Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Threat Research Team
Share
06
Aug 2024
Introduction: Darktrace's Threat Research
Defenders must understand the threat landscape in order to protect against it. We can do that with threat intelligence.
At Darktrace, we approach threat intelligence with a unique perspective. Unlike traditional security vendors that rely on established patterns from past incidents, our strategy is rooted in the belief that identifying behavioral anomalies is crucial for identifying both known and novel threats.
For our analysts and researchers, the incidents detected by our AI mark the beginning of a deeper investigation, aiming to connect mitigated threats to wider trends from across the threat landscape. Through hindsight analysis, we have highlighted numerous threats, including zero day, N day, and other novel attacks, showcasing their evolving nature and Darktrace’s ability to identify them.
For the first half of 2024, we’ve observed major trends around subscription-based attack models, advanced TTPs, and sophisticated email attacks. Read on to discover some of our key insights into the current cybersecurity threat landscape.
Malware-as-a-Service continues to pose significant risk for organizations
Many of the prevalent threats observed by Darktrace heavily utilized Malware-as-a-Service (MaaS) tools. This is likely because of the lucrative subscription-based income of MaaS ecosystems as well as the low barrier to entry and high demand. By offering pre-packed, plug-and-play malware, the MaaS market has enabled even inexperienced attackers to carry out potentially disruptive attacks, regardless of their level of skill or technical ability.
When comparing the latest observed threats with the previous half year’s data, there are several returning threats, notably Mirai, AsyncRAT, Emotet, and NjRAT.
This highlights that while MaaS strains often adapt their TTPs from one campaign to the next, many strains remain unchanged yet continue to achieve success. This suggests that some security teams and organizations are still falling short in defending their environments.
Figure 1: The diagram above represents Darktrace detections containing IoCs associated with particular threats. The size of the bubble displayed relates to the frequency of detections observed across the Darktrace fleet.
The persistence of known malware strains and information stealers particularly affects smaller organizations that are likely under-resourced and outsource portions of their security responsibilities. Additionally, larger organizations with poor cyber hygiene or extensive guest subnets may also be at risk.
The Darktrace experts anticipate that MaaS will remain a prevalent part of the threat landscape for the foreseeable future.
Double extortion methods are now prevalent amongst ransomware strains
As ransomware continues to be a top security concern for organizations, Darktrace’s Threat Research team has identified three predominant ransomware strains impacting customers: Akira, Lockbit, and Black Basta.
While these ransomware families are not new, they have remained vigilant threats in recent years, indicating that these variants are continuing to evolve and adopt new, sophisticated tactics to circumvent security measures. As organizations harden their digital defenses by understanding and pre-empting the TTPs of known ransomware strains, threat actors often incorporate new strategies making them more sophisticated, faster, and harder to defend against.
One such strategy noted by Darktrace is the adoption of double extortion methods. Malicious actors will not only encrypt their target’s data, but also exfiltrate sensitive files with threat of publication if the ransom is not paid.
In the case of Akira in particular, Darktrace observed attackers attempting to exfiltrate data within 12 hours of the initial file encryption, all but confirming that double extortion is a standard part of their playbook.
Email phishing shows no signs of slowing down
With a majority of attacks originating from email, it is crucial that organizations secure the inbox and beyond.
Between December 21, 2023, and July 5, 2024, Darktrace / EMAIL detected 17.8 million phishing emails across the fleet, with 62% of these phishing emails successfully bypassing Domain-based Message Authentication, Reporting, and Conformance (DMARC) verification checks.
These are not the only types of email attacks we observed. Darktrace detected 550,000 malicious QR codes that, when scanned, would direct recipients to a malicious endpoint where attackers can infect a device with malware or steal a user’s login credentials.
While most traditional email security measures are not able to scan for QR codes, Darktrace / EMAIL is not only able to detect them but also identify their destination, blocking any emails found to lead to suspicious endpoints.
Conclusion
The threat landscape continues to evolve, but new threats often build upon old foundations rather than replacing them. While we have observed the emergence of new malware families, many attacks are carried out by the usual suspects that we have seen over the last few years, still utilizing familiar techniques and malware variants. This indicates that cyber threats persist due to the abundance of exploitable vulnerabilities.
In the realm of email security, familiar attacks are also changing, with more impersonations of trusted companies and multistage payload attacks. These email campaigns target select organizations, or even individuals, more efficiently than traditional mass phishing attacks.
As attacks appear with greater frequency and sophistication, defenders must have timely detection and containment capabilities to handle all emerging threats. Read the complete 2024 Half-Year Threat Report to discover all the latest threat landscape trends and the Darktrace Threat Research team’s recommendations.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace
This civil engineering company maintains much of the highway infrastructure across the UK. After legacy tools failed to stop advanced email threats, the company adopted Darktrace’s AI, which autonomously detected and neutralized attacks—proving its value and driving broader deployment.
One-Person Security Team, Enterprise-Wide Protection: A Utility Company’s Darktrace Success Story
Discover how a private utility management company experienced measurable network and email security improvements with Darktrace, saving 264 analyst hours on investigations in less than a month.
Darktrace's Cyber AI Analyst in Action: 4 Real-World Investigations into Advanced Threat Actors
As AI reshapes the cybersecurity landscape, Darktrace’s Cyber AI Analyst automates early-stage investigations, mimicking human reasoning to detect and respond to threats at machine speed. This blog explores four real-world cases where it identified sophisticated threat actors, including nation-state adversaries.
Tracking a Dragon: Investigating a DragonForce-affiliated ransomware attack with Darktrace
What is DragonForce?
DragonForce is a Ransomware-as-a-Service (RaaS) platform that emerged in late 2023, offering broad-scale capabilities and infrastructure to threat actors. Recently, DragonForce has been linked to attacks targeting the UK retail sector, resulting in several high-profile cases [1][2]. Moreover, the group launched an affiliate program offering a revenue share of roughly 20%, significantly lower than commissions reported across other RaaS platforms [3].
This Darktrace case study examines a DragonForce-linked RaaS infection within the manufacturing industry. The earliest signs of compromise were observed during working hours in August 2025, where an infected device started performing network scans and attempted to brute-force administrative credentials. After eight days of inactivity, threat actors returned and multiple devices began encrypting files via the SMB protocol using a DragonForce-associated file extension. Ransom notes referencing the group were also dropped, suggesting the threat actor is claiming affiliation with DragonForce, though this has not been confirmed.
Despite Darktrace’s detection of the attack in its early stages, the customer’s deployment did not have Darktrace’s Autonomous Response capability configured, allowing the threat to progress to data exfiltration and file encryption.
Darktrace's Observations
While the initial access vector was not clearly defined in this case study, it was likely achieved through common methods previously employed out by DragonForce affiliates. These include phishing emails leveraging social engineering tactics, exploitation of public-facing applications with known vulnerabilities, web shells, and/or the abuse of remote management tools.
Darktrace’s analysis identified internal devices performing internal network scanning, brute-forcing credentials, and executing unusual Windows Registry operations. Notably, Windows Registry events involving "Schedule\Taskcache\Tasks" contain subkeys for individual tasks, storing GUIDs that can be used to locate and analyze scheduled tasks. Additionally, Control\WMI\Security holds security descriptors for WMI providers and Event Tracing loggers that use non-default security settings respectively.
Furthermore, Darktrace identified data exfiltration activity over SSH, including connections to an ASN associated with a malicious hosting service geolocated in Russia.
1. Network Scan & Brute Force
Darktrace identified anomalous behavior in late August to early September 2025, originating from a source device engaging in internal network scanning followed by brute-force attempts targeting administrator credential, including “administrator”, “Admin”, “rdpadmin”, “ftpadmin”.
Upon further analysis, one of the HTTP connections seen in this activity revealed the use of the user agent string “OpenVAS-VT”, suggesting that the device was using the OpenVAS vulnerability scanner. Subsequently, additional devices began exhibiting network scanning behavior. During this phase, a file named “delete.me” was deleted by multiple devices using SMB protocol. This file is commonly associated with network scanning and penetration testing tool NetScan.
2. Windows Registry Key Update
Following the scanning phase, Darktrace observed the initial device then performing suspicious Winreg operations. This included the use of the ”BaseRegOpenKey” function across multiple registry paths.
Additional operations such as “BaseRegOpenKey” and “BaseRegQueryValue” were also seen around this time. These operations are typically used to retrieve specific registry key values and allow write operations to registry keys.
The registry keys observed included “SYSTEM\CurrentControlSet\Control\WMI\Security” and “Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tasks”. These keys can be leveraged by malicious actors to update WMI access controls and schedule malicious tasks, respectively, both of which are common techniques for establishing persistence within a compromised system.
3. New Administrator Credential Usage
Darktrace subsequently detected the device using a highly privileged credential, “administrator”, via a successful Kerberos login for the first time. Shortly after, the same credential was used again for a successful SMB session.
These marked the first instances of authentication using the “administrator” credential across the customer’s environment, suggesting potential malicious use of the credential following the earlier brute-force activity.
Figure 1: Darktrace’s detection of administrator credentials being used in Kerberos login events by an infected device.
Figure 2: Darktrace’s detection of administrator credentials being used in SMB sessions by an infected device.
4. Data Exfiltration
Prior to ransomware deployment, several infected devices were observed exfiltrating data to the malicious IP 45.135.232[.]229 via SSH connections [7][8]. This was followed by the device downloading data from other internal devices and transferring an unusually large volume of data to the same external endpoint.
The IP address was first seen on the network on September 2, 2025 - the same date as the observed data exfiltration activity preceding ransomware deployment and encryption.
Further analysis revealed that the endpoint was geolocated in Russia and registered to the malicious hosting provider Proton66. Multiple external researchers have reported malicious activity involving the same Proton66 ASN (AS198953 Proton66 OOO) as far back as April 2025. These activities notably included vulnerability scanning, exploitation attempts, and phishing campaigns, which ultimately led to malware [4][5][6].
Data Exfiltration Endpoint details.
Endpoint: 45.135.232[.]229
ASN: AS198953 Proton66 OOO
Transport protocol: TCP
Application protocol: SSH
Destination port: 22
Figure 3: Darktrace’s summary of the external IP 45.135.232[.]229, first detected on September 2, 2025. The right-hand side showcases model alerts triggered related to this endpoint including multiple data exfiltration related model alerts.
Further investigation into the endpoint using open-source intelligence (OSINT) revealed that it led to a Microsoft Internet Information Services (IIS) Manager console webpage. This interface is typically used to configure and manage web servers. However, threat actors have been known to exploit similar setups, using fake certificate warnings to trick users into downloading malware, or deploying malicious IIS modules to steal credentials.
Figure 4: Live screenshot of the destination (45.135.232[.]229), captured via OSINT sources, displaying a Microsoft IIS Manager console webpage.
5. Ransomware Encryption & Ransom Note
Multiple devices were later observed connecting to internal devices via SMB and performing a range of actions indicative of file encryption. This suspicious activity prompted Darktrace’s Cyber AI Analyst to launch an autonomous investigation, during which it pieced together associated activity and provided concrete timestamps of events for the customer’s visibility.
During this activity, several devices were seen writing a file named “readme.txt” to multiple locations, including network-accessible webroot paths such as inetpub\ and wwwroot\. This “readme.txt” file, later confirmed to be the ransom note, claimed the threat actors were affiliated with DragonForce.
At the same time, devices were seen performing SMB Move, Write and ReadWrite actions involving files with the “.df_win” extension across other internal devices, suggesting that file encryption was actively occurring.
Figure 5: Darktrace’s detection of SMB events (excluding Read events) where the device was seen moving or writing files with the “.df_win” extension.
Figure 6: Darktrace’s detection of a spike in SMB Write events with the filename “readme.txt” on September 9, indicating the start of file encryption.
Conclusion
The rise of Ransomware-as-a-Service (RaaS) and increased attacker customization is fragmenting tactics, techniques, and procedures (TTPs), making it increasingly difficult for security teams to prepare for and defend against each unique intrusion. RaaS providers like DragonForce further complicate this challenge by enabling a wide range of affiliates, each with varying levels of sophistication [9].
In this instance, Darktrace was able to identify several stages of the attack kill chain, including network scanning, the first-time use of privileged credentials, data exfiltration, and ultimately ransomware encryption. Had the customer enabled Darktrace’s Autonomous Response capability, it would have taken timely action to interrupt the attack in its early stages, preventing the eventual data exfiltration and ransomware detonation.
Credit to Justin Torres, Senior Cyber Analyst, Nathaniel Jones, VP, Security & AI Strategy, FCISO, & Emma Foulger, Global Threat Research Operations Lead.
Darktrace Cyber AI Analyst Coverage/Investigation Events:
· Web Application Vulnerability Scanning of Multiple Devices
· Port Scanning
· Large Volume of SMB Login Failures
· Unusual RDP Connections
· Widespread Web Application Vulnerability Scanning
· Unusual SSH Connections
· Unusual Repeated Connections
· Possible Application Layer Reconnaissance Activity
· Unusual Administrative Connections
· Suspicious Remote WMI Activity
· Extensive Unusual Administrative Connections
· Suspicious Directory Replication Service Activity
· Scanning of Multiple Devices
· Unusual External Data Transfer
· SMB Write of Suspicious File
· Suspicious Remote Service Control Activity
· Access of Probable Unencrypted Password Files
· Internal Download and External Upload
· Possible Encryption of Files over SMB
· SMB Writes of Suspicious Files to Multiple Devices
The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.
Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.
Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.
The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.
WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287
Introduction
On October 14, 2025, Microsoft disclosed a new critical vulnerability affecting the Windows Server Update Service (WSUS), CVE-2025-59287. Exploitation of the vulnerability could allow an unauthenticated attacker to remotely execute code [1][6].
WSUS allows for centralized distribution of Microsoft product updates [3]; a server running WSUS is likely to have significant privileges within a network making it a valuable target for threat actors. While WSUS servers are not necessarily expected to be open to the internet, open-source intelligence (OSINT) has reported thousands of publicly exposed instances that may be vulnerable to exploitation [2].
Microsoft’s initial ‘Patch Tuesday’ update for this vulnerability did not fully mitigate the risk, and so an out-of-band update followed on October 23 [4][5] . Widespread exploitation of this vulnerability started to be observed shortly after the security update [6], prompting CISA to add CVE-2025-59287 to its Known Exploited Vulnerability Catalog (KEV) on October 24 [7].
Attack Overview
The Darktrace Threat Research team have recently identified multiple potential cases of CVE-2025-59287 exploitation, with two detailed here. While the likely initial access method is consistent across the cases, the follow-up activities differed, demonstrating the variety in which such a CVE can be exploited to fulfil each attacker’s specific goals.
The first signs of suspicious activity across both customers were detected by Darktrace on October 24, the same day this vulnerability was added to CISA’s KEV. Both cases discussed here involve customers based in the United States.
Case Study 1
The first case, involving a customer in the Information and Communication sector, began with an internet-facing device making an outbound connection to the hostname webhook[.]site. Observed network traffic indicates the device was a WSUS server.
OSINT has reported abuse of the workers[.]dev service in exploitation of CVE-2025-59287, where enumerated network information gathered through running a script on the compromised device was exfiltrated using this service [8].
In this case, the majority of connectivity seen to webhook[.]site involved a PowerShell user agent; however, cURL user agents were also seen with some connections taking the form of HTTP POSTs. This connectivity appears to align closely with OSINT reports of CVE-2025-59287 post-exploitation behaviour [8][9].
Connections to webhook[.]site continued until October 26. A single URI was seen consistently until October 25, after which the connections used a second URI with a similar format.
Later on October 26, an escalation in command-and-control (C2) communication appears to have occurred, with the device starting to make repeated connections to two rare workers[.]dev subdomains (royal-boat-bf05.qgtxtebl.workers[.]dev & chat.hcqhajfv.workers[.]dev), consistent with C2 beaconing. While workers[.]dev is associated with the legitimate Cloudflare Workers service, the service is commonly abused by malicious actors for C2 infrastructure. The unusual connections to both webhook[.]site and workers[.]dev triggered multiple alerts in Darktrace, including high-fidelity Enhanced Monitoring alerts and Autonomous Response actions.
Infrastructure insight
Hosted on royal-boat-bf05.qgtxtebl.workers[.]dev is a Microsoft Installer file (MSI) named v3.msi.
Figure 1: Screenshot of v3.msi content.
Contained in the MSI file is two Cabinet files named “Sample.cab” and “part2.cab”. After extracting the contents of the cab files, a file named “Config” and a binary named “ServiceEXE”. ServiceEXE is the legitimate DFIR tool Velociraptor, and “Config” contains the configuration details, which include chat.hcqhajfv.workers[.]dev as the server_url, suggesting that Velociraptor is being used as a tunnel to the C2. Additionally, the configuration points to version 0.73.4, a version of Velociraptor that is vulnerable to CVE-2025-6264, a privilege escalation vulnerability.
Figure 2: Screenshot of Config file.
Velociraptor, a legitimate security tool maintained by Rapid7, has been used recently in malicious campaigns. A vulnerable version of tool has been used by threat actors for command execution and endpoint takeover, while other campaigns have used Velociraptor to create a tunnel to the C2, similar to what was observed in this case [10] .
The workers[.]dev communication continued into the early hours of October 27. The most recent suspicious behavior observed on the device involved an outbound connection to a new IP for the network - 185.69.24[.]18/singapure - potentially indicating payload retrieval.
The payload retrieved from “/singapure” is a UPX packed Windows binary. After unpacking the binary, it is an open-source Golang stealer named “Skuld Stealer”. Skuld Stealer has the capabilities to steal crypto wallets, files, system information, browser data and tokens. Additionally, it contains anti-debugging and anti-VM logic, along with a UAC bypass [11].
Figure 3: A timeline outlining suspicious activity on the device alerted by Darktrace.
Case Study 2
The second case involved a customer within the Education sector. The affected device was also internet-facing, with network traffic indicating it was a WSUS server
Suspicious activity in this case once again began on October 24, notably only a few seconds after initial signs of compromise were observed in the first case. Initial anomalous behaviour also closely aligned, with outbound PowerShell connections to webhook[.]site, and then later connections, including HTTP POSTs, to the same endpoint with a cURL user agent.
While Darktrace did not observe any anomalous network activity on the device after October 24, the customer’s security integration resulted in an additional alert on October 27 for malicious activity, suggesting that the compromise may have continued locally.
By leveraging Darktrace’s security integrations, customers can investigate activity across different sources in a seamless manner, gaining additional insight and context to an attack.
Figure 4: A timeline outlining suspicious activity on the device alerted by Darktrace.
Conclusion
Exploitation of a CVE can lead to a wide range of outcomes. In some cases, it may be limited to just a single device with a focused objective, such as exfiltration of sensitive data. In others, it could lead to lateral movement and a full network compromise, including ransomware deployment. As the threat of internet-facing exploitation continues to grow, security teams must be prepared to defend against such a possibility, regardless of the attack type or scale.
By focussing on detection of anomalous behaviour rather than relying on signatures associated with a specific CVE exploit, Darktrace is able to alert on post-exploitation activity regardless of the kind of behaviour seen. In addition, leveraging security integrations provides further context on activities beyond the visibility of Darktrace / NETWORKTM, enabling defenders to investigate and respond to attacks more effectively.
With adversaries weaponizing even trusted incident response tools, maintaining broad visibility and rapid response capabilities becomes critical to mitigating post-exploitation risk.
Credit to Emma Foulger (Global Threat Research Operations Lead), Tara Gould (Threat Research Lead), Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),
o royal-boat-bf05.qgtxtebl.workers[.]dev – Hostname – Likely C2 Infrastructure
o royal-boat-bf05.qgtxtebl.workers[.]dev/v3.msi - URI – Likely payload
o chat.hcqhajfv.workers[.]dev – Hostname – Possible C2 Infrastructure
o 185.69.24[.]18 – IP address – Possible C2 Infrastructure
o 185.69.24[.]18/bin.msi - URI – Likely payload
o 185.69.24[.]18/singapure - URI – Likely payload
The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.
Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.
Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.
The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content