How Darktrace Antigena Thwarted Cobalt Strike Attack
05
Apr 2022
Learn how Darktrace's Antigena technology intercepted and delayed a Cobalt Strike intrusion. Discover more cybersecurity news and analyses on Darktrace's blog.
In December 2021 several CVEs[1] were issued for the Log4j vulnerabilities that sent security teams into a global panic. Threat actors are now continuously scanning external infrastructure for evidence of the vulnerability to deploy crypto-mining malware.[2] However, through December ‘21 – February ‘22, it was ransomware groups that seized the initiative.
Compromise
In January 2022, a Darktrace customer left an external-facing VMware server unpatched allowing Cobalt Strike to be successfully installed. Several IoCs indicate that Cuba Ransomware operators were behind the attack. Thanks to the Darktrace SOC service, the customer was notified of the active threat on their network, and Antigena’s Autonomous Response was able to keep the attackers at bay before encryption events took place.
Initially the VMware server breached two models relating to an anomalous script download and a new user agent both connecting via HTTP. As referenced in an earlier Darktrace blog, both of these models had been seen in previous Log4j exploits. As with all Darktrace models however, the model deck is not designed to detect only one exploit, infection variant, or APT.
Figure 1: Darktrace models breaching due to the malicious script download
Analyst investigation
A PCAP of the downloaded script showed that it contained heavily obfuscated JavaScript. After an OSINT investigation a similar script was uncovered which likely breached the same Yara rules.
Figure 2: PCAP of the Initial HTTP GET request for the Windows Script component
Figure 3: PCAP of the initial HTTP response containing obfuscated JavaScript
Figure 4: A similar script that has been observed installing additional payloads after an initial infection[3]
While not an exact match, this de-obfuscated code shared similarities to those seen when downloading other banking trojans.
Having identified on the Darktrace UI that this was a VMware server, the analyst isolated the incoming external connections to the server shortly prior to the HTTP GET requests and was able to find an IP address associated with Log4j exploit attempts.
Figure 5: Advanced Search logs showing incoming SSL connections from an IP address linked to Log4j exploits
Through Advanced Search the analyst identified spikes shortly prior and immediately after the download. This suggested the files were downloaded and executed by exploiting the Log4j vulnerability.
Antigena response
Figure 6: AI Analyst reveals both the script downloads and the unusual user agent associated with the connections
Figure 7: Antigena blocked all further connections to these endpoints following the downloads
Cobalt Strike
Cobalt Strike is a popular tool for threat actors as it can be used to perform a swathe of MITRE ATT&CK techniques. In this case the threat actor attempted command and control tactics to pivot through the network, however, Antigena responded promptly when the malware attempted to communicate with external infrastructure.
On Wednesday January 26, the DNS beacon attempted to connect to malicious infrastructure. Antigena responded, and a Darktrace SOC analyst issued an alert.
Figure 8: A Darktrace model detected the suspicious DNS requests and Antigena issued a response
The attacker changed their strategy by switching to a different server “bluetechsupply[.]com” and started issuing commands over TLS. Again, Darktrace detected these connections and AI Analyst reported on the incident (Figure 9, below). OSINT sources subsequently indicated that this destination is affiliated with Cobalt Strike and was only registered 14 days prior to this incident.
Figure 9: AI Analyst summary of the suspicious beaconing activity
Simultaneous to these connections, the device scanned multiple internal devices via an ICMP scan and then scanned the domain controller over key TCP ports including 139 and 445 (SMB). This was followed by an attempt to write an executable file to the domain controller. While Antigena intervened in the file write, another Darktrace SOC analyst was issuing an alert due to the escalation in activity.
Figure 10: AI Analyst summary of the .dll file that Antigena intercepted to the Windows/temp directory of the domain controller
Following the latest round of Antigena blocks, the threat actor attempted to change methods again. The VMware server utilised the Remote Access Tool/Trojan NetSupport Manager in an attempt to install further malware.
Figure 11: Darktrace reveals the attacker changing tactics
Despite this escalation, Darktrace yet again blocked the connection.
Perhaps due to an inability to connect to C2 infrastructure, the attack stopped in its tracks for around 12 hours. Thanks to Antigena and the Darktrace SOC team, the security team had been afforded time to remediate and recover from the active threat in their network. Interestingly, Darktrace detected a final attempt at pivoting from the machine, with an unusual PowerShell Win-RM connection to an internal machine. The modern Win-RM protocol typically utilises port 5985 for HTTP connections however pre-Windows 7 machines may use Windows 7 indicating this server was running an old OS.
While no active encryption appears to have taken place for this customer, a range of IoCs were identified which indicated that the threat actor was the group being tracked as UNC2596, the operators of Cuba Ransomware.[4]
These IoCs include: one of the initially dropped files (komar2.ps1,[5] revealed by AI Analyst in Figure 6), use of the NetSupport RAT,[6] and Cobalt Strike beaconing.[7] These were implemented to maintain persistence and move laterally across the network.
Cuba Ransomware operators prefer to exfiltrate data to their beacon infrastructure rather than using cloud storage providers, however no evidence of upload activity was observed on the customer’s network.
Concluding thoughts
Unpatched, external-facing VMware servers vulnerable to the Log4j exploit are actively being targeted by threat actors with the aim of ransomware detonation. Without using rules or signatures, Darktrace was able to detect all stages of the compromise. While Antigena delayed the attack, forcing the threat actor to change C2 servers constantly, the Darktrace analyst team relayed their findings to the security team who were able to remediate the compromised machines and prevent a final ransomware payload from detonating.
For Darktrace customers who want to find out more about Cobalt Strike, refer here for an exclusive supplement to this blog.
Appendix
Darktrace model detections
Initial Compromise:
Device / New User Agent To Internal Server
Anomalous Server Activity / New User Agent from Internet Facing System
Experimental / Large Number of Suspicious Successful Connections
Breaches from Critical Devices / DC:
Device / Large Number of Model Breaches
Antigena / Network / External Threat / Antigena File then New Outbound Block
Device / SMB Lateral Movement
Experimental / Unusual SMB Script Write V2
Compliance / High Priority Compliance Model Breach
Anomalous Server Activity / Anomalous External Activity from Critical Network Device
Experimental / Possible Cobalt Strike Server IP V2
Oops! Something went wrong while submitting the form.
Newsletter
Stay ahead of threats with the Darktrace blog newsletter
Get the latest insights from the cybersecurity landscape, including threat trends, incident analysis, and the latest Darktrace product developments – delivered directly to your inbox, monthly.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.
KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.
Network Detection and Response protects where others fail to reach
NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.
Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.
Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]
Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .
Celebrating success in leadership and innovation
Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.
Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.
Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.
Darktrace’s pioneering AI approach sets it apart
Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.
Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.
Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.
Within the KuppingerCole report, several standout strengths were listed:
Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.
Going beyond reactive security
Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:
Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.
Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.
Putting customers first
Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.
This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.
In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.
Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.
From Royal to BlackSuit: Understanding the Tactics and Impact of a Sophisticated Ransomware Strain
What is BlackSuit Ransomware?
Since late 2023, Darktrace has detected BlackSuit ransomware infiltrating multiple customer networks in the US. This ransomware has targeted a wide range of industries, including arts, entertainment, real estate, public administration, defense, and social security.
Emerging in May 2023, BlackSuit is believed to be a spinoff of Royal ransomware due to similarities in code and Conti, and most likely consists of Russian and Eastern European hackers [1]. Recorded Future reported that the ransomware had affected 95 organizations worldwide, though the actual number is likely much higher [2]. While BlackSuit does not appear to focus on any particular sector, it has targeted multiple organizations in the healthcare, education, IT, government, retail and manufacturing industries [3]. Employing double extortion tactics, BlackSuit not only encrypts files but also steals sensitive data to leverage ransom payments.
BlackSuit has demanded over USD 500 million in ransoms, with the highest individual demand reaching USD 60 million [4]. Notable targets include CDK Global, Japanese media conglomerate Kadokawa, multiple educational institutions, Octapharma Plasma, and the government of Brazil [5][6][7][8].
Darktrace’s Coverage of BlackSuit Ransomware Attack
Case 1, November 2023
The earliest attack on a Darktrace customer by BlackSuit was detected at the start of November 2023. The unusual network activity began on a weekend—a time commonly chosen by ransomware groups to increase their chances of success, as many security teams operate with reduced staff. Darktrace identified indicators of the attackers’ presence on the network for almost two weeks, during which a total of 15 devices exhibited suspicious behavior.
The attack commenced with unusual internal SMB (Server Message Block) connections using a compromised service account. An internal device uploaded an executable (zzza.exe) to a domain controller (DC) and shortly after, wrote a script (socks5.ps1) to another device. According to a Cybersecurity Advisory from the CISA (Cybersecurity and Infrastructure Security Agency, US), the script file was a PowerShell reverse proxy [9].
Approximately an hour and a half later, the device to which the script was written exhibited uncommon WMI (Windows Management Instrumentation) activity. Two hours after receiving the executable file, the DC was observed making an outgoing NTLM request, using PowerShell to remotely execute commands, distributing differently named executable files (<PART OF THE CUSTOMER’S NAME>.exe), and controlling services on other devices.
Eighteen hours after the start of the unusual activity, Darktrace detected another device making repeated connections to “mystuff.bublup[.]com”, which the aforementioned CISA Advisory identifies as a domain used by BlackSuit for data exfiltration [9].
About ten minutes after the suspicious executables were distributed across the network, and less than 24 hours after the start of the unusual activity, file encryption began. A total of ten devices were seen appending the “.blacksuit” extension to files saved on other devices using SMB, as well as writing ransom notes (readme.blacksuit.txt). The file encryption lasted less than 20 minutes.
During this compromise, external connections to endpoints related to ConnectWise’s ScreenConnect remote management tool were also seen from multiple servers, suggesting that the tool was likely being abused for command-and-control (C2) activity. Darktrace identified anomalous connectivity associated with ScreenConnect was seen up to 11 days after the start of the attack.
10 days after the start of the compromise, an account belonging to a manager was detected adding “.blacksuit” extensions to the customer’s Software-a-Service (SaaS) resources while connecting from 173.251.109[.]106. Six minutes after file encryption began, Darktrace flagged the unusual activity and recommended a block. However, since Autonomous Response mode was not enabled, the customer’s security team needed to manually confirm the action. Consequently, suspicious activity continued for about a week after the initial encryption. This included disabling authentication on the account and an unusual Teams session initiated from the suspicious external endpoint 216.151.180[.]147.
Case 2, February 2024
Another BlackSuit compromise occurred at the start of February 2024, when Darktrace identified approximately 50 devices exhibiting ransomware-related activity in another US customer’s environment. Further investigation revealed that a significant number of additional devices had also been compromised. These devices were outside Darktrace’s purview to the customer’s specific deployment configuration. The threat actors managed to exfiltrate around 4 TB of data.
Initial access to the network was gained via a virtual private network (VPN) compromise in January 2024, when suspicious connections from a Romanian IP address were detected. According to CISA, the BlackSuit group often utilizes the services of initial access brokers (IAB)—actors who specialize in infiltrating networks, such as through VPNs, and then selling that unauthorized access to other threat actors [9]. Other initial access vectors include phishing emails, RDP (Remote Desktop Protocol) compromise, and exploitation of vulnerable public-facing applications.
Similar to the first case, the file encryption began at the end of the working week. During this phase of the attack, affected devices were observed encrypting files on other internal devices using two compromised administrator accounts. The encryption activity lasted for approximately six and a half hours. Multiple alerts were sent to the customer from Darktrace’s Security Operations Centre (SOC) team, who began reviewing the activity within four minutes of the start of the file encryption.
In this case, the threat actor utilized SystemBC proxy malware for command and control (C2). A domain controller (DC) was seen connecting to 137.220.61[.]94 on the same day the file encryption took place. The DC was also observed connecting to a ProxyScrape domain around the same time, which is related to the SOCKS5 protocol used by SystemBC. During this compromise, RDP, SSH, and SMB were used for lateral movement within the network.
Signs of threat actors potentially being on the network were observed as early as two days prior to the file encryption. This included unusual internal network scanning via multiple protocols (ICMP, SMB, RDP, etc.), credential brute-forcing, SMB access failures, and anonymous SMBv1 sessions. These activities were traced to IP addresses belonging to two desktop devices in the VPN subnet associated with two regular employee user accounts. Threat actors were seemingly able to exploit at least one of these accounts due to LDAP legacy policies being in place on the customer’s environment.
Case 3, August 2024
The most recently observed BlackSuit compromise occurred in August 2024, when a device was observed attempting to brute-force the credentials of an IT administrator. This activity continued for 11 days.
Once the admin’s account was successfully compromised, network scanning, unusual WMI, and SAMR (Security Account Manager Remote protocol) activity followed. A spike in the use of this account was detected on a Sunday—once again, the attackers seemingly targeting the weekend—when the account was used by nearly 50 different devices.
The compromised admin’s account was exploited for data gathering via SMB, resulting in the movement of 200 GB of data between internal devices in preparation for exfiltration. The files were then archived using the naming convention “*.part<number>.rar”.
Around the same time, Darktrace observed data transfers from 19 internal devices to “bublup-media-production.s3.amazonaws[.]com,” totaling just over 200 GB—the same volume of data gathered internally. Connections to other Bublup domains were also detected. The internal data download and external data transfer activity took approximately 8-9 hours.
Unfortunately, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning any mitigative actions to stop the data gathering or exfiltration required human confirmation.
Once the information was stolen, the threat actor moved on to the final stage of the attack—file encryption. Five internal devices, using either the compromised admin account or connecting via anonymous SMBv1 sessions, were seen encrypting files and writing ransom notes to five other devices on the network. The attempts at file encryption continued for around two hours, but Darktrace’s Autonomous Response capability was able to block the activity and prevent the attack from escalating.
Conclusion
The persistent and evolving threat posed by ransomware like BlackSuit underscores the critical importance of robust cybersecurity measures across all sectors. Since its emergence in 2023, BlackSuit has demonstrated a sophisticated approach to infiltrating networks, leveraging double extortion tactics, and demanding substantial ransoms. The cases highlighted above illustrate the varied methods and persistence of BlackSuit attackers, from exploiting VPN vulnerabilities to abusing remote management tools and targeting off-hours to maximize impact.
Although many similar connection patterns, such as the abuse of Bublup services for data exfiltration or the use of SOCKS5 proxies for C2, were observed during cases investigated by Darktrace, BlackSuit actors are highly sophisticated and tailors their attacks to each target organization. The consequences of a successful attack can be highly disruptive, and remediation efforts can be time-consuming and costly. This includes taking the entire network offline while responding to the incident, restoring encrypted files from backups (if available), dealing with damage to the organization’s reputation, and potential lawsuits.
These BlackSuit ransomware incidents emphasize the need for continuous vigilance, timely updates to security protocols, and the adoption of autonomous response technologies to swiftly counteract such attacks. As ransomware tactics continue to evolve, organizations must remain agile and informed to protect their critical assets and data. By learning from these incidents and enhancing their cybersecurity frameworks, organizations can better defend against the relentless threat of ransomware and ensure the resilience of their operations in an increasingly digital world.
Credit to Signe Zaharka (Principal Cyber Analyst) and Adam Potter (Senior Cyber Analyst)
Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.
Focuses on anomaly detection and behavioral analysis to identify threats
Maps mitigated cases to known, publicly attributed threats for deeper context
Offers guidance on improving security posture to defend against persistent threats
Appendices
Darktrace Model Detections
Anomalous Connection / Data Sent to Rare Domain
Anomalous Connection / High Volume of New or Uncommon Service Control
Anomalous Connection / New or Uncommon Service Control
Anomalous Connection / Rare WinRM Outgoing
Anomalous Connection / SMB Enumeration
Anomalous Connection / Suspicious Activity On High Risk Device
Anomalous Connection / Suspicious Read Write Ratio
Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB
Anomalous Connection / Sustained MIME Type Conversion
.blacksuit - File extension – When encrypting the files, this extension is appended to the filename – High
readme.blacksuit.txt – ransom note - A file demanding cryptocurrency payment in exchange for decrypting the victim's files and not leaking the stolen data – High
mystuff.bublup[.]com, bublup-media-production.s3.amazonaws[.]com – data exfiltration domains related to an organization and project management app that has document sharing functionality – High
137.220.61[.]94:4001 – SystemBC C2 related IP address (this tool is often used by other ransomware groups as well) - Medium
173.251.109[.]106 – IP address seen during a SaaS BlackSuit compromise (during file encryption) – Medium
216.151.180[.]147 – IP address seen during a SaaS BlackSuit compromise (during an unusual Teams session) - Medium
MITRE ATT&CK Mapping
Tactic - Technqiue
Account Manipulation - PERSISTENCE - T1098
Alarm Suppression - INHIBIT RESPONSE FUNCTION - T0878
Application Layer Protocol - COMMAND AND CONTROL - T1071
Automated Collection - COLLECTION - T1119
Block Command Message - INHIBIT RESPONSE FUNCTION - T0803
Block Reporting Message - INHIBIT RESPONSE FUNCTION - T0804