news for your business.
Bad news for the bad guys.

Start your free trial

Start your free trial

Flexible delivery
Cloud-based deployment.
Fast install
Just 1 hour to set up – and even less for an email security trial.
Choose your journey
Try out Self-Learning AI wherever you most need it — including cloud, network or email.
No commitment
Full access to the Darktrace Threat Visualizer and three bespoke Threat Reports, with no obligation to purchase.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
Oops! Something went wrong while submitting the form.

Get a demo

Flexible delivery
You can either install it virtually or with hardware.
Fast install
Just 1 hour to set up – and even less for an email security trial.
Choose your journey
Try out Self-Learning AI wherever you most need it — including cloud, network or email.
No commitment
Full access to the Darktrace Threat Visualizer and three bespoke Threat Reports, with no obligation to purchase.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.