Blog
/
/
April 7, 2020

Four Ways Cyber-Criminals Fly Under the Radar

Learn how cyber criminals evade detection. Darktrace analyses the four ways they operate under the radar. Read here to stay vigilant against cyber attacks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oliver Rochford
Technical Director
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Apr 2020

The challenge of reliably attributing cyber-threats has amplified in recent years, as adversaries adopt a collection of techniques to ensure that even if their attacks are caught, they themselves escape detection and avoid punishment.

Detecting a threat is, of course, a very different technical challenge compared to tracing that activity back to a human operator. Nevertheless, at some point after the dust has settled, during the post-hoc incident analysis for example, someone somewhere may need to know who the suspects are. And in spite of all of our other advances, and also some recent successes in attributing offensive and cyber-criminal acts, only three out of every 100,000 cyber-crimes are prosecuted. Put simply, this is still an unsolved set of problems. Many of the successes we do have can be attributed more to operational security fails on the criminals’ end than any other active approaches. In fact, some recent trends have actually made reliable attribution even more challenging.

The four cyber-threat trends that make attribution difficult

There are four related trends in how threat-actors can procure and obtain attack capabilities that have resulted in an increase in complexity when attempting to reliably identify Tools, Techniques, and Procedures (TTPs) and attributing them to distinct threat-actors.

A Cybercrime-as-a-Service economy and supply chain allowing cyber-criminals to mix and match off the shelf offensive cyber capabilities.

Expansion of ‘Living off the Land’ (LoL) tool usage by threat-actors to evade traditional, signature-based security defenses, and to obfuscate their activity.

While Code Reuse has always existed in the hacker community, copying nation-state-grade attack code has recently become possible.

The barrier to entry for criminally motivated operators has been lowered, providing the means for less technical criminals, who are only limited by time and their imagination.

Figure 1: The four cyber-threat trends

Threat-actors can mix and match attack tools, creating attack stacks that can be tailored for a variety of campaigns.

Between a professional marketplace of cyber-crime tools and services, the increasing adoption of ‘Living off the Land’ techniques, and the reusing of code leaked from nation-state intelligence services, threat-actors with even the most limited technical ability can conduct highly sophisticated criminal campaigns. Prospective cyber-criminals now have four primary types of attack tools to choose from – with three of them brand new or greatly enhanced. Even more importantly, these threat-actors can mix and match attack tools, creating tactically flexible attack stacks that can be tailored for a variety of campaigns against a diverse set of victims.

Off the shelf attacks

The burgeoning and increasingly professional Cybercrime-as-a-Service market (estimated at $1.6B) provides a thriving marketplace of microservices, attack code, and attack platforms. Anyone with a motive and enough bitcoin and enthusiasm can become the next ‘cyber Don Corleone’. Many of these services offer dedicated account management and professional support 24 hours a day. The commercialization of the cyber-crime supply chain has raised the barrier to entry for Cybercrime-as-a-Service vendors, while at the same time lowering it for cyber-criminal operators.

Living off the Land

‘Living off the Land’ (LoL) and “malware-less” attacks have been on the rise for some time now. What makes these attack methods so dangerous is that they leverage standard operating system tools to conduct their nefarious business, making signature-based approaches that look for malware heuristics ineffective – including signature-based Intrusion Protection Systems.

These attacks in particular demonstrate the need for an approach to cyber security that goes beyond looking at what malware is being used. Rather than relying on static blacklists, security teams are instead turning to a more sophisticated approach that learns ‘normal’ for every user and device across an entire business. From that evolving baseline, this approach to defense can identify and contain anomalous activity indicative of a cyber-threat – all in real time.

Code reuse and repurpose

What is new, and unprecedented, is that cyber-criminals are gaining access to intelligence and nation-state grade attack code.

Hackers have always begged, borrowed, and stolen code from others, including attack code – just two notable examples include the Zeus trojan and RIG exploit kit code leaks that provided the code base for much of the current generation of threats. What is new and unprecedented is that, whether through malice or incompetence, cyber-criminals are gaining access to intelligence and nation-state grade attack code. The Shadowbroker leaks that resulted in Wannacry is one recent example of this trend, and one we expect to accelerate – especially with intelligence services actively outing each other’s methods.

Custom and bespoke techniques

The practice of hackers creating their own tools and researching their own exploits has a long and hallowed tradition, with headline-grabbing zero-days becoming more and more common. Nation-state actors in particular often make a distinction between attack operators and attack code developers, with the ability to request tailored and bespoke code and tools – not unlike the model that has been replicated in the Cybercrime-as-a-Service market. Even when developing custom tools, threat-actors frequently integrate code and exploits from other parties.

Figure 2: The four main attack tool types

When determining who is actually behind these attacks, though, what is most important is the ability to combine all four types of attack tools – this provides a further layer of obfuscation against methods that rely on pattern matching for detection whilst causing additional confusion for would-be investigators. An attacker can use any combination and variation of these tool types to create a different “Chimera” attack stack – making it that much more difficult to identify who is really the operator. Telling apart the operator from the Cybercrime-as-a-Service vendor, for example, is difficult when most of the TTPs that are evaluated are technical and derive from the tooling.

Figure 3: The TTP and Attribution Confusion Chain

Conclusion

As the challenge of attribution intensifies, our focus must turn to defending against cyber-attacks themselves.

The combination of the four threat trends outlined above has lowered the barrier to entry for criminally motivated operators. Less technical adversaries are now able to launch attacks at a speed and scale previously confined to the most organized and well-financed cyber-criminal rings. This change in circumstances has made attribution of offensive cyber activity drastically more complex, and it may be some time before the prosecution rate for cyber-crime gets good enough that it can act as a greater disincentive.

As the challenge of attribution intensifies, our focus must turn to defending against cyber-attacks themselves. You may not ever know who is attacking you, but if you can successfully thwart the full range of threats, new and old, your organization can continue to operate as normal.

Fortunately, defenders’ abilities to detect and respond to cyber-threats have significantly advanced in recent years, thanks to the latest developments in AI and machine learning. Over 3,500 organizations now rely on Cyber AI to detect and contain cyber-threats – whether attackers use pre-existing OS tools to masquerade their attacks or use bespoke and entirely new techniques to bypass rules and signatures. When a threat is identified, AI can respond autonomously by enforcing a user or device’s ‘pattern of life’, allowing ‘business as usual’ whilst ensuring the organization is protected from harm.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oliver Rochford
Technical Director

More in this series

No items found.

Blog

/

Endpoint

/

January 30, 2026

ClearFake: From Fake CAPTCHAs to Blockchain-Driven Payload Retrieval

fake captcha to blockchain driven palyload retrievalDefault blog imageDefault blog image

What is ClearFake?

As threat actors evolve their techniques to exploit victims and breach target networks, the ClearFake campaign has emerged as a significant illustration of this continued adaptation. ClearFake is a campaign observed using a malicious JavaScript framework deployed on compromised websites, impacting sectors such as e‑commerce, travel, and automotive. First identified in mid‑2023, ClearFake is frequently leveraged to socially engineer victims into installing fake web browser updates.

In ClearFake compromises, victims are steered toward compromised WordPress sites, often positioned by attackers through search engine optimization (SEO) poisoning. Once on the site, users are presented with a fake CAPTCHA. This counterfeit challenge is designed to appear legitimate while enabling the execution of malicious code. When a victim interacts with the CAPTCHA, a PowerShell command containing a download string is retrieved and executed.

Attackers commonly abuse the legitimate Microsoft HTML Application Host (MSHTA) in these operations. Recent campaigns have also incorporated Smart Chain endpoints, such as “bsc-dataseed.binance[.]org,” to obtain configuration code. The primary payload delivered through ClearFake is typically an information stealer, such as Lumma Stealer, enabling credential theft, data exfiltration, and persistent access [1].

Darktrace’s Coverage of ClearFake

Darktrace / ENDPOINT first detected activity likely associated with ClearFake on a single device on over the course of one day on November 18, 2025. The system observed the execution of “mshta.exe,” the legitimate Microsoft HTML Application Host utility. It also noted a repeated process command referencing “weiss.neighb0rrol1[.]ru”, indicating suspicious external activity. Subsequent analysis of this endpoint using open‑source intelligence (OSINT) indicated that it was a malicious, domain generation algorithm (DGA) endpoint [2].

The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.
Figure 1: The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.

This activity indicates that mshta.exe was used to contact a remote server, “weiss.neighb0rrol1[.]ru/rpxacc64mshta,” and execute the associated HTA file to initiate the next stage of the attack. OSINT sources have since heavily flagged this server as potentially malicious [3].

The first argument in this process uses the MSHTA utility to execute the HTA file hosted on the remote server. If successful, MSHTA would then run JavaScript or VBScript to launch PowerShell commands used to retrieve malicious payloads, a technique observed in previous ClearFake campaigns. Darktrace also detected unusual activity involving additional Microsoft executables, including “winlogon.exe,” “userinit.exe,” and “explorer.exe.” Although these binaries are legitimate components of the Windows operating system, threat actors can abuse their normal behavior within the Windows login sequence to gain control over user sessions, similar to the misuse of mshta.exe.

EtherHiding cover

Darktrace also identified additional ClearFake‑related activity, specifically a connection to bsc-testnet.drpc[.]org, a legitimate BNB Smart Chain endpoint. This activity was triggered by injected JavaScript on the compromised site www.allstarsuae[.]com, where the script initiated an eth_call POST request to the Smart Chain endpoint.

Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.
Figure 2: Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.

EtherHiding is a technique in which threat actors leverage blockchain technology, specifically smart contracts, as part of their malicious infrastructure. Because blockchain is anonymous, decentralized, and highly persistent, it provides threat actors with advantages in evading defensive measures and traditional tracking [4].

In this case, when a user visits a compromised WordPress site, injected base64‑encoded JavaScript retrieved an ABI string, which was then used to load and execute a contract hosted on the BNB Smart Chain.

JavaScript hosted on the compromised site www.allstaruae[.]com.
Figure 3: JavaScript hosted on the compromised site www.allstaruae[.]com.

Conducting malware analysis on this instance, the Base64 decoded into a JavaScript loader. A POST request to bsc-testnet.drpc[.]org was then used to retrieve a hex‑encoded ABI string that loads and executes the contract. The JavaScript also contained hex and Base64‑encoded functions that decoded into additional JavaScript, which attempted to retrieve a payload hosted on GitHub at “github[.]com/PrivateC0de/obf/main/payload.txt.” However, this payload was unavailable at the time of analysis.

Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 4: Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 5: Darktrace’s detection of the executable file and the malicious hostname.

Autonomous Response

As Darktrace’s Autonomous Response capability was enabled on this customer’s network, Darktrace was able to take swift mitigative action to contain the ClearFake‑related activity early, before it could lead to potential payload delivery. The affected device was blocked from making external connections to a number of suspicious endpoints, including 188.114.96[.]6, *.neighb0rrol1[.]ru, and neighb0rrol1[.]ru, ensuring that no further malicious connections could be made and no payloads could be retrieved.

Autonomous Response also acted to prevent the executable mshta.exe from initiating HTA file execution over HTTPS from this endpoint by blocking the attempted connections. Had these files executed successfully, the attack would likely have resulted in the retrieval of an information stealer, such as Lumma Stealer.

Autonomous Response’s intervention against the suspicious connectivity observed.
Figure 6: Autonomous Response’s intervention against the suspicious connectivity observed.

Conclusion

ClearFake continues to be observed across multiple sectors, but Darktrace remains well‑positioned to counter such threats. Because ClearFake’s end goal is often to deliver malware such as information stealers and malware loaders, early disruption is critical to preventing compromise. Users should remain aware of this activity and vigilant regarding fake CAPTCHA pop‑ups. They should also monitor unusual usage of MSHTA and outbound connections to domains that mimic formats such as “bsc-dataseed.binance[.]org” [1].

In this case, Darktrace was able to contain the attack before it could successfully escalate and execute. The attempted execution of HTA files was detected early, allowing Autonomous Response to intervene, stopping the activity from progressing. As soon as the device began communicating with weiss.neighb0rrol1[.]ru, an Autonomous Response inhibitor triggered and interrupted the connections.

As ClearFake continues to rise, users should stay alert to social engineering techniques, including ClickFix, that rely on deceptive security prompts.

Credit to Vivek Rajan (Senior Cyber Analyst) and Tara Gould (Malware Research Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

Process / New Executable Launched

Endpoint / Anomalous Use of Scripting Process

Endpoint / New Suspicious Executable Launched

Endpoint / Process Connection::Unusual Connection from New Process

Autonomous Response Models

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

List of Indicators of Compromise (IoCs)

  • weiss.neighb0rrol1[.]ru – URL - Malicious Domain
  • 188.114.96[.]6 – IP – Suspicious Domain
  • *.neighb0rrol1[.]ru – URL – Malicious Domain

MITRE Tactics

Initial Access, Drive-by Compromise, T1189

User Execution, Execution, T1204

Software Deployment Tools, Execution and Lateral Movement, T1072

Command and Scripting Interpreter, T1059

System Binary Proxy Execution: MSHTA, T1218.005

References

1.        https://www.kroll.com/en/publications/cyber/rapid-evolution-of-clearfake-delivery

2.        https://www.virustotal.com/gui/domain/weiss.neighb0rrol1.ru

3.        https://www.virustotal.com/gui/file/1f1aabe87e5e93a8fff769bf3614dd559c51c80fc045e11868f3843d9a004d1e/community

4.        https://www.packetlabs.net/posts/etherhiding-a-new-tactic-for-hiding-malware-on-the-blockchain/

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

Network

/

January 30, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

6. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI