Blog
/
Network
/
March 14, 2023

Protecting Yourself from Laplas Clipper Crypto Theives

Explore strategies to combat Laplas Clipper attacks and enhance your defenses against cryptocurrency theft in the digital landscape.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Anna Gilbertson
Cyber Security Analyst
Written by
Hanah Darley
Director of Threat Research
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Mar 2023

Between June 2021 and June 2022, crypto-currency platforms around the world lost an estimated 44 billion USD to cyber criminals, whose modus operandi range from stealing passwords and account recovery phrases, to cryptojacking and directly targeting crypto-currency transactions. 

There has been a recent rise in cases of cyber criminals’ using information stealer malware to gather and exfiltrate sensitive crypto-currency wallet details, ultimately leading to the theft of significant sums of digital currency. Having an autonomous decision maker able to detect and respond to potential compromises is crucial to safeguard crypto wallets and transactions against would-be attackers.

In late 2022, Darktrace observed several threat actors employing a novel attack method to target crypto-currency users across its customer base, specifically the latest version of the Laplas Clipper malware. Using Self-Learning AI, Darktrace DETECT/Network™ and Darktrace RESPOND/Network™ were able to uncover and mitigate Laplas Clipper activity and intervene to prevent the theft of large sums of digital currency.

Laplas Clipper Background

Laplas Clipper is a variant of information stealing malware which operates by diverting crypto-currency transactions from victims’ crypto wallets into the wallets of threat actors [1]. Laplas Clipper is a Malware-as-a-Service (MaaS) offering available for purchase and use by a variety of threat actors. It has been observed in the wild since October 2022, when 180 samples were identified and linked with another malware strain, namely SmokeLoader [2]. This loader has itself been observed since at least 2011 and acts as a delivery mechanism for popular malware strains [3]. 

SmokeLoader is typically distributed via malicious attachments sent in spam emails or targeted phishing campaigns but can also be downloaded directly by users from file hosting pages or spoofed websites. SmokeLoader is known to specifically deliver Laplas Clipper onto compromised devices via a BatLoader script downloaded as a Microsoft Word document or a PDF file attached to a phishing email. These examples of social engineering are relatively low effort methods intended to convince users to download the malware, which subsequently injects malicious code into the explorer.exe process and downloads Laplas Clipper.

Laplas Clipper activity observed across Darktrace’s customer base generally began with SmokeLoader making HTTP GET requests to Laplas Clipper command and control (C2) infrastructure. Once downloaded, the clipper loads a ‘build[.]exe’ module and begins monitoring the victim’s clipboard for crypto-currency wallet addresses. If a wallet address is identified, the infected device connects to a server associated with Laplas Clipper and downloads wallet addresses belonging to the threat actor. The actor’s addresses are typically spoofed to appear similar to those they replace in order to evade detection. The malware continues to update clipboard activity and replaces the user’s wallet addresses with a spoofed address each time one is copied for a for crypto-currency transactions.

Darktrace Coverage of Laplas Clipper and its Delivery Methods 

In October and November 2022, Darktrace observed a significant increase in suspicious activity associated with Laplas Clipper across several customer networks. The activity consisted largely of:  

  1. User devices connecting to a suspicious endpoint.  
  2. User devices making HTTP GET requests to an endpoint associated with the SmokeLoader loader malware, which was installed on the user’s device.
  3. User devices making HTTP connections to the Laplas Clipper download server “clipper[.]guru”, from which it downloads spoofed wallet addresses to divert crypto-currency payments. 

In one particular instance, a compromised device was observed connecting to endpoints associated with SmokeLoader shortly before connecting to a Laplas Clipper download server. In other instances, devices were detected connecting to other anomalous endpoints including the domains shonalanital[.]com, transfer[.]sh, and pc-world[.]uk, which appears to be mimicking the legitimate endpoint thepcworld[.]com. 

Additionally, some compromised devices were observed attempting to connect malicious IP addresses including 193.169.255[.]78 and 185.215.113[.]23, which are associated with the RedLine stealer malware. Additionally, Darktrace observed connections to the IP addresses 195.178.120[.]154 and 195.178.120[.]154, which are associated with SmokeLoader, and 5.61.62[.]241, which open-source intelligence has associated with Cobalt Strike. 

Figure 1: Beacon to Young Endpoint model breach demonstrating Darktrace’s ability to detect external connections that are considered extremely rare for the network.
Figure 2: The event log of an infected device attempting to connect to IP addresses associated with the RedLine stealer malware, and the actions RESPOND took to block these attempts.

The following DETECT/Network models breached in response to these connections:

  • Compromise / Beacon to Young Endpoint 
  • Compromise / Slow Beaconing Activity to External Rare 
  • Compromise / Beacon for 4 Days
  • Compromise / Beaconing Activity to External Rare
  • Compromise / Sustained TCP Beaconing Activity to Rare Endpoint 
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoints 
  • Compromise / Large Number of Suspicious Failed Connections 
  • Compromise / HTTP Beaconing to Rare Destination 
  • Compromise / Post and Beacon to Rare External 
  • Anomalous Connection / Callback on Web Facing Device 

DETECT/Network is able to identify such activity as its models operate based on a device’s usual pattern of behavior, rather than a static list of indicators of compromise (IOCs). As such, Darktrace can quickly identify compromised devices that deviate for their expected pattern of behavior by connecting to newly created malicious endpoints or C2 infrastructure, thereby triggering an alert.

In one example, RESPOND/Network autonomously intercepted a compromised device attempting to connect to the Laplas Clipper C2 server, preventing it from downloading SmokeLoader and subsequently, Laplas Clipper itself.

Figure 3: The event log of an infected device attempting to connect to the Laplas Clipper download server, and the actions RESPOND/Network took to block these attempts.

In another example, DETECT/Network observed an infected device attempting to perform numerous DNS Requests to a crypto-currency mining pool associated with the Monero digital currency.  

This activity caused the following DETECT/Network models to breach:

  • Compromise / Monero Mining
  • Compromise / High Priority Crypto Currency Mining 

RESPOND/Network quickly intervened, enforcing a previously established pattern of life on the device, ensuring it could not perform any unexpected activity, and blocking the connections to the endpoint in question for an hour. These actions carried out by Darktrace’s autonomous response technology prevented the infected device from carrying out crypto-mining activity, and ensured the threat actor could not perform any additional malicious activity.

Figure 4. The event log of an infected devices showing DNS requests to the Monero crypto-mining pool, and the actions taken to block them by RESPOND/Network.

Finally, in instances when RESPOND/Network was not activated, external connections to the Laplas Clipper C2 server were nevertheless monitored by DETECT/Network, and the customer’s security team were notified of the incident.

Conclusion 

The rise of information stealing malware variants such as Laplas Clipper highlights the importance of crypto-currency and crypto-mining in the malware ecosystem and more broadly as a significant cyber security concern. Crypto-mining is often discounted as background noise for security teams or compliance issues that can be left untriaged; however, malware strains like Laplas Clipper demonstrate the real security risks posed to digital estates from threat actors focused on crypto-currency. 

Leveraging its Self-Learning AI, DETECT/Network and RESPOND/Network are able to work in tandem to quickly identify connections to suspicious endpoints and block them before any malicious software can be downloaded, safeguarding customers.

Appendices

List of IOCs 

a720efe2b3ef7735efd77de698a5576b36068d07 - SHA1 Filehash - Laplas Malware Download

conhost.exe - URI - Laplas Malware Download

185.223.93.133 - IP Address - Laplas C2 Endpoint

185.223.93.251 - IP Address - Laplas C2 Endpoint

45.159.189.115 - IP Address - Laplas C2 Endpoint

79.137.204.208 - IP Address - Laplas C2 Endpoint

5.61.62.241 - IP Address - Laplas C2 Endpoint

clipper.guru - URI - Laplas C2 URI

/bot/online?guid= - URI - Laplas C2 URI

/bot/regex?key= - URI - Laplas C2 URI

/bot/get?address - URI - Laplas C2 URI

Mitre Attack and Mapping 

Initial Access:

T1189 – Drive By Compromise 

T1566/002 - Spearphishing

Resource Development:

T1588 / 001 - Malware

Ingress Tool Transfer:

T1105 – Ingress Tool Transfer

Command and Control:

T1071/001 – Web Protocols 

T1071 – Application Layer Protocol

T1008 – Fallback Channels

T1104 – Multi-Stage Channels

T1571 – Non-Standard Port

T1102/003 – One-Way Communication

T1573 – Encrypted Channel

Persistence:

T1176 – Browser Extensions

Collection:

T1185 – Man in the Browser

Exfiltration:

T1041 – Exfiltration over C2 Channel

References

[1] https://blog.cyble.com/2022/11/02/new-laplas-clipper-distributed-by-smokeloader/ 

[2] https://thehackernews.com/2022/11/new-laplas-clipper-malware-targeting.html

[3] https://attack.mitre.org/software/S0226/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Anna Gilbertson
Cyber Security Analyst
Written by
Hanah Darley
Director of Threat Research

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI