Blog
/
/
October 10, 2021

AI Uncovered Outlaw's Crypto Mining Operation

Discover how Darktrace AI technology exposed a hidden cryptocurrency mining scheme. Learn about the power of Darktrace AI in cybersecurity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
10
Oct 2021

Infamy is a paradoxical calling for cyber-criminals. While for some, bragging rights are a motivation for cyber-crime in and of themselves, notoriety is usually not a sensible goal for those hoping to avoid detection. This is what threat actors behind the prolific Emotet botnet learned earlier in 2021, for instance, when a coordinated effort was launched by eight national law enforcement agencies to take down their operation. There are, however, certain names which appear again and again in cyber security media and consistently avoid detection – names like Outlaw.

How Outlaw plans an ambush

Despite being active since 2018, very little is known about the hacking group Outlaw, which has staged numerous botnet and crypto-jacking attacks in China and internationally. The group is recognized by a variety of calling cards, be they repeated filenames or a tendency to illicitly mine Monero cryptocurrency, but its success ultimately lies in its tendency to adapt and evolve during months of dormancy between attacks.

Outlaw’s attacks are marked by constant changes and updates, which they work on in relative silence, before targeting security systems which are too-often defeated by the unfamiliarity of the threat.

In 2020, Outlaw gained attention when they updated their botnet toolset to find and eradicate other criminals’ crypto-jacking software, maximizing their own payout from infected devices. While it might come as no surprise that there’s no honor among cyber-thieves, this update also implemented more troubling changes which allowed Outlaw’s malware to evade traditional security defenses.

By switching disguises between each big robbery, and laying low with the loot, Outlaw ensures that traditional security systems which rely on historical attack data will never be ready for them, no matter how much notoriety is attached to their name. When organizations move beyond these systems’ rules-based approaches, however, adopting Self-Learning AI to protect their digital estates, they can begin to turn the tables on groups like Outlaw.

This blog explores how two pre-infected zombie devices in two very different parts of the world were activated by Outlaw’s botnet in the summer of 2021, and how Darktrace was able to detect the activity despite the devices being pre-infected.

Bounty hunting: First signs of attack

Figure 1: Timeline of the attack.

When a new device was added to the network of a Central American telecomms company in July, Darktrace detected a series of regular connections to two suspicious endpoints which it identified as beaconing behavior. The same behavior was noticed independently, but almost simultaneously, at a financial company in the APAC region, which was implementing Darktrace for the first time. Darktrace’s Self-Learning AI was able to identify the pre-infected devices by clustering similarly-behaving devices into peer groups within the local digital estates and therefore recognize that both were acting unusually based on a range of behaviors.

The first sign that the zombie devices had been activated by Outlaw was the initiation of cryptocurrency mining. Both devices, despite their geographical distance, were discovered to be connected to a single crypto-account, exemplifying the indiscriminate and exponential nature by which a botnet grows.

Outlaw has in the past restricted its activities to devices within China in what was assumed to be a show of caution, but recent activities like this one speak to a growing confidence.

The botnet recruitment process

The subsequent initiation of Internet Relay Chat (IRC) connections across port 443, a port more often associated with HTTPS activity, was perfectly characteristic of the Outlaw botnet’s earlier activity in 2020. IRC is a tool regularly used for communication between botmasters and zombie devices, but by using port 443 the attacker was attempting to blend into normal Internet traffic.

Soon after this exchange, the devices downloaded a shell script. Darktrace’s Cyber AI Analyst was able to intercept and recreate this shell script as it passed through the network, revealing its full function. Intriguingly, the script identified and excluded devices utilizing ARM architecture from the botnet. Due to its notably low battery consumption, ARM architecture is used primarily by portable mobile devices.

This selectivity is evidence that malicious crypto-mining remains Outlaw’s primary objective. By circumventing smaller devices which offer limited crypto-mining capabilities, this shell script focuses the botnet on the most high-powered, and therefore profitable, devices, such as desktop computers and servers. In this way, it reduces the Indicators of Compromise (IOCs) left behind by the wider botnet without greatly affecting the scale of its crypto-mining operation.

The two devices in question did not employ ARM architecture, and minutes later received a secondary payload containing a file named dota3[.]tar[.]gz, a sequel of sorts to the previous incarnation of the Outlaw botnet, ‘dota2’, which itself referenced a popular video game of the same name. With the arrival of this file, the devices appear to have been updated with the latest version of Outlaw’s world-spanning botnet.

This download was made possible in part by the attacker’s use of ‘Living off the Land’ tactics. By using only common Linux programs already present on the devices (‘curl’ and ‘Wget’ respectively), Outlaw had avoided having its activity flagged by traditional security systems. Wget, for instance, is ostensibly a reputable program used for retrieving content from web servers, and was never previously recorded as part of Outlaw’s TTPs (Tactics, Techniques, and Procedures).

By evolving and adapting its approach, Outlaw is continually able to outsmart and outrun rules-based security. Darktrace’s Self-Learning AI, however, kept pace, immediately identifying this Wget connection as suspicious and advising further investigation.

Figure 2: Cyber AI Analyst identifies Wget use on the morning of July 15 as suspicious and begins investigating potentially related HTTP connections made on the morning of July 14. In this way, it builds a complete picture of the attack.

The botnet unchained

In the following 36 hours, Darktrace detected over 6 million TCP and SSH connections directed to rare external IP addresses using ports often associated with SSH, such as 22, 2222, and 2022.

Exactly what the botnet was undertaking with these connections can only be speculated on. The devices may have been made part of a DDoS (Distributed Denial of Service) attack, bruteforce attempts on targeted SSH accounts, or simply have taken up the task of seeking and infecting new targets, further expanding the botnet. Darktrace recognized that neither device had made SSH connections prior to this event and, had Antigena been in active mode, would have enacted measures to stop them.

Figure 3: The behavior on the device before and after the bot was activated on July 14, 2021. The large spike in model breaches shows clear deviation from the established ‘pattern of life’.

Thankfully, the owners of both devices responded to Darktrace’s detection alerts soon enough to prevent any serious damage to their own digital estates. Had these devices remained under the influence of the botnet, the ramifications may have been far graver.

The use of SSH protocol would have allowed Outlaw to pivot into any number of activities, potentially compromising each device’s network further and causing data or monetary loss to their respective organizations.

Call the sheriff: Self-Learning AI

Rules-based security solutions operate much like the ‘wanted’ posters of the old west, looking out for the criminals who came through town last week without preparing for those riding over the hill today. When black hats and outlaws are adopting new looks and employing new techniques with every attack, a new way of responding to threats is needed.

Darktrace doesn’t need to know the name ‘Outlaw’, or the group’s history of evolving attacks, in order to stop them. With its fundamental self-learning approach, Darktrace learns its surroundings from the ground up, and identifies subtle deviations indicative of a cyber-threat. And with Autonomous Response, it will even take targeted action to neutralize the threat at machine speed, without the need for human intervention.

Thanks to Darktrace analyst Jun Qi Wong for his insights on the above threat find.

Learn more about how Cyber AI Analyst sheds light on complex attacks

Technical details

Darktrace model detections

  • Compliance / Crypto Currency Mining Activity
  • Compromise / High Priority Crypto Currency Mining [Enhanced Monitoring]
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Device / Increased External Connectivity
  • Unusual Activity / Unusual External Activity
  • Compromise / SSH Beacon
  • Compromise / High Frequency SSH Beacon
  • Anomalous Connection / Multiple Connections to New External TCP Port

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

Cloud

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI