Blog
/
Network
/
January 17, 2024

Detecting Trusted Network Relationship Abuse

Discover how Darktrace DETECT and the SOC team responded to a network compromise via a trusted partner relationship with this case study.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Written by
Taylor Breland
Analyst Team Lead, San Francisco
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Jan 2024

Trusted relationships between organizations and third parties have become an increasingly popular target for cyber threat actors to gain access to sensitive networks. These relationships are typically granted by organizations to external or adjacent entities and allow for the access of internal resources for business purposes.1 Trusted network relations can exist between constituent elements of an overarching corporation, IT-service providers and their customers, and even implicitly between IT product vendors and their customers.

Several high-profile compromises have occurred due to the leveraging of privileged network access by such third parties. One prominent example is the 2016 DNC network attack, in which the trust between the Democratic Congressional Campaign Committee (DCCC) and the Democratic National Committee (DNC) was exploited. Supply chain attacks, which also leverage the implicit trust between IT vendors and customers, are also on the rise with some estimates projecting that by 2025, almost half of all organizations will be impact by supply chain compromises.2 These trends may also be attributed to the prevalence of remote work as well as the growth in IT-managed service providers.3

Given the nature of such network relationships and threat techniques, signatures-based detection is heavily disadvantaged in the identification and mitigation of such trust abuses; network administrators cannot as easily use firewalls to block IPs that need access to networks. However, Darktrace DETECT™, and its Self-Learning AI, has proven successful in the identification and mitigation of these compromises. In September 2023, Darktrace observed an incident involving the abuse of such a trusted relationship on the network of a healthcare provider.

Attack Overview

In early September 2023, a Darktrace customer contacted the Darktrace Security Operations Center (SOC) through the Ask the Expert™ (ATE) service requesting assistance with suspicious activity detected on their network. Darktrace had alerted the customer’s security team to an unknown device that had appeared on their network and proceeded to perform a series of unexpected activities, including reconnaissance, lateral movement, and attempted data exfiltration.

Unfortunately for this customer, Darktrace RESPOND™ was not enabled in autonomous response mode at the time of this compromise, meaning any preventative actions suggested by RESPOND had to be applied manually by the customer’s security team after the fact.  Nevertheless, Darktrace’s prompt identification of the suspicious activity and the SOC’s investigation helped to disrupt the intrusion in its early stages, preventing it from developing into a more disruptive compromise.

Initial Access

Darktrace initially observed a new device that appeared within the customers internal network with a Network Address Translated (NAT) IP address that suggested remote access from a former partner organization’s network. Further investigation carried out by the customer revealed that poor credential policies within the partner’s organization had likely been exploited by attackers to gain access to a virtual desktop interface (VDI) machine.

Using the VDI appliance of a trusted associate, the threat actor was then able to gain access to the customer’s environment by utilizing NAT remote access infrastructure. Devices within the customer’s network had previously been utilized for remote access from the partner network when such activity was permitted and expected. Since then, access to this network was thought to have been removed for all parties. However, it became apparent that the remote access functionality remained operational. While the customer also had firewalls within the environment, a misconfiguration at the time of the attack allowed inbound port access to the remote environment resulting in the suspicious device joining the network on August 29, 2023.

Internal Reconnaissance

Shortly after the device joined the network, Darktrace observed it carrying out a string of internal reconnaissance activity. This activity was initiated with internal ICMP address connectivity, followed by internal TCP connection attempts to a range of ports associated with critical services like SMB, RDP, HTTP, RPC, and SSL. The device was also detected attempting to utilize privileged credentials, which were later identified as relating to a generic multi-purpose administrative account. The threat actor proceeded to conduct further internal reconnaissance, including reverse DNS sweeps, while also attempting to use six additional user credentials.

In addition to the widespread internal connectivity, Darktrace observed persistent connection attempts focused on the RDP and SMB protocols. Darktrace also detected additional SMB enumeration during this phase of the attacker’s reconnaissance. This reconnaissance activity largely attempted to access a wide variety of SMB shares, previously unseen by the host to identify available share types and information available for aggregation. As such, the breach host conducted a large spike in SMB writes to the server service (srvsvc) endpoint on a range of internal hosts using the credential: extramedwb. SMB writes to this endpoint traditionally indicate binding attempts.

Beginning on August 31, Darktrace identified a new host associated with the aforementioned NAT IP address. This new host appeared to have taken over as the primary host conducting the reconnaissance and lateral movement on the network taking advantage of the VDI infrastructure. Like the previous host, this one was observed sustaining reconnaissance activity on August 31, featuring elevated SMB enumeration, SMB access failures, RDP connection attempts, and reverse DNS sweeps.  The attackers utilized several credentials to execute their reconnaissance, including generic and possibly default administrative credentials, including “auditor” and “administrator”.

Figure 1: Advanced Search query highlighting anomalous activity from the second observed remote access host over the course of one week surrounding the time of the breach.

Following these initial detections by Darktrace DETECT, Darktrace’s Cyber AI Analyst™ launched an autonomous investigation into the scanning and privileged internal connectivity and linked these seemingly separate events together into one wider internal reconnaissance incident.

Figure 2: Timeline of an AI Analyst investigation carried out between August 29 and August 31, 2023, during which it detected an increased volume of scanning and unusual privileged internal connectivity.

Lateral Movement

Following the reconnaissance activity performed by the new host observed exploiting the remote access infrastructure, Darktrace detected an increase in attempts to move laterally within the customer’s network, particularly via RPC commands and SMB file writes.

Specifically, the threat actor was observed attempting RPC binds to several destination devices, which can be used in the calling of commands and/or the creation of services on destination devices. This activity was highlighted in repeated failed attempts to bind to the ntsvcs named pipe on several destination devices within the network. However, given the large number of connection attempts, Darktrace did also detect a number of successful RPC connections.

Darktrace also detected a spike in uncommon service control (SVCCTL) ExecMethod, Create, and Start service operations from the breach device.

Figure 3: Model breach details noting the affected device performing unsuccessful RPC binds to endpoints not supported on the destination device.

Additional lateral movement activity was performed using the SMB/NTLM protocols. The affected device also conducted a series of anonymous NTLM logins, whereby NTLM authentication attempts occurred without a named client principal, to a range of internal hosts. Such activity is highly indicative of malicious or unauthorized activity on the network. The host also employed the outdated SMB version 1 (SMBv1) protocol during this phase of the kill chain. The use of SMBv1 often represents a compliance issue for most networks due to the high number of exploitable vulnerabilities associated with this version of the protocol.

Lastly, Darktrace identified the internal transfer of uncommon executables, such as ‘TRMtZSqo.exe’, via SMB write. The breach device was observed writing this file to the hidden administrative share (ADMIN$) on a destination server. Darktrace recognized that this activity was highly unusual for the device and may have represented the threat actor transferring a malicious payload to the destination server for further persistence, data aggregation, and/or command and control (C2) operations. Further SMB writes of executable files, and the subsequent delete of these binaries, were observed from the device at this time. For example, the additional executable ‘JAqfhBEB.exe’ was seen being deleted by the breach device. This deletion, paired with the spike in SVCCTL Create and Start operations occurring, suggests the transfer, execution, and removal of persistence and data harvesting binaries within the network.

Figure 4: AI Analyst details highlighting the SMB file writes of the unusual executable from the remote access device during the compromise.

Conclusion

Ultimately, Darktrace was able to successfully identify and alert for suspicious activity being performed by a threat actor who had gained unauthorized access to the customer’s network by abusing one of their trusted relationships.

The identification of scanning, RPC commands and SMB sessions directly assisted the customer in their response to contain and mitigate this intrusion. The investigation carried out by the Darktrace SOC enabled the customer to promptly triage and remediate the attack, mitigating the potential damage and preventing the compromise from escalating further. Had Darktrace RESPOND been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action to inhibit the scanning, share enumerations and file write activity, thereby thwarting the attacker’s network reconnaissance and lateral movement attempts.

By exploiting trusted relationships between organizations, threat actors are often able to bypass traditional signatured-based security methods that have previously been reconfigured to allow and trust connections from and to specific endpoints. Rather than relying on the configurations of specific rules and permitted IP addresses, ports, and devices, Darktrace DETECT’s anomaly-based approach to threat detection meant it was able to identify suspicious network activity at the earliest stage, irrespective of the offending device and whether the domain or relationship was trusted.

Credit to Adam Potter, Cyber Security Analyst, Taylor Breland, Analyst Team Lead, San Francisco.

Darktrace DETECT Model Breach Coverage:

  • Device / ICMP Address Scan
  • Device / Network Scan
  • Device / Suspicious SMB Scanning Activity
  • Device / RDP Scan
  • Device / Possible SMB/NTLM Reconnaissance
  • Device / Reverse DNS Sweep
  • Anomalous Connection / SMB Enumeration
  • Device / Large Number of Model Breaches
  • Anomalous Connection / Suspicious Activity On High Risk Device
  • Unusual Activity / Possible RPC Recon Activity
  • Device / Anonymous NTLM Logins
  • Anomalous Connection / Unusual SMB Version 1 Connectivity
  • Device / Repeated Unknown RPC Service Bind Errors
  • Anomalous Connection / New or Uncommon Service Control
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Unusual Internal EXE File Transfer
  • Device / Multiple Lateral Movement Model Breaches

AI Analyst Incidents:

  • Scanning of Multiple Devices
  • Extensive Unusual RDPConnections
  • SMB Write of Suspicious File
  • Suspicious DCE-RPC Activity

MITRE ATT&CK Mapping

  • Tactic: Initial Access
  • Technique: T1199 - Trusted Relationship
  • Tactic: Discovery
  • Technique:
  • T1018 - Remote System Discovery
  • T1046 - Network Service Discovery
  • T1135 - Network Share Discovery
  • T1083 - File and Directory Discovery
  • Tactic: Lateral Movement
  • Technique:
  • T1570 - Lateral Tool Transfer
  • T1021 - Remote Services
  • T1021.002 - SMB/Windows Admin Shares
  • T1021.003 - Distributed Component Object Model
  • T1550 - Use Alternate Authentication Material

References

1https://attack.mitre.org/techniques/T1199/

2https://www.cloudflare.com/learning/insights-supply-chain-attacks/

3https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2023/m09/companies-reliance-on-it-managed-services-increases-in-2023-sector-valued-at-us-472-billion-globally.html#:~:text=IT%20channel%20partners%20selling%20managed,US%24419%20billion%20in%202022.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Written by
Taylor Breland
Analyst Team Lead, San Francisco

More in this series

No items found.

Blog

/

Network

/

August 8, 2025

Ivanti Under Siege: Investigating the Ivanti Endpoint Manager Mobile Vulnerabilities (CVE-2025-4427 & CVE-2025-4428)

ivanti cve exploitation edge infrastructure Default blog imageDefault blog image

Ivanti & Edge infrastructure exploitation

Edge infrastructure exploitations continue to prevail in today’s cyber threat landscape; therefore, it was no surprise that recent Ivanti Endpoint Manager Mobile (EPMM) vulnerabilities CVE-2025-4427 and CVE-2025-4428 were exploited targeting organizations in critical sectors such as healthcare, telecommunications, and finance across the globe, including across the Darktrace customer base in May 2025.

Exploiting these types of vulnerabilities remains a popular choice for threat actors seeking to enter an organization’s network to perform malicious activity such as cyber espionage, data exfiltration and ransomware detonation.

Vulnerabilities in Ivanti EPMM

Ivanti EPMM allows organizations to manage and configure enterprise mobile devices. On May 13, 2025, Ivanti published a security advisory [1] for their Ivanti Endpoint Manager Mobile (EPMM) devices addressing a medium and high severity vulnerability:

  • CVE-2025-4427, CVSS: 5.6: An authentication bypass vulnerability
  • CVE-2025-4428, CVSS: 7.2: Remote code execution vulnerability

Successfully exploiting both vulnerabilities at the same time could lead to unauthenticated remote code execution from an unauthenticated threat actor, which could allow them to control, manipulate, and compromise managed devices on a network [2].

Shortly after the disclosure of these vulnerabilities, external researchers uncovered evidence that they were being actively exploited in the wild and identified multiple indicators of compromise (IoCs) related to post-exploitation activities for these vulnerabilities [2] [3]. Research drew particular attention to the infrastructure utilized in ongoing exploitation activity, such as leveraging the two vulnerabilities to eventually deliver malware contained within ELF files from Amazon Web Services (AWS) S3 bucket endpoints and to deliver KrustyLoader malware for persistence. KrustyLoader is a Rust based malware that was discovered being downloaded in compromised Ivanti Connect Secure systems back in January 2024 when the zero-day critical vulnerabilities; CVE-2024-21887 and CVE-2023-46805 [10].

This suggests the involvement of the threat actor UNC5221, a suspected China-nexus espionage actor [3].

In addition to exploring the post-exploit tactics, techniques, and procedures (TTPs) observed for these vulnerabilities across Darktrace’s customer base, this blog will also examine the subtle changes and similarities in the exploitation of earlier Ivanti vulnerabilities—specifically Ivanti Connect Secure (CS) and Policy Secure (PS) vulnerabilities CVE-2023-46805 and CVE-2024-21887 in early 2024, as well as CVE-2025-0282 and CVE-2025-0283, which affected CS, PS, and Zero Trust Access (ZTA) in January 2025.

Darktrace Coverage

In May 2025, shortly after Ivanti disclosed vulnerabilities in their EPMM product, Darktrace’s Threat Research team identified attack patterns potentially linked to the exploitation of these vulnerabilities across multiple customer environments. The most noteworthy attack chain activity observed included exploit validation, payload delivery via AWS S3 bucket endpoints, subsequent delivery of script-based payloads, and connections to dpaste[.]com, possibly for dynamic payload retrieval. In a limited number of cases, connections were also made to an IP address associated with infrastructure linked to SAP NetWeaver vulnerability CVE-2025-31324, which has been investigated by Darktrace in an earlier case.

Exploit Validation

Darktrace observed devices within multiple customer environments making connections related to Out-of-Band Application Security Testing (OAST). These included a range of DNS requests and connections, most of which featured a user agent associated with the command-line tool cURL, directed toward associated endpoints. The hostnames of these endpoints consisted of a string of randomly generated characters followed by an OAST domain, such as 'oast[.]live', 'oast[.]pro', 'oast[.]fun', 'oast[.]site', 'oast[.]online', or 'oast[.]me'. OAST endpoints can be leveraged by malicious actors to trigger callbacks from targeted systems, such as for exploit validation. This activity, likely representing the initial phase of the attack chain observed across multiple environments, was also seen in the early stages of previous investigations into the exploitation of Ivanti vulnerabilities [4]. Darktrace also observed similar exploit validation activity during investigations conducted in January 2024 into the Ivanti CS vulnerabilities CVE-2023-46805 and CVE-2024-21887.

Payload Delivery via AWS

Devices across multiple customer environments were subsequently observed downloading malicious ELF files—often with randomly generated filenames such as 'NVGAoZDmEe'—from AWS S3 bucket endpoints like 's3[.]amazonaws[.]com'. These downloads occurred over HTTP connections, typically using wget or cURL user agents. Some of the ELF files were later identified to be KrustyLoader payloads using open-source intelligence (OSINT). External researchers have reported that the KrustyLoader malware is executed in cases of Ivanti EPMM exploitation to gain and maintain a foothold in target networks [2].

In one customer environment, after connections were made to the endpoint fconnect[.]s3[.]amazonaws[.]com, Darktrace observed the target system downloading the ELF file mnQDqysNrlg via the user agent Wget/1.14 (linux-gnu). Further investigation of the file’s SHA1 hash (1dec9191606f8fc86e4ae4fdf07f09822f8a94f2) linked it to the KrustyLoader malware [5]. In another customer environment, connections were instead made to tnegadge[.]s3[.]amazonaws[.]com using the same user agent, from which the ELF file “/dfuJ8t1uhG” was downloaded. This file was also linked to KrustyLoader through its SHA1 hash (c47abdb1651f9f6d96d34313872e68fb132f39f5) [6].

The pattern of activity observed so far closely mirrors previous exploits associated with the Ivanti vulnerabilities CVE-2023-46805 and CVE-2024-21887 [4]. As in those cases, Darktrace observed exploit validation using OAST domains and services, along with the use of AWS endpoints to deliver ELF file payloads. However, in this instance, the delivered payload was identified as KrustyLoader malware.

Later-stage script file payload delivery

In addition to the ELF file downloads, Darktrace also detected other file downloads across several customer environments, potentially representing the delivery of later-stage payloads.

The downloaded files included script files with the .sh extension, featuring randomly generated alphanumeric filenames. One such example is “4l4md4r.sh”, which was retrieved during a connection to the IP address 15.188.246[.]198 using a cURL-associated user agent. This IP address was also linked to infrastructure associated with the SAP NetWeaver remote code execution vulnerability CVE-2025-31324, which enables remote code execution on NetWeaver Visual Composer. External reporting has attributed this infrastructure to a China-nexus state actor [7][8][9].

In addition to the script file downloads, devices on some customer networks were also observed making connections to pastebin[.]com and dpaste[.]com, two sites commonly used to host or share malicious payloads or exploitation instructions [2]. Exploits, including those targeting Ivanti EPMM vulnerabilities, can dynamically fetch malicious commands from sites like dpaste[.]com, enabling threat actors to update payloads. Unlike the previously detailed activity, this behavior was not identified in any prior Darktrace investigations into Ivanti-related vulnerabilities, suggesting a potential shift in the tactics used in post-exploitation stages of Ivanti attacks.

Conclusion

Edge infrastructure vulnerabilities, such as those found in Ivanti EPMM and investigated across customer environments with Darktrace / NETWORK, have become a key tool in the arsenal of attackers in today’s threat landscape. As highlighted in this investigation, while many of the tactics employed by threat actors following successful exploitation of vulnerabilities remain the same, subtle shifts in their methods can also be seen.

These subtle and often overlooked changes enable threat actors to remain undetected within networks, highlighting the critical need for organizations to maintain continuous extended visibility, leverage anomaly based behavioral analysis, and deploy machine speed intervention across their environments.

Credit to Nahisha Nobregas (Senior Cyber Analyst) and Anna Gilbertson (Senior Cyber Analyst)

Appendices

Mid-High Confidence IoCs

(IoC – Type - Description)

-       trkbucket.s3.amazonaws[.]com – Hostname – C2 endpoint

-       trkbucket.s3.amazonaws[.]com/NVGAoZDmEe – URL – Payload

-       tnegadge.s3.amazonaws[.]com – Hostname – C2 endpoint

-       tnegadge.s3.amazonaws[.]com/dfuJ8t1uhG – URL – Payload

-       c47abdb1651f9f6d96d34313872e68fb132f39f5 - SHA1 File Hash – Payload

-       4abfaeadcd5ab5f2c3acfac6454d1176 - MD5 File Hash - Payload

-       fconnect.s3.amazonaws[.]com – Hostname – C2 endpoint

-       fconnect.s3.amazonaws[.]com/mnQDqysNrlg – URL - Payload

-       15.188.246[.]198 – IP address – C2 endpoint

-       15.188.246[.]198/4l4md4r.sh?grep – URL – Payload

-       185.193.125[.]65 – IP address – C2 endpoint

-       185.193.125[.]65/c4qDsztEW6/TIGHT_UNIVERSITY – URL – C2 endpoint

-       d8d6fe1a268374088fb6a5dc7e5cbb54 – MD5 File Hash – Payload

-       64.52.80[.]21 – IP address – C2 endpoint

-       0d8da2d1.digimg[.]store – Hostname – C2 endpoint

-       134.209.107[.]209 – IP address – C2 endpoint

Darktrace Model Detections

-       Compromise / High Priority Tunnelling to Bin Services (Enhanced Monitoring Model)

-       Compromise / Possible Tunnelling to Bin Services

-       Anomalous Server Activity / New User Agent from Internet Facing System

-       Compliance / Pastebin

-       Device / Internet Facing Device with High Priority Alert

-       Anomalous Connection / Callback on Web Facing Device

-       Anomalous File / Script from Rare External Location

-       Anomalous File / Incoming ELF File

-       Device / Suspicious Domain

-       Device / New User Agent

-       Anomalous Connection / Multiple Connections to New External TCP Port

-       Anomalous Connection / New User Agent to IP Without Hostname

-       Anomalous File / EXE from Rare External Location

-       Anomalous File / Internet Facing System File Download

-       Anomalous File / Multiple EXE from Rare External Locations

-       Compromise / Suspicious HTTP and Anomalous Activity

-       Device / Attack and Recon Tools

-       Device / Initial Attack Chain Activity

-       Device / Large Number of Model Alerts

-       Device / Large Number of Model Alerts from Critical Network Device

References

1.     https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-Endpoint-Manager-Mobile-EPMM?language=en_US

2.     https://blog.eclecticiq.com/china-nexus-threat-actor-actively-exploiting-ivanti-endpoint-manager-mobile-cve-2025-4428-vulnerability

3.     https://www.wiz.io/blog/ivanti-epmm-rce-vulnerability-chain-cve-2025-4427-cve-2025-4428

4.     https://www.darktrace.com/blog/the-unknown-unknowns-post-exploitation-activities-of-ivanti-cs-ps-appliances

5.     https://www.virustotal.com/gui/file/ac91c2c777c9e8638ec1628a199e396907fbb7dcf9c430ca712ec64a6f1fcbc9/community

6.     https://www.virustotal.com/gui/file/f3e0147d359f217e2aa0a3060d166f12e68314da84a4ecb5cb205bd711c71998/community

7.     https://www.virustotal.com/gui/ip-address/15.188.246.198

8.     https://blog.eclecticiq.com/china-nexus-nation-state-actors-exploit-sap-netweaver-cve-2025-31324-to-target-critical-infrastructures

9.     https://www.darktrace.com/blog/tracking-cve-2025-31324-darktraces-detection-of-sap-netweaver-exploitation-before-and-after-disclosure

10.  https://www.synacktiv.com/en/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein.

Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Nahisha Nobregas
SOC Analyst

Blog

/

Cloud

/

August 7, 2025

How CDR & Automated Forensics Transform Cloud Incident Response

cloud security investigation guy on computer doing workDefault blog imageDefault blog image

Introduction: Cloud investigations

In cloud security, speed, automation and clarity are everything. However, for many SOC teams, responding to incidents in the cloud is often very difficult especially when attackers move fast, infrastructure is ephemeral, and forensic skills are scarce.

In this blog we will walk through an example that shows exactly how Darktrace Cloud Detection and Response (CDR) and automated cloud forensics together, solve these challenges, automating cloud detection, and deep forensic investigation in a way that’s fast, scalable, and deeply insightful.

The Problem: Cloud incidents are hard to investigate

Security teams often face three major hurdles when investigating cloud detections:

Lack of forensic expertise: Most SOCs and security teams aren’t natively staffed with forensics specialists.

Ephemeral infrastructure: Cloud assets spin up and down quickly, leaving little time to capture evidence.

Lack of existing automation: Gathering forensic-level data often requires manual effort and leaves teams scrambling around during incidents — accessing logs, snapshots, and system states before they disappear. This process is slow and often blocked by permissions, tooling gaps, or lack of visibility.

How Darktrace augments cloud investigations

1. Darktrace’s CDR finds anomalous activity in the cloud

An alert is generated for a large outbound data transfer from an externally facing EC2 instance to a rare external endpoint. It’s anomalous, unexpected, and potentially serious.

2. AI-led investigation stitches together the incident for a SOC analyst to look into

When a security incident unfolds, Darktrace’s Cyber AI Analyst TM is the first to surface it, automatically correlating behaviors, surfacing anomalies, and presenting a cohesive incident summary. It’s fast, detailed, and invaluable.

Once the incident is created, more questions are raised.

  • How were the impacted resources compromised?
  • How did the attack unfold over time – what tools and malware were used?
  • What data was accessed and exfiltrated?

What you’ll see as a SOC analyst: The incident begins in Darktrace’s Threat Visualizer, where a Cyber AI Analyst incident has been generated automatically highlighting large anomalous data transfer to a suspicious external IP. This isn’t just another alert, it’s a high-fidelity signal backed by Darktrace’s Self-Learning AI.

Cyber AI Analyst incident created for anomalous outbound data transfer
Figure 1: Cyber AI Analyst incident created for anomalous outbound data transfer

The analyst can then immediately pivot to Darktrace / CLOUD’s architecture view (see below), gaining context on the asset’s environment, ingress/egress points, connected systems, potential attack paths and whether there are any current misconfigurations detected on the asset.

Darktrace / CLOUD architecture view providing critical cloud context
Figure 2: Darktrace / CLOUD architecture view providing critical cloud context

3. Automated forensic capture — No expertise required

Then comes the game-changer, Darktrace’s recent acquisition of Cado enhances its cloud forensics capabilities. From the first alert triggered, Darktrace has already kicked in and automatically processed and analyzed a full volume capture of the EC2. Everything, past and present, is preserved. No need for manual snapshots, CLI commands, or specialist intervention.

Darktrace then provides a clear timeline highlighting the evidence and preserving it. In our example we identify:

  • A brute-force attempt on a file management app, followed by a successful login
  • A reverse shell used to gain unauthorized remote access to the EC2
  • A reverse TCP connection to the same suspicious IP flagged by Darktrace
  • Attacker commands showing how the data was split and prepared for exfiltration
  • A file (a.tar) created from two sensitive archives: product_plans.zip and research_data.zip

All of this is surfaced through the timeline view, ranked by significance using machine learning. The analyst can pivot through time, correlate events, and build a complete picture of the attack — without needing cloud forensics expertise.

Darktrace even gives the ability to:

  • Download and inspect gathered files in full detail, enabling teams to verify exactly what data was accessed or exfiltrated.
  • Interact with the file system as if it were live, allowing investigators to explore directories, uncover hidden artifacts, and understand attacker movement with precision.
Figure 3 Cado critical forensic investigation automated insights
Figure 3: Cado critical forensic investigation automated insights
Figure 4: Cado forensic file analysis of reverse shell and download option
Figure 5: a.tar created from two sensitive archives: product_plans.zip and research_data.zip
Figure 6: Traverse the full file system of the asset

Why this matters?

This workflow solves the hardest parts of cloud investigation:

  1. Capturing evidence before it disappears
  2. Understanding attacker behavior in detail - automatically
  3. Linking detections to impact with full incident visibility

This kind of insight is invaluable for organizations especially regulated industries, where knowing exactly what data was affected is critical for compliance and reporting. It’s also a powerful tool for detecting insider threats, not just external attackers.

Darktrace / CLOUD and Cado together acts as a force multiplier helping with:

  • Reducing investigation time from hours to minutes
  • Preserving ephemeral evidence automatically
  • Empowering analysts with forensic-level visibility

Cloud threats aren’t slowing down. Your response shouldn’t either. Darktrace / CLOUD + Cado gives your SOC the tools to detect, contain, and investigate cloud incidents — automatically, accurately, and at scale.

[related-resource]

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security
Your data. Our AI.
Elevate your network security with Darktrace AI