Blog
/
Network
/
January 17, 2024

Detecting Trusted Network Relationship Abuse

Discover how Darktrace DETECT and the SOC team responded to a network compromise via a trusted partner relationship with this case study.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Written by
Taylor Breland
Analyst Team Lead, San Francisco
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Jan 2024

Trusted relationships between organizations and third parties have become an increasingly popular target for cyber threat actors to gain access to sensitive networks. These relationships are typically granted by organizations to external or adjacent entities and allow for the access of internal resources for business purposes.1 Trusted network relations can exist between constituent elements of an overarching corporation, IT-service providers and their customers, and even implicitly between IT product vendors and their customers.

Several high-profile compromises have occurred due to the leveraging of privileged network access by such third parties. One prominent example is the 2016 DNC network attack, in which the trust between the Democratic Congressional Campaign Committee (DCCC) and the Democratic National Committee (DNC) was exploited. Supply chain attacks, which also leverage the implicit trust between IT vendors and customers, are also on the rise with some estimates projecting that by 2025, almost half of all organizations will be impact by supply chain compromises.2 These trends may also be attributed to the prevalence of remote work as well as the growth in IT-managed service providers.3

Given the nature of such network relationships and threat techniques, signatures-based detection is heavily disadvantaged in the identification and mitigation of such trust abuses; network administrators cannot as easily use firewalls to block IPs that need access to networks. However, Darktrace DETECT™, and its Self-Learning AI, has proven successful in the identification and mitigation of these compromises. In September 2023, Darktrace observed an incident involving the abuse of such a trusted relationship on the network of a healthcare provider.

Attack Overview

In early September 2023, a Darktrace customer contacted the Darktrace Security Operations Center (SOC) through the Ask the Expert™ (ATE) service requesting assistance with suspicious activity detected on their network. Darktrace had alerted the customer’s security team to an unknown device that had appeared on their network and proceeded to perform a series of unexpected activities, including reconnaissance, lateral movement, and attempted data exfiltration.

Unfortunately for this customer, Darktrace RESPOND™ was not enabled in autonomous response mode at the time of this compromise, meaning any preventative actions suggested by RESPOND had to be applied manually by the customer’s security team after the fact.  Nevertheless, Darktrace’s prompt identification of the suspicious activity and the SOC’s investigation helped to disrupt the intrusion in its early stages, preventing it from developing into a more disruptive compromise.

Initial Access

Darktrace initially observed a new device that appeared within the customers internal network with a Network Address Translated (NAT) IP address that suggested remote access from a former partner organization’s network. Further investigation carried out by the customer revealed that poor credential policies within the partner’s organization had likely been exploited by attackers to gain access to a virtual desktop interface (VDI) machine.

Using the VDI appliance of a trusted associate, the threat actor was then able to gain access to the customer’s environment by utilizing NAT remote access infrastructure. Devices within the customer’s network had previously been utilized for remote access from the partner network when such activity was permitted and expected. Since then, access to this network was thought to have been removed for all parties. However, it became apparent that the remote access functionality remained operational. While the customer also had firewalls within the environment, a misconfiguration at the time of the attack allowed inbound port access to the remote environment resulting in the suspicious device joining the network on August 29, 2023.

Internal Reconnaissance

Shortly after the device joined the network, Darktrace observed it carrying out a string of internal reconnaissance activity. This activity was initiated with internal ICMP address connectivity, followed by internal TCP connection attempts to a range of ports associated with critical services like SMB, RDP, HTTP, RPC, and SSL. The device was also detected attempting to utilize privileged credentials, which were later identified as relating to a generic multi-purpose administrative account. The threat actor proceeded to conduct further internal reconnaissance, including reverse DNS sweeps, while also attempting to use six additional user credentials.

In addition to the widespread internal connectivity, Darktrace observed persistent connection attempts focused on the RDP and SMB protocols. Darktrace also detected additional SMB enumeration during this phase of the attacker’s reconnaissance. This reconnaissance activity largely attempted to access a wide variety of SMB shares, previously unseen by the host to identify available share types and information available for aggregation. As such, the breach host conducted a large spike in SMB writes to the server service (srvsvc) endpoint on a range of internal hosts using the credential: extramedwb. SMB writes to this endpoint traditionally indicate binding attempts.

Beginning on August 31, Darktrace identified a new host associated with the aforementioned NAT IP address. This new host appeared to have taken over as the primary host conducting the reconnaissance and lateral movement on the network taking advantage of the VDI infrastructure. Like the previous host, this one was observed sustaining reconnaissance activity on August 31, featuring elevated SMB enumeration, SMB access failures, RDP connection attempts, and reverse DNS sweeps.  The attackers utilized several credentials to execute their reconnaissance, including generic and possibly default administrative credentials, including “auditor” and “administrator”.

Figure 1: Advanced Search query highlighting anomalous activity from the second observed remote access host over the course of one week surrounding the time of the breach.

Following these initial detections by Darktrace DETECT, Darktrace’s Cyber AI Analyst™ launched an autonomous investigation into the scanning and privileged internal connectivity and linked these seemingly separate events together into one wider internal reconnaissance incident.

Figure 2: Timeline of an AI Analyst investigation carried out between August 29 and August 31, 2023, during which it detected an increased volume of scanning and unusual privileged internal connectivity.

Lateral Movement

Following the reconnaissance activity performed by the new host observed exploiting the remote access infrastructure, Darktrace detected an increase in attempts to move laterally within the customer’s network, particularly via RPC commands and SMB file writes.

Specifically, the threat actor was observed attempting RPC binds to several destination devices, which can be used in the calling of commands and/or the creation of services on destination devices. This activity was highlighted in repeated failed attempts to bind to the ntsvcs named pipe on several destination devices within the network. However, given the large number of connection attempts, Darktrace did also detect a number of successful RPC connections.

Darktrace also detected a spike in uncommon service control (SVCCTL) ExecMethod, Create, and Start service operations from the breach device.

Figure 3: Model breach details noting the affected device performing unsuccessful RPC binds to endpoints not supported on the destination device.

Additional lateral movement activity was performed using the SMB/NTLM protocols. The affected device also conducted a series of anonymous NTLM logins, whereby NTLM authentication attempts occurred without a named client principal, to a range of internal hosts. Such activity is highly indicative of malicious or unauthorized activity on the network. The host also employed the outdated SMB version 1 (SMBv1) protocol during this phase of the kill chain. The use of SMBv1 often represents a compliance issue for most networks due to the high number of exploitable vulnerabilities associated with this version of the protocol.

Lastly, Darktrace identified the internal transfer of uncommon executables, such as ‘TRMtZSqo.exe’, via SMB write. The breach device was observed writing this file to the hidden administrative share (ADMIN$) on a destination server. Darktrace recognized that this activity was highly unusual for the device and may have represented the threat actor transferring a malicious payload to the destination server for further persistence, data aggregation, and/or command and control (C2) operations. Further SMB writes of executable files, and the subsequent delete of these binaries, were observed from the device at this time. For example, the additional executable ‘JAqfhBEB.exe’ was seen being deleted by the breach device. This deletion, paired with the spike in SVCCTL Create and Start operations occurring, suggests the transfer, execution, and removal of persistence and data harvesting binaries within the network.

Figure 4: AI Analyst details highlighting the SMB file writes of the unusual executable from the remote access device during the compromise.

Conclusion

Ultimately, Darktrace was able to successfully identify and alert for suspicious activity being performed by a threat actor who had gained unauthorized access to the customer’s network by abusing one of their trusted relationships.

The identification of scanning, RPC commands and SMB sessions directly assisted the customer in their response to contain and mitigate this intrusion. The investigation carried out by the Darktrace SOC enabled the customer to promptly triage and remediate the attack, mitigating the potential damage and preventing the compromise from escalating further. Had Darktrace RESPOND been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action to inhibit the scanning, share enumerations and file write activity, thereby thwarting the attacker’s network reconnaissance and lateral movement attempts.

By exploiting trusted relationships between organizations, threat actors are often able to bypass traditional signatured-based security methods that have previously been reconfigured to allow and trust connections from and to specific endpoints. Rather than relying on the configurations of specific rules and permitted IP addresses, ports, and devices, Darktrace DETECT’s anomaly-based approach to threat detection meant it was able to identify suspicious network activity at the earliest stage, irrespective of the offending device and whether the domain or relationship was trusted.

Credit to Adam Potter, Cyber Security Analyst, Taylor Breland, Analyst Team Lead, San Francisco.

Darktrace DETECT Model Breach Coverage:

  • Device / ICMP Address Scan
  • Device / Network Scan
  • Device / Suspicious SMB Scanning Activity
  • Device / RDP Scan
  • Device / Possible SMB/NTLM Reconnaissance
  • Device / Reverse DNS Sweep
  • Anomalous Connection / SMB Enumeration
  • Device / Large Number of Model Breaches
  • Anomalous Connection / Suspicious Activity On High Risk Device
  • Unusual Activity / Possible RPC Recon Activity
  • Device / Anonymous NTLM Logins
  • Anomalous Connection / Unusual SMB Version 1 Connectivity
  • Device / Repeated Unknown RPC Service Bind Errors
  • Anomalous Connection / New or Uncommon Service Control
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Unusual Internal EXE File Transfer
  • Device / Multiple Lateral Movement Model Breaches

AI Analyst Incidents:

  • Scanning of Multiple Devices
  • Extensive Unusual RDPConnections
  • SMB Write of Suspicious File
  • Suspicious DCE-RPC Activity

MITRE ATT&CK Mapping

  • Tactic: Initial Access
  • Technique: T1199 - Trusted Relationship
  • Tactic: Discovery
  • Technique:
  • T1018 - Remote System Discovery
  • T1046 - Network Service Discovery
  • T1135 - Network Share Discovery
  • T1083 - File and Directory Discovery
  • Tactic: Lateral Movement
  • Technique:
  • T1570 - Lateral Tool Transfer
  • T1021 - Remote Services
  • T1021.002 - SMB/Windows Admin Shares
  • T1021.003 - Distributed Component Object Model
  • T1550 - Use Alternate Authentication Material

References

1https://attack.mitre.org/techniques/T1199/

2https://www.cloudflare.com/learning/insights-supply-chain-attacks/

3https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2023/m09/companies-reliance-on-it-managed-services-increases-in-2023-sector-valued-at-us-472-billion-globally.html#:~:text=IT%20channel%20partners%20selling%20managed,US%24419%20billion%20in%202022.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Written by
Taylor Breland
Analyst Team Lead, San Francisco

More in this series

No items found.

Blog

/

/

September 23, 2025

It’s Time to Rethink Cloud Investigations

cloud investigationsDefault blog imageDefault blog image

Cloud Breaches Are Surging

Cloud adoption has revolutionized how businesses operate, offering speed, scalability, and flexibility. But for security teams, this transformation has introduced a new set of challenges, especially when it comes to incident response (IR) and forensic investigations.

Cloud-related breaches are skyrocketing – 82% of breaches now involve cloud-stored data (IBM Cost of a Data Breach, 2023). Yet incidents often go unnoticed for days: according to a 2025 report by Cybersecurity Insiders, of the 65% of organizations experienced a cloud-related incident in the past year, only 9% detected it within the first hour, and 62% took more than 24 hours to remediate it (Cybersecurity Insiders, Cloud Security Report 2025).

Despite the shift to cloud, many investigation practices remain rooted in legacy on-prem approaches. According to a recent report, 65% of organizations spend approximately 3-5 days longer when investigating an incident in the cloud vs. on premises.

Cloud investigations must evolve, or risk falling behind attackers who are already exploiting the cloud’s speed and complexity.

4 Reasons Cloud Investigations Are Broken

The cloud’s dynamic nature – with its ephemeral workloads and distributed architecture – has outpaced traditional incident response methods. What worked in static, on-prem environments simply doesn’t translate.

Here’s why:

  1. Ephemeral workloads
    Containers and serverless functions can spin up and vanish in minutes. Attackers know this as well – they’re exploiting short-lived assets for “hit-and-run” attacks, leaving almost no forensic footprint. If you’re relying on scheduled scans or manual evidence collection, you’re already too late.
  2. Fragmented tooling
    Each cloud provider has its own logs, APIs, and investigation workflows. In addition, not all logs are enabled by default, cloud providers typically limit the scope of their logs (both in terms of what data they collect and how long they retain it), and some logs are only available through undocumented APIs. This creates siloed views of attacker activity, making it difficult to piece together a coherent timeline. Now layer in SaaS apps, Kubernetes clusters, and shadow IT — suddenly you’re stitching together 20+ tools just to find out what happened. Analysts call it the ‘swivel-chair Olympics,’ and it’s burning hours they don’t have.
  3. SOC overload
    Analysts spend the bulk of their time manually gathering evidence and correlating logs rather than responding to threats. This slows down investigations and increases burnout. SOC teams are drowning in noise; they receive thousands of alerts a day, the majority of which never get touched. False positives eat hundreds of hours a month, and consequently burnout is rife.  
  4. Cost of delay
    The longer an investigation takes, the higher its cost. Breaches contained in under 200 days save an average of over $1M compared to those that linger (IBM Cost of a Data Breach 2025).

These challenges create a dangerous gap for threat actors to exploit. By the time evidence is collected, attackers may have already accessed or exfiltrated data, or entrenched themselves deeper into your environment.

What’s Needed: A New Approach to Cloud Investigations

It’s time to ditch the manual, reactive grind and embrace investigations that are automated, proactive, and built for the world you actually defend. Here’s what the next generation of cloud forensics must deliver:

  • Automated evidence acquisition
    Capture forensic-level data the moment a threat is detected and before assets disappear.
  • Unified multi-cloud visibility
    Stitch together logs, timelines, and context across AWS, Azure, GCP, and hybrid environments into a single unified view of the investigation.
  • Accelerated investigation workflows
    Reduce time-to-insight from hours or days to minutes with automated analysis of forensic data, enabling faster containment and recovery.
  • Empowered SOC teams
    Fully contextualised data and collaboration workflows between teams in the SOC ensure seamless handover, freeing up analysts from manual collection tasks so they can focus on what matters: analysis and response.

Attackers are already leveraging the cloud’s agility. Defenders must do the same — adopting solutions that match the speed and scale of modern infrastructure.

Cloud Changed Everything. It’s Time to Change Investigations.  

The cloud fundamentally reshaped how businesses operate. It’s time for security teams to rethink how they investigate threats.

Forensics can no longer be slow, manual, and reactive. It must be instant, automated, and cloud-first — designed to meet the demands of ephemeral infrastructure and multi-cloud complexity.

The future of incident response isn’t just faster. It’s smarter, more scalable, and built for the environments we defend today, not those of ten years ago.  

On October 9th, Darktrace is revealing the next big thing in cloud security. Don’t miss it – sign up for the webinar.

darktrace live event launch
Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

/

September 22, 2025

Understanding the Canadian Critical Cyber Systems Protection Act

Canadian critical cyber systems protection actDefault blog imageDefault blog image

Introduction: The Canadian Critical Cyber Systems Protection Act

On 18 June 2025, the Canadian federal Government introduced Bill C-8 which, if adopted following completion of the legislative process, will enact the Critical Cyber Systems Protection Act (CCSPA) and give Canada its first federal, cross-sector and legally binding cybersecurity regime for designated critical infrastructure providers. As of August 2025, the Bill has completed first reading and stands at second reading in the Canadian House of Commons.

Political context

The measure revives most of the stalled 2022 Bill C-26 “An Act Respecting Cyber Security” which “died on Paper” when Parliament was prorogued in January 2025, in the wake of former Prime Minister Justin Trudeau’s resignation.

The new government, led by Mark Carney since March 2025, has re-tabled the package with the same two-part structure: (1) amendments to the Telecommunications Act that enable security directions to telecoms; and (2) a new CCSPA setting out mandatory cybersecurity duties for designated operators. This blog focuses on the latter.

If enacted, Canada will join fellow Five Eyes partners such as the United Kingdom and Australia, which already impose statutory cyber-security duties on operators of critical national infrastructure.

The case for new cybersecurity legislation in Canada

The Canadian cyber threat landscape has expanded. The country's national cyber authority, the Canadian Centre for Cybersecurity (Cyber Centre), recently assessed that the number of cyber incidents has “sharply increased” in the last two years, as has the severity of those incidents, with essential services providers among the targets. Likewise, in its 2025-2026 National Cyber Threat Assessment, the Cyber Centre warned that AI technologies are “amplifying cyberspace threats” by lowering barriers to entry, improving the speed and sophistication of social-engineering attacks and enabling more precise operations.

This context mirrors what we are seeing globally: adversaries, including state actors, are taking advantage of the availability and sophistication of AI tools, which they have leverage to amplify the effectiveness of their operations. In this increasingly complex landscape, regulation must keep pace and evolve in step with the risk.

What the Canadian Critical Cyber Systems Protection Act aims to achieve

  • If enacted, the CCSPA will apply to operators in federally regulated critical infrastructure sectors which are vital to national security and public safety, as further defined in “Scope” below (the “Regulated Entities”), to adopt and comply with a minimum standard of cybersecurity duties (further described below)  which align with those its Five Eyes counterparts are already adhering to.

Who does the CCSPA apply to

The CCSPA would apply to designated operators that deliver services or systems within federal jurisdiction in the following priority areas:

  • telecommunications services
  • interprovincial or international pipeline and power line systems, nuclear energy systems, transportation systems
  • banking and clearing  
  • settlement systems

The CCSPA would also grant the Governor in Council (Federal Cabinet) with powers to add or remove entities in scope via regulation.

Scope of the CCSPA

The CCSPA introduces two key instruments:

First, it strengthens cyber threat information sharing between responsible ministers, sector regulators, and the Communications Security Establishment (through the Cyber Centre).

Second, it empowers the Governor in Council (GIC) to issue Cyber Security Directions (CSDs) - binding orders requiring a designated operator to implement specified measures to protect a critical cyber system within defined timeframes.

CSDs may be tailored to an individual operator or applied to a class of operators and can address technology, process, or supplier risks. To safeguard security and commercial confidentiality, the CCSPA restricts disclosure of the existence or content of a CSD except as necessary to carry it out.

Locating decision-making with the GIC ensures that CSDs are made with a cross-government view that weighs national security, economic priorities and international agreement.

New obligations for designated providers

The CCSPA would impose key cybersecurity compliance and obligations on designated providers. As it stands, this includes:

  1. Establishing and maintaining cybersecurity programs: these will need to be comprehensive, proportionate and developed proactively. Once implemented, they will need to be continuously reviewed
  2. Mitigating supply chain risks: Regulated Entities will be required to assess their third-party products and services by conducting a supply chain analysis, and take active steps to mitigate any identified risks
  3. Reporting incidents:  Regulated Entities will need to be more transparent with their reporting, by making the Communications Security Establishment (CSE) aware of any incident which has, or could potentially have, an impact on a critical system. The reports must be made within specific timelines, but in any event within no more than 72 hours;
  4. Compliance with cybersecurity directions:  the government will, under the CCSPA, have the authority to issue cybersecurity directives in an effort to remain responsive to emerging threats, which Regulated Entities will be required to follow once issued
  5. Record keeping: this shouldn’t be a surprise to many of those Regulated Entities which fall in scope, which are already likely to be subject to record keeping requirements. Regulated Entities should expect to be maintaining records and conducting audits of their systems and processes against the requirements of the CCSPA

It should be noted, however, that this may be subject to change, so Regulated Entities should keep an eye on the progress of the Bill as it makes its way through parliament.

Enforcement of the Act would be carried out by sector-specific regulators identified in the Act such as the Office of the Superintendent of Financial Institutions, Minister of Transport, Canada Energy Regulator, Canadian Nuclear Safety Commission and the Ministry of Industry.

What are the penalties for CCSPA non-compliance?

When assessing the penalties associated with non-compliance with the requirements of the CCSPA, it is clear that such non-compliance will be taken seriously, and the severity of the penalties follows the trend of those applied by the European Union to key pieces of EU legislation. The “administrative monetary penalties” (AMPs) set by regulation could see fines being applied of up to C$1 million for individuals and up to C$15 million for organizations.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI