Blog
/

Cloud

/
May 21, 2020

Securing AWS Cloud Environments

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
May 2020
Discover how self-learning AI in AWS environments detects and beats threats early with enterprise-wide analysis.

Cloud platforms transform the way we build digital infrastructure, allowing us to create incredibly innovative environments for business – but often, it’s at the cost of visibility and control.

With complex hybrid and multi-cloud infrastructures becoming an essential part of increasingly diverse digital estates, the journey to the cloud has fundamentally reshaped the traditional paradigm of the network perimeter, while expanding the attack surface at an alarming rate. Meanwhile, traditional security controls still only offer point solutions that rely on retrospective rules and threat signatures and fail to stop novel and advanced attacks.

To shoulder the weight of shared responsibility for cloud security, organizations require the approach offered by Darktrace DETECT & RESPOND. With Self-Learning AI, DETECT continuously learns what normal ‘patterns of life’ look like for every user, device, virtual machine, and container across an organization. By actively developing a bespoke understanding of ‘self,’ the DETECT can identify the subtle anomalies that point to an advanced attack, without any pre-defined assumptions of ‘good’ or ‘bad' and RESPOND can autonomously interfere to stop emerging threats without disrupting business operations.

As more and more businesses turn to AWS to leverage the benefits of cloud infrastructure, gaining visibility and security for AWS-hosted data and applications is absolutely crucial. The advent of AWS VPC traffic mirroring has allowed Darktrace to shine a light on blind spots in our customers’ AWS environments, ensuring that our Cyber AI security platform can stop any type of threat that emerges. With the AI-powered security securing your AWS environment, you can embrace all the benefits of the cloud with confidence.

Self-learning Cyber AI with granular, real-time visibility

VPC traffic mirroring gives our Self-Learning AI access to granular packet data, allowing DETECT to extract hundreds of features from the raw data and build rich behavioral models for our customers’ AWS cloud environments. This real-time visibility to the underlying fabric of AWS environments provided by VPC traffic mirroring helps Darktrace Cyber AI learn ‘on the job,’ continuously adapting as your business evolves. Darktrace provides the only security solution that learns in real time, a critical feature given the speed and scale of development in the cloud.

Unified control: Correlating patterns across infrastructure

Taking a fundamentally unique approach, DETECT actively correlates activity across AWS and beyond – whether your digital ecosystem includes other cloud environments, SaaS applications, or any range of on- and off-premise infrastructure. From a threat detection perspective, this is crucial, as security events detected in one part of an organization are often part of a broader security incident. This ensures that threats in the cloud are not siloed from monitoring of the rest of the infrastructure, nor are the implications for cloud security ignored when intrusions occur elsewhere in the network.

Neutralizing sophisticated and novel attacks

Legacy security controls miss novel and advanced attacks targeting cloud infrastructure. With VPC traffic mirroring supporting Darktrace Cyber AI’s understanding of an organization’s AWS environment, any slight changes from normal behavior that may indicate a potential threat can be detected immediately. This allows the DETECT to catch the full range of cloud-based attacks, from zero-day malware, to stealthy insider threats.

“Darktrace represents a new frontier in AI-based cyber defense. Our team now has complete real-time coverage across our SaaS applications and cloud containers.”

— CIO, City of Las Vegas

How it works: Using VPC traffic mirroring to analyze AWS traffic

For customers leveraging AWS within an IaaS model, Darktrace uses VPC traffic mirroring to collect metadata from mirrored VPC packets in a Darktrace probe known as a ‘vSensor’. The vSensor captures real-time traffic and selectively forwards relevant metadata to a Darktrace cloud instance or on-premise probe. From here, DETECT correlates VPC traffic with cloud, email, network, and SaaS traffic across a customer’s hybrid and multi-cloud infrastructure for analysis.

By utilizing VPC traffic mirroring in this way, the Immune System can perform deep packet inspection on traffic in the customer’s AWS cloud environment, up to and including the application layer. Hundreds of features are extracted from the raw data, ranging from high-level metrics of data flow quantities, to peer relationship meta-data, to specific application layer events. These features allow Darktrace Cyber AI to build rich behavioral models that let it understand normal patterns of life for the organization and detect malicious activity. It is important that Darktrace is able to construct these metrics from the raw data rather than relying on flow logs alone, as flow logs don't provide the required level of granularity or real-time events within connections.

For non-Nitro AWS instances, we deploy lightweight agents known as ‘OS-Sensors’ that feed relevant traffic to a local vSensor and, in turn, to a Darktrace cloud instance or on-premise probe. Once configured, OS-Sensors can easily be scaled as new instances are spun up. Darktrace also offers a specialized OS-Sensor that provides coverage in containerized systems like Docker and Kubernetes.

Richer context with AWS CloudTrail logs

In addition to analyzing data with VPC traffic mirroring, the DETECT also monitors management and data events within AWS. It does so via HTTP requests for logfiles generated by AWS CloudTrail, which monitors events from all AWS services, including:

  • EC2
  • IAM
  • S3
  • VPC
  • Lambda

Different event types produced via CloudTrail are organized by Darktrace into categories based on the action type and the AWS services that generate it. These different categories show up as metrics in the DETECT user interface, the Threat Visualizer. This information is used to provide even richer context in connection with mirrored traffic in VPCs, as well as all cloud, network, email, and SaaS traffic across a customer’s entire digital environment.

Darktrace deployment scenarios for AWS customers

For IaaS environments, Darktrace deploys a vSensor in each cloud environment. Within AWS environments, the vSensor captures real-time traffic with AWS VPC traffic mirroring. The receiving vSensor processes the data and feeds it back to the cloud-based Darktrace instance. AWS customers additionally have the option of deploying a ‘Darktrace Security Module’ to monitor IaaS management and data events at the API level, such as logins, editing virtual servers, or creating new access credentials.

Figure 1: A cloud-only deployment scenario — Darktrace manages a master cloud probe which receives traffic from sensors and connectors in IaaS and/or SaaS environments.

For hybrid IaaS deployments, Darktrace will similarly deploy vSensors, and OS-Sensors as appropriate. Cloud traffic and event data from AWS and any other cloud environments is then fed to a Darktrace probe in the cloud or on-premise network. For the latter scenario, Darktrace will deploy a physical appliance that ingests real-time network traffic via a SPAN port or network tap, allowing it to correlate patterns across the entire digital ecosystem.

Figure 2: A hybrid cloud deployment scenario, with multi-cloud infrastructure across AWS, Azure and GCP

For hybrid SaaS deployments, Darktrace will deploy provider-specific Darktrace Security Modules on either a physical or cloud-based Darktrace probe, in addition to any other relevant vSensors and OS-Sensors in place. SaaS data is then analyzed and correlated with traffic and user behaviors across AWS, other cloud environments, and any on- and off- premise cyber-physical infrastructure.

Figure 3: A hybrid SaaS deployment scenario

Defense against the full range of threats in the cloud

With the deep insight and powerful reaction capabilities of Cyber AI, Darktrace DETECT & RESPOND are the only proven technologies to stop the full range of cyber-threats in the cloud, including:

  • Critical misconfigurations
  • Insider threat
  • Compromised credentials
  • Novel and advanced malware
  • Password brute-force attacks
  • Data exfiltration
  • Lateral movement
  • Man-in-the-middle attacks
  • Crypto-jacking
  • Violations of policy

Case Studies

Crypto mining malware inadvertently installed

Darktrace detected a mistake from a junior DevOps engineer in a multinational organization with workloads across AWS and Azure and leveraging containerized systems like Docker and Kubernetes. The engineer accidentally downloaded an update that included a crypto miner, which led to an infection across multiple cloud production systems.

After the initial infection, the malware started beaconing out to an external command and control server, which was immediately picked up by Darktrace. With the external connection established and the attack mission instructions delivered, the crypto malware infection was then able to rapidly spread across the organization’s expansive cloud infrastructure at machine speed, infecting 20 cloud servers in under 15 seconds.

Extensive visibility into the organization’s AWS environment via VPC traffic mirroring was a key factor allowing Darktrace Cyber AI to identify the scale of the attack. With the dynamic and unified view across the company’s sprawling hybrid and multi-cloud infrastructure provided by Darktrace, the company’s security team was able to contain the attack within minutes, rather than hours or days. Even though the attack moved at machine speed, by leveraging solutions like VPC traffic mirroring to continuously analyze behavior in the cloud, Darktrace caught the threat at an early enough stage – well before the costs could start to mount.

Developer misuse of AWS cloud infrastructure

At an insurance group, a DevOps Engineer was attempting to build a parallel back-up infrastructure within AWS to replicate the organization’s data center production systems. The technical implementation was perfect, and the back-up systems were created – however, the cost of running the system would have been several million dollars per year.

The DevOps Engineer was unaware of the costs associated with the project and kept management in the dark. The cloud infrastructure was launched, and the costs started rising. Yet with real-time access to the company’s AWS environment provided by VPC traffic mirroring, Darktrace’s Cyber AI was immediately alerted to this unusual behavior, allowing the security team to take preventative action immediately.

With Darktrace Cyber AI, embrace the benefits of AWS

As organizations increasingly turn to the cloud and the threat surface continues to expand, security teams need self-learning AI on their side to gain the strongest insights, illuminate every blind spot, and stop all attacks.

By providing an enterprise-wide Cyber AI platform, Darktrace helps teams overcome the traditional security challenge of manually piecing together incidents across disparate corners of an organization. The unified visibility and control offered by Darktrace PREVENT, DETECTRESPOND, & HEAL reduces the complexity and dashboard fatigue that many teams continue to struggle with, while the system’s multi-dimensional insight enhances its decision-making and threat confidence. Darktrace further augments this process with the Immune System’s AI Analyst capability, which takes the additional step of automatically investigating threats detected by Darktrace and producing concise, AI-generated reports that communicate the full scope of an incident.

With the granular, real-time visibility of VPC traffic mirroring Darktrace, you can be certain your AWS cloud environments are always protected.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Andrew Tsonchev
VP of Technology

Andrew is a technical expert on cyber security and advises Darktrace’s strategic customers on advanced threat defense, AI and autonomous response. He has a background in threat analysis and research, and holds a first-class degree in physics from Oxford University and a first-class degree in philosophy from King’s College London. His comments on cyber security and the threat to critical national infrastructure have been reported in international media, including CNBC and the BBC World.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

December 9, 2024

/

Inside the SOC

A snake in the net: Defending against AiTM phishing threats and Mamba 2FA

Default blog imageDefault blog image

What are Adversary-in-the-Middle (AiTM) phishing kits?

Phishing-as-a-Service (PhaaS) platforms have significantly lowered the barriers to entry for cybercriminals, enabling a new wave of sophisticated phishing attacks. Among the most concerning developments in this landscape is the emergence of Adversary-in-the-Middle (AiTM) phishing kits, which enhance traditional phishing tactics by allowing attackers to intercept and manipulate communications in real-time. The PhaaS marketplace offers a wide variety of innovative capabilities, with basic services starting around USD 120 and more advanced services costing around USD 250 monthly [1].

These AiTM kits are designed to create convincing decoy pages that mimic legitimate login interfaces, often pre-filling user information to increase credibility. By acting as a man-in-the-middle, attackers can harvest sensitive data such as usernames, passwords, and even multi-factor authentication (MFA) tokens without raising immediate suspicion. This capability not only makes AiTM attacks more effective but also poses a significant challenge for cybersecurity defenses [2].

Mamba 2FA is one such example of a PhaaS strain with AiTM capabilities that has emerged as a significant threat to users of Microsoft 365 and other enterprise systems. Discovered in May 2024, Mamba 2FA employs advanced AiTM tactics to bypass MFA, making it particularly dangerous for organizations relying on these security measures.

What is Mamba 2FA?

Phishing Mechanism

Mamba 2FA employs highly convincing phishing pages that closely mimic legitimate Microsoft services like OneDrive and SharePoint. These phishing URLs are crafted with a specific structure, incorporating Base64-encoded parameters. This technique allows attackers to tailor the phishing experience to the targeted organization, making the deception more effective. If an invalid parameter is detected, users are redirected to a benign error page, which helps evade automated detection systems [5].

Figure 1: Phishing page mimicking the Microsoft OneDrive service.

Real-Time Communication

A standout feature of Mamba 2FA is its use of the Socket.IO JavaScript library. This library facilitates real-time communication between the phishing page and the attackers' backend servers. As users input sensitive information, such as usernames, passwords, and MFA tokens on the phishing site, this data is immediately relayed to the attackers, enabling swift unauthorized access [5].

Multi-Factor Authentication Bypass

Mamba 2FA specifically targets MFA methods that are not resistant to phishing, such as one-time passwords (OTPs) and push notifications. When a user enters their MFA token, it is captured in real-time by the attackers, who can then use it to access the victim's account immediately. This capability significantly undermines traditional security measures that rely on MFA for account protection.

Infrastructure and Distribution

The platform's infrastructure consists of two main components: link domains and relay servers. Link domains handle initial phishing attempts, while relay servers are responsible for stealing credentials and completing login processes on behalf of the attacker. The relay servers are designed to mask their IP addresses by using proxy services, making it more difficult for security systems to block them [3].

Evasion Techniques

To evade detection by security tools, Mamba 2FA employs several strategies:

  • Sandbox Detection: The platform can detect if it is being analyzed in a sandbox environment and will redirect users to harmless pages like Google’s 404 error page.
  • Dynamic URL Generation: The URLs used in phishing attempts are frequently rotated and often short-lived to avoid being blacklisted by security solutions.
  • HTML Attachments: Phishing emails often include HTML attachments that appear benign but contain hidden JavaScript that redirects users to the phishing page [5].

Darktrace’s Coverage of Mamba 2FA

Starting in July 2024, the Darktrace Threat Research team detected a sudden rise in Microsoft 365 customer accounts logging in from unusual external sources. These accounts were accessed from an anomalous endpoint, 2607:5500:3000:fea[::]2, and exhibited unusual behaviors upon logging into Software-as-a-Service (SaaS) accounts. This activity strongly correlates with a phishing campaign using Mamba 2FA, first documented in late June 2024 and tracked as Mamba 2FA by Sekoia [2][3].

Darktrace / IDENTITY  was able to identify the initial stages of the Mamba 2FA campaign by correlating subtle anomalies, such as unusual SaaS login locations. Using AI based on peer group analysis, it detected unusual behavior associated with these attacks. By leveraging Autonomous Response actions, Darktrace was able to neutralize these threats in every instance of the campaign detected.

On July 23, a SaaS user was observed logging in from a rare ASN and IP address, 2607:5500:3000:fea::2, originating from the US and successfully passed through MFA authentication.

Figure 2: Model Alert Event Log showing Darktrace’s detection of a SaaS user mailbox logging in from an unusual source it correlates with Mamba 2FA relay server.

Almost an hour later, the SaaS user was observed logging in from another suspicious IP address, 45.133.172[.]86, linked to ASN AS174 COGENT-174. This IP, originating from the UK, successfully passed through MFA validation.

Following this unusual access, the SaaS user was notably observed reading emails and files that could contain sensitive payment and contract information. This behavior suggests that the attacker may have been leveraging contextual information about the target to craft further malicious phishing emails or fraudulent invoices. Subsequently, the user was detected creating a new mailbox rule titled 'fdsdf'. This rule was configured to redirect emails from a specific domain to the 'Deleted Items' folder and automatically mark them as read.

Implications of Unusual Email Rules

Such unusual email rule configurations are a common tactic employed by attackers. They often use these rules to automatically forward emails containing sensitive keywords—such as "invoice”, "payment", or "confidential"—to an external address. Additionally, these rules help conceal malicious activities, keeping them hidden from the target and allowing the attacker to operate undetected.

Figure 3: The model alert “SaaS / Compliance / Anomalous New Email Rule,” pertaining to the unusual email rule created by the SaaS user named ‘fdsdf’.

Blocking the action

A few minutes later, the SaaS user from the unusual IP address 45.133.172[.]86 was observed attempting to send an email with the subject “RE: Payments.” Subsequently, Darktrace detected the user engaging in activities that could potentially establish persistence in the compromised account, such as registering a new authenticator app. Recognizing this sequence of anomalous behaviors, Darktrace implemented an Autonomous Response inhibitor, disabling the SaaS user for two hours. This action effectively contained potential malicious activities, such as the distribution of phishing emails and fraudulent invoices, and gave the customer’s security team the necessary time to conduct a thorough investigation and implement appropriate security measures.

Figure 4: Device Event Log displaying Darktrace’s Autonomous Response taking action by blocking the SaaS account.
Figure 5: Darktrace / IDENTITY highlighting the 16 model alerts that triggered during the observed compromise.

In another example from mid-July, similar activities related to the campaign were observed on another customer network. A SaaS user was initially detected logging in from the unusual external endpoint 2607:5500:3000:fea[::]2.

Figure 6: The SaaS / Compromise / SaaS Anomaly Following Anomalous Login model alert was triggered by an unusual login from a suspicious IP address linked to Mamba 2FA.

A few minutes later, in the same manner as demonstrated in the previous case, the actor was observed logging in from another rare endpoint, 102.68.111[.]240. However, this time it was from a source IP located in Lagos, Nigeria, which no other user on the network had been observed connecting from. Once logged in, the SaaS user updated the settings to "User registered Authenticator App with Notification and Code," a possible attempt to maintain persistence in the SaaS account.

Figure 7: Darktrace / IDENTITY highlighted the regular locations for the SaaS user. The rarity scores associated with the Mamba 2FA IP location and another IP located in Nigeria were classified as having very low regularity scores for this user.

Based on unusual patterns of user behavior, a Cyber AI Analyst Incident was also generated, detailing all potential account hijacking activities. Darktrace also applied an Autonomous Response action, disabling the user for over five hours. This swift action was crucial in preventing further unauthorized access, potential data breaches and further implications.

Figure 8: Cyber AI Analyst Incident detailing the unusual activities related to the SaaS account hijacking.

Since the customer had subscribed to Darktrace Security Operations Centre (SOC) services, Darktrace analysts conducted an additional human investigation confirming the account compromise.

How Darktrace Combats Phishing Threats

The initial entry point for Mamba 2FA account compromises primarily involves phishing campaigns using HTML attachments and deceptive links. These phishing attempts are designed to mimic legitimate Microsoft services, such as OneDrive and SharePoint, making them appear authentic to unsuspecting users. Darktrace / EMAIL leverages multiple capabilities to analyze email content for known indicators of phishing. This includes looking for suspicious URLs, unusual attachments (like HTML files with embedded JavaScript), and signs of social engineering tactics commonly used in phishing campaigns like Mamba 2FA. With these capabilities, Darktrace successfully detected Mamba 2FA phishing emails in networks where this tool is integrated into the security layers, consequently preventing further implications and account hijacks of their users.

Mamba 2FA URL Structure and Domain Names

The URL structure used in Mamba 2FA phishing attempts is specifically designed to facilitate the capture of user credentials and MFA tokens while evading detection. These phishing URLs typically follow a pattern that incorporates Base64-encoded parameters, which play a crucial role in the operation of the phishing kit.

The URLs associated with Mamba 2FA phishing pages generally follow this structure [6]:

https://{domain}/{m,n,o}/?{Base64 string}

Below are some potential Mamba 2FA phishing emails, with the Base64 strings already decoded, that were classified as certain threats by Darktrace / EMAIL. This classification was based on identifying multiple suspicious characteristics, such as HTML attachments containing JavaScript code, emails from senders with no previous association with the recipients, analysis of redirect links, among others. These emails were autonomously blocked from being delivered to users' inboxes.

Figure 9: Darktrace / EMAIL highlighted a possible phishing email from Mamba 2FA, which was classified as a 100% anomaly.
Figure 10: Darktrace / EMAIL highlighted a URL that resembles the characteristics associated with Mamba 2FA.

Conclusion

The rise of PhaaS platforms and the advent of AiTM phishing kits represent a concerning evolution in cyber threats, pushing the boundaries of traditional phishing tactics and exposing significant vulnerabilities in current cybersecurity defenses. The ability of these attacks to effortlessly bypass traditional security measures like MFA underscores the need for more sophisticated, adaptive strategies to combat these evolving threats.

By identifying and responding to anomalous activities within Microsoft 365 accounts, Darktrace not only highlights the importance of comprehensive monitoring but also sets a new standard for proactive threat detection. Furthermore, the autonomous threat response capabilities and the exceptional proficiency of Darktrace / EMAIL in intercepting and neutralizing sophisticated phishing attacks illustrate a robust defense mechanism that can effectively safeguard users and maintain the integrity of digital ecosystems.

Credit to Patrick Anjos (Senior Cyber Analyst) and Nahisha Nobregas (Senior Cyber Analyst)

Appendices

Darktrace Model Detections

  • SaaS / Access / M365 High Risk Level Login
  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS / Compromise / Unusual Login and New Email Rule
  • SaaS / Email Nexus / Suspicious Internal Exchange Activity
  • SaaS / Compliance / Anomalous New Email Rule
  • SaaS / Email Nexus / Possible Outbound Email Spam
  • SaaS / Compromise / Unusual Login and Account Update
  • SaaS / Compromise / SaaS Anomaly Following Anomalous Login
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent
  • SaaS / Unusual Activity / Multiple Unusual SaaS Activities
  • SaaS / Email Nexus / Unusual Login Location Following Link to File Storage
  • SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential
  • IaaS / Compliance / Uncommon Azure External User Invite
  • SaaS / Compliance / M365 External User Added to Group
  • SaaS / Access / M365 High Risk Level Login
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS/ Unusual Activity / Unusual MFA Auth and SaaS Activity
  • SaaS / Compromise / Unusual Login and Account Update

Cyber AI Analyst Incidents:

  • Possible Hijack of Office365 Account
  • Possible Hijack of AzureActiveDirectory Account
  • Possible Unsecured Office365 Resource

List of Indicators of Compromise (IoCs)

IoC       Type    Description + Confidence

2607:5500:3000:fea[::]2 - IPv6 - Possible Mamba 2FA relay server

2607:5500:3000:1cab:[:]2 - IPv6 - Possible Mamba 2FA relay server

References

1.     https://securityaffairs.com/136953/cyber-crime/caffeine-phishing-platform.html

2.     https://any.run/cybersecurity-blog/analysis-of-the-phishing-campaign/

3.     https://www.bleepingcomputer.com/news/security/new-mamba-2fa-bypass-service-targets-microsoft-365-accounts/

4.     https://cyberinsider.com/microsoft-365-accounts-targeted-by-new-mamba-2fa-aitm-phishing-threat/

5.     https://blog.sekoia.io/mamba-2fa-a-new-contender-in-the-aitm-phishing-ecosystem/

MITRE ATT&CK Mapping

Tactic – Technique

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - Cloud Accounts

DISCOVERY - Cloud Service Dashboard

RESOURCE DEVELOPMENT - Compromise Accounts

CREDENTIAL ACCESS - Steal Web Session Cookie

PERSISTENCE - Account Manipulation

PERSISTENCE - Outlook Rules

RESOURCE DEVELOPMENT - Email Accounts

INITIAL ACCESS - Phishing

Continue reading
About the author
Patrick Anjos
Senior Cyber Analyst

Blog

/

December 9, 2024

/

Cloud

Protecting your hybrid cloud: The future of cloud security in 2025 and beyond

Default blog imageDefault blog image

Cloud security in 2025

The future of cybersecurity is being shaped by the rapid adoption of cloud technologies.

As Gartner reports, “By 2027, more than 70% of enterprises will use industry cloud platforms to accelerate their business initiatives, up from less than 15% in 2023” [1].

As organizations continue to transition workloads and sensitive data to cloud environments, the complexity of securing distributed infrastructures grows. In 2025, cloud security will need to address increasingly sophisticated threats with innovative approaches to ensure resilience and trust.

Emerging threats in cloud security:

  1. Supply chain attacks in the cloud: Threat actors are targeting vulnerabilities in cloud networks, including third-party integrations and APIs. These attacks can have wide-spanning impacts, jeopardizing data security and possibly even compromising multiple organizations at once. As a result, robust detection and response capabilities are essential to identify and neutralize these attacks before they escalate.
  2. Advanced misconfiguration exploits: Misconfigurations remain a leading cause of cloud security breaches. Attackers are exploiting these vulnerabilities across dynamic infrastructures, underscoring the need for tools that provide continuous compliance validation in the future of cloud computing.
  3. Credential theft with evolving Tactics, Techniques, and Procedures (TTPs): While credential theft can result from phishing attacks, it can also happen through other means like malware, lateral movement, data breaches, weak and reused passwords, and social engineering. Adversarial innovation in carrying out these attacks requires security teams to use proactive defense strategies.
  4. Insider threats and privilege misuse: Inadequate monitoring of Identity and Access Management (IAM) in cloud security increases the risk of insider threats. The adoption of zero-trust architectures is key to mitigating these risks.
  5. Threats exploiting dynamic cloud scaling: Attackers take advantage of the dynamic nature of cloud computing, leveraging ephemeral workloads and autoscaling features to evade detection. This makes adaptive and AI-driven detection and response critical because it can more easily parse behavioral data that would take human security teams longer to investigate.

Where the industry is headed

In 2025, cloud infrastructures will become even more distributed and interconnected. Multi-cloud and hybrid models will dominate, so organizations will have to optimize workloads across platforms. At the same time, the growing adoption of edge computing and containerized applications will decentralize operations further. These trends demand security solutions that are agile, unified, and capable of adapting to rapid changes in cloud environments.

Emerging challenges in securing cloud environments

The transition to highly distributed and dynamic cloud ecosystems introduces the following key challenges:

  1. Limited visibility
    As organizations adopt multiple platforms and services, gaining a unified view of cloud architectures becomes increasingly difficult. This lack of visibility makes it unclear where sensitive data resides, which identities can access it and how, and if there are potential vulnerabilities in configurations and API infrastructure. Without end-to-end monitoring, detecting and mitigating threats in real time becomes nearly impossible.
  2. Complex environments
    The blend of public, private, and hybrid clouds, coupled with diverse service types (SaaS, PaaS, IaaS), creates a security landscape rife with configuration challenges. Each layer adds complexity, increasing the risk of misconfigurations, inconsistent policy enforcement, and gaps in defenses – all of which attackers may exploit.
  3. Dynamic nature of cloud
    Cloud infrastructures are designed to scale resources on demand, but this fluidity poses significant challenges to threat detection and incident response. Changes in configurations, ephemeral workloads, and fluctuating access points mean that on-prem network security mindsets cannot be applied to cloud security and many traditional cloud security approaches still fall short in addressing threats in real time.

Looking forward: Protecting the cloud in 2025 and beyond

Addressing these challenges requires innovation in visibility tools, AI-driven threat detection, and policy automation. The future of cloud security hinges on solutions that adapt to complexity and scale, ensuring organizations can securely navigate the growing demands of cloud-first operations.

Unsupervised Machine Learning (ML) enhances cloud security

Unlike supervised ML, which relies on labeled datasets, unsupervised ML identifies patterns and deviations in data without predefined rules, making it particularly effective in dynamic and unpredictable environments like the cloud. By analyzing the baseline behavior in cloud environments, such as typical user activity, network traffic, and resource utilization, unsupervised ML and supporting models can identify behavioral deviations linked to suspicious activity like unusual login times, irregular API calls, or unexpected data transfers, therefore flagging them as potential threats.

Learn more about how multi-layered ML improves real-time cloud detection and response in the data sheet “AI enhances cloud security.

Agent vs. Agentless deployment

The future of cloud security is increasingly focused on combining agent-based and agentless solutions to address the complexities of hybrid and multi-cloud environments.

This integrated approach enables organizations to align security measures with the specific risks and operational needs of their assets, ensuring comprehensive protection.

Agent-based systems provide deep monitoring and active threat mitigation, making them ideal for high-security environments like financial services and healthcare, where compliance and sensitive data require stringent safeguards.

Meanwhile, agentless systems offer broad visibility and scalability, seamlessly covering dynamic cloud resources without the need for extensive deployment efforts.

Together, a combination of these approaches ensures that all parts of the cloud environment are protected according to their unique risk profiles and functional requirements.

The growing adoption of this strategy highlights a shift toward adaptive, scalable, and efficient security solutions, reflecting the priorities of a rapidly evolving cloud landscape.

Shifting responsibilities: security teams must get more comfortable with cloud mindsets

Traditionally, many organizations left cloud security to dedicated cloud teams. However, it is becoming more and more common for security teams to take on the responsibilities of securing the cloud. This is also true of organizations undergoing cloud migration and spinning up cloud infrastructure for the first time.

Notably, the usual approaches to other types of cybersecurity can’t be applied the exact same way to the cloud. With the inherent dynamism and flexibility of the cloud, the necessary security mindset differs greatly from those for the network or datacenters, with which security teams may be more familiar.

For example, IAM is both critical and distinct to cloud computing, and the associated policies, rules, and downstream impacts require intentional care. IAM rules not only govern people, but also non-human entities like service accounts, API keys, and OAuth tokens. These considerations are unique to cloud security, and established teams may need to learn new skills to reduce security gaps in the cloud.

The importance of visibility: The future of network security in the cloud

As organizations transition to cloud environments, they still have much of their data in on-premises networks, meaning that maintaining visibility across both on-premises and cloud environments is essential for securing critical assets and ensuring seamless operations. Without a unified security strategy, gaps between these infrastructures and the teams which manage them can leave organizations vulnerable to cyber-attacks.

Shared visibility across both on-premises and cloud environments unifies SecOps and DevOps teams, enabling them to generate actionable insights and develop a cohesive approach. This alignment helps confidently mitigate risks across the cloud and network while streamlining workflows and accelerating the cloud migration journey—all without compromising security or operational continuity.

Cloud security ciso's guide screenshot

Ready to transform your cloud security approach? Download the CISO's Guide to Cloud Security now!

References:

[1] Gartner, June 5, 2024, “The Expanding Enterprise Investment in Cloud Security,” Available at: https://www.gartner.com/en/newsroom/press-releases/2024-06-05-the-expanding-enterprise-investment-in-cloud-security

Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security
Your data. Our AI.
Elevate your network security with Darktrace AI