Blog
/
Network
/
April 5, 2022

How Darktrace Antigena Thwarted Cobalt Strike Attack

Learn how Darktrace's Antigena technology intercepted and delayed a Cobalt Strike intrusion. Discover more cybersecurity news and analyses on Darktrace's blog.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dylan Evans
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
05
Apr 2022

In December 2021 several CVEs[1] were issued for the Log4j vulnerabilities that sent security teams into a global panic. Threat actors are now continuously scanning external infrastructure for evidence of the vulnerability to deploy crypto-mining malware.[2] However, through December ‘21 – February ‘22, it was ransomware groups that seized the initiative.

Compromise

In January 2022, a Darktrace customer left an external-facing VMware server unpatched allowing Cobalt Strike to be successfully installed. Several IoCs indicate that Cuba Ransomware operators were behind the attack. Thanks to the Darktrace SOC service, the customer was notified of the active threat on their network, and Antigena’s Autonomous Response was able to keep the attackers at bay before encryption events took place.

Initially the VMware server breached two models relating to an anomalous script download and a new user agent both connecting via HTTP. As referenced in an earlier Darktrace blog, both of these models had been seen in previous Log4j exploits. As with all Darktrace models however, the model deck is not designed to detect only one exploit, infection variant, or APT.

Figure 1: Darktrace models breaching due to the malicious script download

Analyst investigation

A PCAP of the downloaded script showed that it contained heavily obfuscated JavaScript. After an OSINT investigation a similar script was uncovered which likely breached the same Yara rules.

Figure 2: PCAP of the Initial HTTP GET request for the Windows Script component

Figure 3: PCAP of the initial HTTP response containing obfuscated JavaScript

Figure 4: A similar script that has been observed installing additional payloads after an initial infection[3]

While not an exact match, this de-obfuscated code shared similarities to those seen when downloading other banking trojans.

Having identified on the Darktrace UI that this was a VMware server, the analyst isolated the incoming external connections to the server shortly prior to the HTTP GET requests and was able to find an IP address associated with Log4j exploit attempts.

Figure 5: Advanced Search logs showing incoming SSL connections from an IP address linked to Log4j exploits

Through Advanced Search the analyst identified spikes shortly prior and immediately after the download. This suggested the files were downloaded and executed by exploiting the Log4j vulnerability.

Antigena response

Figure 6: AI Analyst reveals both the script downloads and the unusual user agent associated with the connections

Figure 7: Antigena blocked all further connections to these endpoints following the downloads

Cobalt Strike

Cobalt Strike is a popular tool for threat actors as it can be used to perform a swathe of MITRE ATT&CK techniques. In this case the threat actor attempted command and control tactics to pivot through the network, however, Antigena responded promptly when the malware attempted to communicate with external infrastructure.

On Wednesday January 26, the DNS beacon attempted to connect to malicious infrastructure. Antigena responded, and a Darktrace SOC analyst issued an alert.

Figure 8: A Darktrace model detected the suspicious DNS requests and Antigena issued a response

The attacker changed their strategy by switching to a different server “bluetechsupply[.]com” and started issuing commands over TLS. Again, Darktrace detected these connections and AI Analyst reported on the incident (Figure 9, below). OSINT sources subsequently indicated that this destination is affiliated with Cobalt Strike and was only registered 14 days prior to this incident.

Figure 9: AI Analyst summary of the suspicious beaconing activity

Simultaneous to these connections, the device scanned multiple internal devices via an ICMP scan and then scanned the domain controller over key TCP ports including 139 and 445 (SMB). This was followed by an attempt to write an executable file to the domain controller. While Antigena intervened in the file write, another Darktrace SOC analyst was issuing an alert due to the escalation in activity.

Figure 10: AI Analyst summary of the .dll file that Antigena intercepted to the Windows/temp directory of the domain controller

Following the latest round of Antigena blocks, the threat actor attempted to change methods again. The VMware server utilised the Remote Access Tool/Trojan NetSupport Manager in an attempt to install further malware.

Figure 11: Darktrace reveals the attacker changing tactics

Despite this escalation, Darktrace yet again blocked the connection.

Perhaps due to an inability to connect to C2 infrastructure, the attack stopped in its tracks for around 12 hours. Thanks to Antigena and the Darktrace SOC team, the security team had been afforded time to remediate and recover from the active threat in their network. Interestingly, Darktrace detected a final attempt at pivoting from the machine, with an unusual PowerShell Win-RM connection to an internal machine. The modern Win-RM protocol typically utilises port 5985 for HTTP connections however pre-Windows 7 machines may use Windows 7 indicating this server was running an old OS.

Figure 12: Darktrace detects unusual PowerShell usage

Cuba Ransomware

While no active encryption appears to have taken place for this customer, a range of IoCs were identified which indicated that the threat actor was the group being tracked as UNC2596, the operators of Cuba Ransomware.[4]

These IoCs include: one of the initially dropped files (komar2.ps1,[5] revealed by AI Analyst in Figure 6), use of the NetSupport RAT,[6] and Cobalt Strike beaconing.[7] These were implemented to maintain persistence and move laterally across the network.

Cuba Ransomware operators prefer to exfiltrate data to their beacon infrastructure rather than using cloud storage providers, however no evidence of upload activity was observed on the customer’s network.

Concluding thoughts

Unpatched, external-facing VMware servers vulnerable to the Log4j exploit are actively being targeted by threat actors with the aim of ransomware detonation. Without using rules or signatures, Darktrace was able to detect all stages of the compromise. While Antigena delayed the attack, forcing the threat actor to change C2 servers constantly, the Darktrace analyst team relayed their findings to the security team who were able to remediate the compromised machines and prevent a final ransomware payload from detonating.

For Darktrace customers who want to find out more about Cobalt Strike, refer here for an exclusive supplement to this blog.

Appendix

Darktrace model detections

Initial Compromise:

  • Device / New User Agent To Internal Server
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Experimental / Large Number of Suspicious Successful Connections

Breaches from Critical Devices / DC:

  • Device / Large Number of Model Breaches
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Device / SMB Lateral Movement
  • Experimental / Unusual SMB Script Write V2
  • Compliance / High Priority Compliance Model Breach
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Experimental / Possible Cobalt Strike Server IP V2

Lateral Movement:

  • Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Executable Uploaded to DC
  • Experimental / Large Number of Suspicious Failed Connections
  • Compromise / Suspicious Beaconing Behaviour
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Anomalous Connection / High Volume of Connections to Rare Domain
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Network Scan Activity:

  • Device / Suspicious SMB Scanning Activity
  • Experimental / Network Scan V2
  • Device / ICMP Address Scan
  • Experimental / Possible SMB Scanning Activity
  • Experimental / Possible SMB Scanning Activity V2
  • Antigena / Network / Insider Threat / Antigena Network Scan Block
  • Device / Network Scan
  • Compromise / DNS / Possible DNS Beacon
  • Device / Internet Facing Device with High Priority Alert
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

DNS / Cobalt Strike Activity:

  • Experimental / Possible Cobalt Strike Server IP
  • Experimental / Possible Cobalt Strike Server IP V2
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Script from Rare External Location

MITRE ATT&CK techniques observed

IoCs

Thanks to Brianna Leddy, Sam Lister and Marco Alanis for their contributions.

Footnotes

1.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44530
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45046
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4104

2. https://www.toolbox.com/it-security/threat-reports/news/log4j-vulnerabilities-exploitation-attempts

3. https://twitter.com/ItsReallyNick/status/899845845906071553

4. https://www.mandiant.com/resources/unc2596-cuba-ransomware

5. https://www.ic3.gov/Media/News/2021/211203-2.pdf

6. https://threatpost.com/microsoft-exchange-exploited-cuba-ransomware/178665/

7. https://www.bleepingcomputer.com/news/security/microsoft-exchange-servers-hacked-to-deploy-cuba-ransomware/

8. https://gist.github.com/blotus/f87ed46718bfdc634c9081110d243166

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dylan Evans

More in this series

No items found.

Blog

/

/

November 19, 2025

Securing Generative AI: Managing Risk in Amazon Bedrock with Darktrace / CLOUD

securing generative aiDefault blog imageDefault blog image

Security risks and challenges of generative AI in the enterprise

Generative AI and managed foundation model platforms like Amazon Bedrock are transforming how organizations build and deploy intelligent applications. From chatbots to summarization tools, Bedrock enables rapid agent development by connecting foundation models to enterprise data and services. But with this flexibility comes a new set of security challenges, especially around visibility, access control, and unintended data exposure.

As organizations move quickly to operationalize generative AI, traditional security controls are struggling to keep up. Bedrock’s multi-layered architecture, spanning agents, models, guardrails, and underlying AWS services, creates new blind spots that standard posture management tools weren’t designed to handle. Visibility gaps make it difficult to know which datasets agents can access, or how model outputs might expose sensitive information. Meanwhile, developers often move faster than security teams can review IAM permissions or validate guardrails, leading to misconfigurations that expand risk. In shared-responsibility environments like AWS, this complexity can blur the lines of ownership, making it critical for security teams to have continuous, automated insight into how AI systems interact with enterprise data.

Darktrace / CLOUD provides comprehensive visibility and posture management for Bedrock environments, automatically detecting and proactively scanning agents and knowledge bases, helping teams secure their AI infrastructure without slowing down expansion and innovation.

A real-world scenario: When access goes too far

Consider a scenario where an organization deploys a Bedrock agent to help internal staff quickly answer business questions using company knowledge. The agent was connected to a knowledge base pointing at documents stored in Amazon S3 and given access to internal services via APIs.

To get the system running quickly, developers assigned the agent a broad execution role. This role granted access to multiple S3 buckets, including one containing sensitive customer records. The over-permissioning wasn’t malicious; it stemmed from the complexity of IAM policy creation and the difficulty of identifying which buckets held sensitive data.

The team assumed the agent would only use the intended documents. However, they did not fully consider how employees might interact with the agent or how it might act on the data it processed.  

When an employee asked a routine question about quarterly customer activity, the agent surfaced insights that included regulated data, revealing it to someone without the appropriate access.

This wasn’t a case of prompt injection or model manipulation. The agent simply followed instructions and used the resources it was allowed to access. The exposure was valid under IAM policy, but entirely unintended.

How Darktrace / CLOUD prevents these risks

Darktrace / CLOUD helps organizations avoid scenarios like unintended data exposure by providing layered visibility and intelligent analysis across Bedrock and SageMaker environments. Here’s how each capability works in practice:

Configuration-level visibility

Bedrock deployments often involve multiple components: agents, guardrails, and foundation models, each with its own configuration. Darktrace / CLOUD indexes these configurations so teams can:

  1. Inspect deployed agents and confirm they are connected only to approved data sources.
  2. Track evaluation job setups and their links to Amazon S3 datasets, uncovering hidden data flows that could expose sensitive information.
  3. Maintain full awareness of all AI components, reducing the chance of overlooked assets introducing risk.

By unifying configuration data across Bedrock, SageMaker, and other AWS services, Darktrace / CLOUD provides a single source of truth for AI asset visibility. Teams can instantly see how each component is configured and whether it aligns with corporate security policies. This eliminates guesswork, accelerates audits, and helps prevent misaligned settings from creating data exposure risks.

 Agents for bedrock relationship views.
Figure 1: Agents for bedrock relationship views

Architectural awareness

Complex AI environments can make it difficult to understand how components interact. Darktrace / CLOUD generates real-time architectural diagrams that:

  1. Visualize relationships between agents, models, and datasets.
  1. Highlight unintended data access paths or risk propagation across interconnected services.

This clarity helps security teams spot vulnerabilities before they lead to exposure. By surfacing these relationships dynamically, Darktrace / CLOUD enables proactive risk management, helping teams identify architectural drift, redundant data connections, or unmonitored agents before attackers or accidental misuse can exploit them. This reduces investigation time and strengthens compliance confidence across AI workloads.

Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping
Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping

Access & privilege analysis

IAM permissions apply to every AWS service, including Bedrock. When Bedrock agents assume IAM roles that were broadly defined for other workloads, they often inherit excessive privileges. Without strict least-privilege controls, the agent may have access to far more data and services than required, creating avoidable security exposure. Darktrace / CLOUD:

  1. Reviews execution roles and user permissions to identify excessive privileges.
  2. Flags anomalies that could enable privilege escalation or unauthorized API actions.

This ensures agents operate within the principle of least privilege, reducing attack surface. Beyond flagging risky roles, Darktrace / CLOUD continuously learns normal patterns of access to identify when permissions are abused or expanded in real time. Security teams gain context into why an action is anomalous and how it could affect connected assets, allowing them to take targeted remediation steps that preserve productivity while minimizing exposure.

Misconfiguration detection

Misconfigurations are a leading cause of cloud security incidents. Darktrace / CLOUD automatically detects:

  1. Publicly accessible S3 buckets that may contain sensitive training data.
  2. Missing guardrails in Bedrock deployments, which can allow inappropriate or sensitive outputs.
  3. Other issues such as lack of encryption, direct internet access, and root access to models.  

By surfacing these risks early, teams can remediate before they become exploitable. Darktrace / CLOUD turns what would otherwise be manual reviews into automated, continuous checks, reducing time to discovery and preventing small oversights from escalating into full-scale incidents. This automated assurance allows organizations to innovate confidently while keeping their AI systems compliant and secure by design.

Configuration data for Anthropic foundation model
Figure 3: Configuration data for Anthropic foundation model

Behavioral anomaly detection

Even with correct configurations, behavior can signal emerging threats. Using AWS CloudTrail, Darktrace / CLOUD:

  1. Monitors for unusual data access patterns, such as agents querying unexpected datasets.
  2. Detects anomalous training job invocations that could indicate attempts to pollute models.

This real-time behavioral insight helps organizations respond quickly to suspicious activity. Because it learns the “normal” behavior of each Bedrock component over time, Darktrace / CLOUD can detect subtle shifts that indicate emerging risks, before formal indicators of compromise appear. The result is faster detection, reduced investigation effort, and continuous assurance that AI-driven workloads behave as intended.

Conclusion

Generative AI introduces transformative capabilities but also complex risks that evolve alongside innovation. The flexibility of services like Amazon Bedrock enables new efficiencies and insights, yet even legitimate use can inadvertently expose sensitive data or bypass security controls. As organizations embrace AI at scale, the ability to monitor and secure these environments holistically, without slowing development, is becoming essential.

By combining deep configuration visibility, architectural insight, privilege and behavior analysis, and real-time threat detection, Darktrace gives security teams continuous assurance across AI tools like Bedrock and SageMaker. Organizations can innovate with confidence, knowing their AI systems are governed by adaptive, intelligent protection.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

November 19, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Unmasking Vo1d: Inside Darktrace’s Botnet DetectionDefault blog imageDefault blog image

What is Vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK™, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Christina Kreza
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI