Discover how Darktrace AI technology exposed a hidden cryptocurrency mining scheme. Learn about the power of Darktrace AI in cybersecurity.
Infamy is a paradoxical calling for cyber-criminals. While for some, bragging rights are a motivation for cyber-crime in and of themselves, notoriety is usually not a sensible goal for those hoping to avoid detection. This is what threat actors behind the prolific Emotet botnet learned earlier in 2021, for instance, when a coordinated effort was launched by eight national law enforcement agencies to take down their operation. There are, however, certain names which appear again and again in cyber security media and consistently avoid detection – names like Outlaw.
How Outlaw plans an ambush
Despite being active since 2018, very little is known about the hacking group Outlaw, which has staged numerous botnet and crypto-jacking attacks in China and internationally. The group is recognized by a variety of calling cards, be they repeated filenames or a tendency to illicitly mine Monero cryptocurrency, but its success ultimately lies in its tendency to adapt and evolve during months of dormancy between attacks.
Outlaw’s attacks are marked by constant changes and updates, which they work on in relative silence, before targeting security systems which are too-often defeated by the unfamiliarity of the threat.
In 2020, Outlaw gained attention when they updated their botnet toolset to find and eradicate other criminals’ crypto-jacking software, maximizing their own payout from infected devices. While it might come as no surprise that there’s no honor among cyber-thieves, this update also implemented more troubling changes which allowed Outlaw’s malware to evade traditional security defenses.
By switching disguises between each big robbery, and laying low with the loot, Outlaw ensures that traditional security systems which rely on historical attack data will never be ready for them, no matter how much notoriety is attached to their name. When organizations move beyond these systems’ rules-based approaches, however, adopting Self-Learning AI to protect their digital estates, they can begin to turn the tables on groups like Outlaw.
This blog explores how two pre-infected zombie devices in two very different parts of the world were activated by Outlaw’s botnet in the summer of 2021, and how Darktrace was able to detect the activity despite the devices being pre-infected.
Bounty hunting: First signs of attack
Figure 1: Timeline of the attack.
When a new device was added to the network of a Central American telecomms company in July, Darktrace detected a series of regular connections to two suspicious endpoints which it identified as beaconing behavior. The same behavior was noticed independently, but almost simultaneously, at a financial company in the APAC region, which was implementing Darktrace for the first time. Darktrace’s Self-Learning AI was able to identify the pre-infected devices by clustering similarly-behaving devices into peer groups within the local digital estates and therefore recognize that both were acting unusually based on a range of behaviors.
The first sign that the zombie devices had been activated by Outlaw was the initiation of cryptocurrency mining. Both devices, despite their geographical distance, were discovered to be connected to a single crypto-account, exemplifying the indiscriminate and exponential nature by which a botnet grows.
Outlaw has in the past restricted its activities to devices within China in what was assumed to be a show of caution, but recent activities like this one speak to a growing confidence.
The botnet recruitment process
The subsequent initiation of Internet Relay Chat (IRC) connections across port 443, a port more often associated with HTTPS activity, was perfectly characteristic of the Outlaw botnet’s earlier activity in 2020. IRC is a tool regularly used for communication between botmasters and zombie devices, but by using port 443 the attacker was attempting to blend into normal Internet traffic.
Soon after this exchange, the devices downloaded a shell script. Darktrace’s Cyber AI Analyst was able to intercept and recreate this shell script as it passed through the network, revealing its full function. Intriguingly, the script identified and excluded devices utilizing ARM architecture from the botnet. Due to its notably low battery consumption, ARM architecture is used primarily by portable mobile devices.
This selectivity is evidence that malicious crypto-mining remains Outlaw’s primary objective. By circumventing smaller devices which offer limited crypto-mining capabilities, this shell script focuses the botnet on the most high-powered, and therefore profitable, devices, such as desktop computers and servers. In this way, it reduces the Indicators of Compromise (IOCs) left behind by the wider botnet without greatly affecting the scale of its crypto-mining operation.
The two devices in question did not employ ARM architecture, and minutes later received a secondary payload containing a file named dota3[.]tar[.]gz, a sequel of sorts to the previous incarnation of the Outlaw botnet, ‘dota2’, which itself referenced a popular video game of the same name. With the arrival of this file, the devices appear to have been updated with the latest version of Outlaw’s world-spanning botnet.
This download was made possible in part by the attacker’s use of ‘Living off the Land’ tactics. By using only common Linux programs already present on the devices (‘curl’ and ‘Wget’ respectively), Outlaw had avoided having its activity flagged by traditional security systems. Wget, for instance, is ostensibly a reputable program used for retrieving content from web servers, and was never previously recorded as part of Outlaw’s TTPs (Tactics, Techniques, and Procedures).
By evolving and adapting its approach, Outlaw is continually able to outsmart and outrun rules-based security. Darktrace’s Self-Learning AI, however, kept pace, immediately identifying this Wget connection as suspicious and advising further investigation.
Figure 2: Cyber AI Analyst identifies Wget use on the morning of July 15 as suspicious and begins investigating potentially related HTTP connections made on the morning of July 14. In this way, it builds a complete picture of the attack.
The botnet unchained
In the following 36 hours, Darktrace detected over 6 million TCP and SSH connections directed to rare external IP addresses using ports often associated with SSH, such as 22, 2222, and 2022.
Exactly what the botnet was undertaking with these connections can only be speculated on. The devices may have been made part of a DDoS (Distributed Denial of Service) attack, bruteforce attempts on targeted SSH accounts, or simply have taken up the task of seeking and infecting new targets, further expanding the botnet. Darktrace recognized that neither device had made SSH connections prior to this event and, had Antigena been in active mode, would have enacted measures to stop them.
Figure 3: The behavior on the device before and after the bot was activated on July 14, 2021. The large spike in model breaches shows clear deviation from the established ‘pattern of life’.
Thankfully, the owners of both devices responded to Darktrace’s detection alerts soon enough to prevent any serious damage to their own digital estates. Had these devices remained under the influence of the botnet, the ramifications may have been far graver.
The use of SSH protocol would have allowed Outlaw to pivot into any number of activities, potentially compromising each device’s network further and causing data or monetary loss to their respective organizations.
Call the sheriff: Self-Learning AI
Rules-based security solutions operate much like the ‘wanted’ posters of the old west, looking out for the criminals who came through town last week without preparing for those riding over the hill today. When black hats and outlaws are adopting new looks and employing new techniques with every attack, a new way of responding to threats is needed.
Darktrace doesn’t need to know the name ‘Outlaw’, or the group’s history of evolving attacks, in order to stop them. With its fundamental self-learning approach, Darktrace learns its surroundings from the ground up, and identifies subtle deviations indicative of a cyber-threat. And with Autonomous Response, it will even take targeted action to neutralize the threat at machine speed, without the need for human intervention.
Thanks to Darktrace analyst Jun Qi Wong for his insights on the above threat find.
Compromise / High Priority Crypto Currency Mining [Enhanced Monitoring]
Anomalous Connection / New User Agent to IP Without Hostname
Anomalous File / Zip or Gzip from Rare External Location
Anomalous Connection / Application Protocol on Uncommon Port
Device / Increased External Connectivity
Unusual Activity / Unusual External Activity
Compromise / SSH Beacon
Compromise / High Frequency SSH Beacon
Anomalous Connection / Multiple Connections to New External TCP Port
Like this and want more?
Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Newsletter
Stay ahead of threats with the Darktrace blog newsletter
Get the latest insights from the cybersecurity landscape, including threat trends, incident analysis, and the latest Darktrace product developments – delivered directly to your inbox, monthly.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Oakley Cox
Director of Product
Oakley is a Product Manager within the Darktrace R&D team. He collaborates with global customers, including all critical infrastructure sectors and Government agencies, to ensure Darktrace/OT remains the first in class solution for OT Cyber Security. He draws on 7 years’ experience as a Cyber Security Consultant to organizations across EMEA, APAC and ANZ. His research into cyber-physical security has been published by Cyber Security journals and by CISA. Oakley has a Doctorate (PhD) from the University of Oxford.
From Royal to BlackSuit: Understanding the Tactics and Impact of a Sophisticated Ransomware Strain
What is BlackSuit Ransomware?
Since late 2023, Darktrace has detected BlackSuit ransomware infiltrating multiple customer networks in the US. This ransomware has targeted a wide range of industries, including arts, entertainment, real estate, public administration, defense, and social security.
Emerging in May 2023, BlackSuit is believed to be a spinoff of Royal ransomware due to similarities in code and Conti, and most likely consists of Russian and Eastern European hackers [1]. Recorded Future reported that the ransomware had affected 95 organizations worldwide, though the actual number is likely much higher [2]. While BlackSuit does not appear to focus on any particular sector, it has targeted multiple organizations in the healthcare, eduction, IT, government, retail and manufacturing industries [3]. Employing double extortion tactics, BlackSuit not only encrypts files but also steals sensitive data to leverage ransom payments.
BlackSuit has demanded over USD 500 million in ransoms, with the highest individual demand reaching USD 60 million [4]. Notable targets include CDK Global, Japanese media conglomerate Kadokawa, multiple educational institutions, Octapharma Plasma, and the government of Brazil [5][6][7][8].
Darktrace’s Coverage of BlackSuit Ransomware Attack
Case 1, November 2023
The earliest attack on a Darktrace customer by BlackSuit was detected at the start of November 2023. The unusual network activity began on a weekend—a time commonly chosen by ransomware groups to increase their chances of success, as many security teams operate with reduced staff. Darktrace identified indicators of the attackers’ presence on the network for almost two weeks, during which a total of 15 devices exhibited suspicious behavior.
The attack commenced with unusual internal SMB (Server Message Block) connections using a compromised service account. An internal device uploaded an executable (zzza.exe) to a domain controller (DC) and shortly after, wrote a script (socks5.ps1) to another device. According to a Cybersecurity Advisory from the CISA (Cybersecurity and Infrastructure Security Agency, US), the script file was a PowerShell reverse proxy [9].
Approximately an hour and a half later, the device to which the script was written exhibited uncommon WMI (Windows Management Instrumentation) activity. Two hours after receiving the executable file, the DC was observed making an outgoing NTLM request, using PowerShell to remotely execute commands, distributing differently named executable files (<PART OF THE CUSTOMER’S NAME>.exe), and controlling services on other devices.
Eighteen hours after the start of the unusual activity, Darktrace detected another device making repeated connections to “mystuff.bublup[.]com”, which the aforementioned CISA Advisory identifies as a domain used by BlackSuit for data exfiltration [9].
About ten minutes after the suspicious executables were distributed across the network, and less than 24 hours after the start of the unusual activity, file encryption began. A total of ten devices were seen appending the “.blacksuit” extension to files saved on other devices using SMB, as well as writing ransom notes (readme.blacksuit.txt). The file encryption lasted less than 20 minutes.
During this compromise, external connections to endpoints related to ConnectWise’s ScreenConnect remote management tool were also seen from multiple servers, suggesting that the tool was likely being abused for command-and-control (C2) activity. Darktrace identified anomalous connectivity associated with ScreenConnect was seen up to 11 days after the start of the attack.
10 days after the start of the compromise, an account belonging to a manager was detected adding “.blacksuit” extensions to the customer’s Software-a-Service (SaaS) resources while connecting from 173.251.109[.]106. Six minutes after file encryption began, Darktrace flagged the unusual activity and recommended a block. However, since Autonomous Response mode was not enabled, the customer’s security team needed to manually confirm the action. Consequently, suspicious activity continued for about a week after the initial encryption. This included disabling authentication on the account and an unusual Teams session initiated from the suspicious external endpoint 216.151.180[.]147.
Case 2, February 2024
Another BlackSuit compromise occurred at the start of February 2024, when Darktrace identified approximately 50 devices exhibiting ransomware-related activity in another US customer’s environment. Further investigation revealed that a significant number of additional devices had also been compromised. These devices were outside Darktrace’s purview to the customer’s specific deployment configuration. The threat actors managed to exfiltrate around 4 TB of data.
Initial access to the network was gained via a virtual private network (VPN) compromise in January 2024, when suspicious connections from a Romanian IP address were detected. According to CISA, the BlackSuit group often utilizes the services of initial access brokers (IAB)—actors who specialize in infiltrating networks, such as through VPNs, and then selling that unauthorized access to other threat actors [9]. Other initial access vectors include phishing emails, RDP (Remote Desktop Protocol) compromise, and exploitation of vulnerable public-facing applications.
Similar to the first case, the file encryption began at the end of the working week. During this phase of the attack, affected devices were observed encrypting files on other internal devices using two compromised administrator accounts. The encryption activity lasted for approximately six and a half hours. Multiple alerts were sent to the customer from Darktrace’s Security Operations Centre (SOC) team, who began reviewing the activity within four minutes of the start of the file encryption.
In this case, the threat actor utilized SystemBC proxy malware for command and control (C2). A domain controller (DC) was seen connecting to 137.220.61[.]94 on the same day the file encryption took place. The DC was also observed connecting to a ProxyScrape domain around the same time, which is related to the SOCKS5 protocol used by SystemBC. During this compromise, RDP, SSH, and SMB were used for lateral movement within the network.
Signs of threat actors potentially being on the network were observed as early as two days prior to the file encryption. This included unusual internal network scanning via multiple protocols (ICMP, SMB, RDP, etc.), credential brute-forcing, SMB access failures, and anonymous SMBv1 sessions. These activities were traced to IP addresses belonging to two desktop devices in the VPN subnet associated with two regular employee user accounts. Threat actors were seemingly able to exploit at least one of these accounts due to LDAP legacy policies being in place on the customer’s environment.
Case 3, August 2024
The most recently observed BlackSuit compromise occurred in August 2024, when a device was observed attempting to brute-force the credentials of an IT administrator. This activity continued for 11 days.
Once the admin’s account was successfully compromised, network scanning, unusual WMI, and SAMR (Security Account Manager Remote protocol) activity followed. A spike in the use of this account was detected on a Sunday—once again, the attackers seemingly targeting the weekend—when the account was used by nearly 50 different devices.
The compromised admin’s account was exploited for data gathering via SMB, resulting in the movement of 200 GB of data between internal devices in preparation for exfiltration. The files were then archived using the naming convention “*.part<number>.rar”.
Around the same time, Darktrace observed data transfers from 19 internal devices to “bublup-media-production.s3.amazonaws[.]com,” totaling just over 200 GB—the same volume of data gathered internally. Connections to other Bublup domains were also detected. The internal data download and external data transfer activity took approximately 8-9 hours.
Unfortunately, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning any mitigative actions to stop the data gathering or exfiltration required human confirmation.
Once the information was stolen, the threat actor moved on to the final stage of the attack—file encryption. Five internal devices, using either the compromised admin account or connecting via anonymous SMBv1 sessions, were seen encrypting files and writing ransom notes to five other devices on the network. The attempts at file encryption continued for around two hours, but Darktrace’s Autonomous Response capability was able to block the activity and prevent the attack from escalating.
Conclusion
The persistent and evolving threat posed by ransomware like BlackSuit underscores the critical importance of robust cybersecurity measures across all sectors. Since its emergence in 2023, BlackSuit has demonstrated a sophisticated approach to infiltrating networks, leveraging double extortion tactics, and demanding substantial ransoms. The cases highlighted above illustrate the varied methods and persistence of BlackSuit attackers, from exploiting VPN vulnerabilities to abusing remote management tools and targeting off-hours to maximize impact.
Although many similar connection patterns, such as the abuse of Bublup services for data exfiltration or the use of SOCKS5 proxies for C2, were observed during cases investigated by Darktrace, BlackSuit actors are highly sophisticated and tailors their attacks to each target organization. The consequences of a successful attack can be highly disruptive, and remediation efforts can be time-consuming and costly. This includes taking the entire network offline while responding to the incident, restoring encrypted files from backups (if available), dealing with damage to the organization’s reputation, and potential lawsuits.
These BlackSuit ransomware incidents emphasize the need for continuous vigilance, timely updates to security protocols, and the adoption of autonomous response technologies to swiftly counteract such attacks. As ransomware tactics continue to evolve, organizations must remain agile and informed to protect their critical assets and data. By learning from these incidents and enhancing their cybersecurity frameworks, organizations can better defend against the relentless threat of ransomware and ensure the resilience of their operations in an increasingly digital world.
Credit to Signe Zaharka (Principal Cyber Analyst) and Adam Potter (Senior Cyber Analyst)
Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.
Focuses on anomaly detection and behavioral analysis to identify threats
Maps mitigated cases to known, publicly attributed threats for deeper context
Offers guidance on improving security posture to defend against persistent threats
Appendices
Darktrace Model Detections
Anomalous Connection / Data Sent to Rare Domain
Anomalous Connection / High Volume of New or Uncommon Service Control
Anomalous Connection / New or Uncommon Service Control
Anomalous Connection / Rare WinRM Outgoing
Anomalous Connection / SMB Enumeration
Anomalous Connection / Suspicious Activity On High Risk Device
Anomalous Connection / Suspicious Read Write Ratio
Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB
Anomalous Connection / Sustained MIME Type Conversion
.blacksuit - File extension – When encrypting the files, this extension is appended to the filename – High
readme.blacksuit.txt – ransom note - A file demanding cryptocurrency payment in exchange for decrypting the victim's files and not leaking the stolen data – High
mystuff.bublup[.]com, bublup-media-production.s3.amazonaws[.]com – data exfiltration domains related to an organization and project management app that has document sharing functionality – High
137.220.61[.]94:4001 – SystemBC C2 related IP address (this tool is often used by other ransomware groups as well) - Medium
173.251.109[.]106 – IP address seen during a SaaS BlackSuit compromise (during file encryption) – Medium
216.151.180[.]147 – IP address seen during a SaaS BlackSuit compromise (during an unusual Teams session) - Medium
MITRE ATT&CK Mapping
Tactic - Technqiue
Account Manipulation - PERSISTENCE - T1098
Alarm Suppression - INHIBIT RESPONSE FUNCTION - T0878
Application Layer Protocol - COMMAND AND CONTROL - T1071
Automated Collection - COLLECTION - T1119
Block Command Message - INHIBIT RESPONSE FUNCTION - T0803
Block Reporting Message - INHIBIT RESPONSE FUNCTION - T0804
Onomastics Gymnastics: How Darktrace Detects Spoofing and Business Email Compromise in Multi-Name Users
Note: For privacy reasons, actual surnames and email addresses observed in these incidents below have been replaced with fictitious placeholder names, using the common Spanish names “Fulano” and “Mengano”.
Naming conventions
Modeling names and their variants of members of an organization is a critical component to properly detect if those same names and variants are being spoofed by malicious actors. For many predominantly English-speaking organizations, these variants can largely be captured by variants of a person’s given name (e.g. James-Jimmy-Jim) and a consistent, singular surname or family name (e.g. Smith). Naming conventions, however, are far from universal. This piece will review how Darktrace / EMAIL manages the common naming conventions of much of the Spanish-speaking world, and can use its modeling to create high-fidelity detections of multiple types of spoofing attempts.
A brief summary of the common convention across Spain and much of Spanish-speaking America: most people are given one or two given names (e.g. Roberto, Juan, María, Natalia), and their surnames are the first surname of their father, followed by the first surname of their mother. While there are various exceptions to this norm, the below graphic Wikipedia [1][2] highlights the general rule.
Detection of improper name usage
Implicit in the above comment that shortening to one surname follows the convention of using the first surname, shortening to the second surname is often a tell-tale sign of someone unfamiliar with the person or their broader culture. This can be a useful corroborating feature in detecting a spoof attempt – analogous to a spelling error.
In the case of a Spanish customer, this misuse of name shortening contributed to the detection of a spoof attempt trying to solicit a response by impersonating an internal user forwarding information about ‘Data Protection’.
While the limited communication history from the sender and the nature of the text content already marks the mail as suspicious, Darktrace / EMAIL notes the personal name used in the email is similar to a high-value user (‘whale’ to use the terminology of spearphishing). The additional context provided by the detection of the attempted spoof prompted more severe actioning of this email, leading to a ‘Hold’ action instead of a less-severe ‘Unspoof’ action via a banner on the email.
Malicious email properly using both surnames
Misusing the name-shortening convention is not the only way that Darktrace / EMAIL can detect spoofing attempts. In the case of another Spanish customer, Darktrace observed a whale impersonation being sent to 230 users with solicitation content, but no links or attachments. Although the name was modeled internally in the “Surname, Given-name” format, Darktrace identified the spoofing attempt targeting a high-value user and took action, blocking the series of emails from reaching end-user inboxes to prevent unsuspecting users from responding.
In Summary: A case of onomastics gymnastics
The variety in valid usage of human language can be a barrier to evaluating when a given text is benign or malicious. Despite this, Darktrace / EMAIL is designed to manage this variety, as exemplified by the detections of two spoofing attempts seen against organizations using the distinct Spanish-speaking world’s common naming convention. The scope of this design as seen in this onomastic context, extends to a wide range of detections surrounding emails and their behavioral anomalies.
Credit to Roberto Romeu (Principal Cyber Analyst), Justin Torres (Senior Cyber Analyst) and Natalia Sánchez Rocafort (Senior Analyst Consultant).
Discover the most advanced cloud-native AI email security solution to protect your domain and brand while preventing phishing, novel social engineering, business email compromise, account takeover, and data loss.
Gain up to 13 days of earlier threat detection and maximize ROI on your current email security
Experience 20-25% more threat blocking power with Darktrace / EMAIL
Stop the 58% of threats bypassing traditional email security