Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Threat Research Team
Share
06
Aug 2024
Introduction: Darktrace's Threat Research
Defenders must understand the threat landscape in order to protect against it. We can do that with threat intelligence.
At Darktrace, we approach threat intelligence with a unique perspective. Unlike traditional security vendors that rely on established patterns from past incidents, our strategy is rooted in the belief that identifying behavioral anomalies is crucial for identifying both known and novel threats.
For our analysts and researchers, the incidents detected by our AI mark the beginning of a deeper investigation, aiming to connect mitigated threats to wider trends from across the threat landscape. Through hindsight analysis, we have highlighted numerous threats, including zero day, N day, and other novel attacks, showcasing their evolving nature and Darktrace’s ability to identify them.
For the first half of 2024, we’ve observed major trends around subscription-based attack models, advanced TTPs, and sophisticated email attacks. Read on to discover some of our key insights into the current cybersecurity threat landscape.
Malware-as-a-Service continues to pose significant risk for organizations
Many of the prevalent threats observed by Darktrace heavily utilized Malware-as-a-Service (MaaS) tools. This is likely because of the lucrative subscription-based income of MaaS ecosystems as well as the low barrier to entry and high demand. By offering pre-packed, plug-and-play malware, the MaaS market has enabled even inexperienced attackers to carry out potentially disruptive attacks, regardless of their level of skill or technical ability.
When comparing the latest observed threats with the previous half year’s data, there are several returning threats, notably Mirai, AsyncRAT, Emotet, and NjRAT.
This highlights that while MaaS strains often adapt their TTPs from one campaign to the next, many strains remain unchanged yet continue to achieve success. This suggests that some security teams and organizations are still falling short in defending their environments.
Figure 1: The diagram above represents Darktrace detections containing IoCs associated with particular threats. The size of the bubble displayed relates to the frequency of detections observed across the Darktrace fleet.
The persistence of known malware strains and information stealers particularly affects smaller organizations that are likely under-resourced and outsource portions of their security responsibilities. Additionally, larger organizations with poor cyber hygiene or extensive guest subnets may also be at risk.
The Darktrace experts anticipate that MaaS will remain a prevalent part of the threat landscape for the foreseeable future.
Double extortion methods are now prevalent amongst ransomware strains
As ransomware continues to be a top security concern for organizations, Darktrace’s Threat Research team has identified three predominant ransomware strains impacting customers: Akira, Lockbit, and Black Basta.
While these ransomware families are not new, they have remained vigilant threats in recent years, indicating that these variants are continuing to evolve and adopt new, sophisticated tactics to circumvent security measures. As organizations harden their digital defenses by understanding and pre-empting the TTPs of known ransomware strains, threat actors often incorporate new strategies making them more sophisticated, faster, and harder to defend against.
One such strategy noted by Darktrace is the adoption of double extortion methods. Malicious actors will not only encrypt their target’s data, but also exfiltrate sensitive files with threat of publication if the ransom is not paid.
In the case of Akira in particular, Darktrace observed attackers attempting to exfiltrate data within 12 hours of the initial file encryption, all but confirming that double extortion is a standard part of their playbook.
Email phishing shows no signs of slowing down
With a majority of attacks originating from email, it is crucial that organizations secure the inbox and beyond.
Between December 21, 2023, and July 5, 2024, Darktrace / EMAIL detected 17.8 million phishing emails across the fleet, with 62% of these phishing emails successfully bypassing Domain-based Message Authentication, Reporting, and Conformance (DMARC) verification checks.
These are not the only types of email attacks we observed. Darktrace detected 550,000 malicious QR codes that, when scanned, would direct recipients to a malicious endpoint where attackers can infect a device with malware or steal a user’s login credentials.
While most traditional email security measures are not able to scan for QR codes, Darktrace / EMAIL is not only able to detect them but also identify their destination, blocking any emails found to lead to suspicious endpoints.
Conclusion
The threat landscape continues to evolve, but new threats often build upon old foundations rather than replacing them. While we have observed the emergence of new malware families, many attacks are carried out by the usual suspects that we have seen over the last few years, still utilizing familiar techniques and malware variants. This indicates that cyber threats persist due to the abundance of exploitable vulnerabilities.
In the realm of email security, familiar attacks are also changing, with more impersonations of trusted companies and multistage payload attacks. These email campaigns target select organizations, or even individuals, more efficiently than traditional mass phishing attacks.
As attacks appear with greater frequency and sophistication, defenders must have timely detection and containment capabilities to handle all emerging threats. Read the complete 2024 Half-Year Threat Report to discover all the latest threat landscape trends and the Darktrace Threat Research team’s recommendations.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Darktrace's Cyber AI Analyst in Action: 4 Real-World Investigations into Advanced Threat Actors
As AI reshapes the cybersecurity landscape, Darktrace’s Cyber AI Analyst automates early-stage investigations, mimicking human reasoning to detect and respond to threats at machine speed. This blog explores four real-world cases where it identified sophisticated threat actors, including nation-state adversaries.
Introducing the AI Maturity Model for Cybersecurity
The AI Maturity Model for Cybersecurity is the most detailed guide of its kind, grounded in real use cases and expert insight. It empowers CISOs to make strategic decisions, not just about what AI to adopt, but how to do it in a way that strengthens their organization over time and achieves successful outcomes.
Introducing Version 2 of Darktrace’s Embedding Model for Investigation of Security Threats (DEMIST-2)
Learn how Darktrace’s DEMIST-2 embedding model delivers high-accuracy threat classification and detection across any environment, outperforming larger models with efficiency and precision.
SEO Poisoning and Fake PuTTY sites: Darktrace’s Investigation into the Oyster backdoor
What is SEO poisoning?
Search Engine Optimization (SEO) is the legitimate marketing technique of improving the visibility of websites in organic search engine results. Businesses, publishers, and organizations use SEO to ensure their content is easily discoverable by users. Techniques may include optimizing keywords, creating backlinks, or even ensuring mobile compatibility.
SEO poisoning occurs when attackers use these same techniques for malicious purposes. Instead of improving the visibility of legitimate content, threat actors use SEO to push harmful or deceptive websites to the top of search results. This method exploits the common assumption that top-ranking results are trustworthy, leading users to click on URLs without carefully inspecting them.
As part of SEO poisoning, the attacker will first register a typo-squatted domain, slightly misspelled or otherwise deceptive versions of real software sites, such as putty[.]run or puttyy[.]org. These sites are optimized for SEO and often even backed by malicious Google ads, increasing the visibility when users search for download links. To achieve that, threat actors may embed pages with strategically chosen, high-value keywords or replicate content from reputable sources to elevate the domain’s perceived authority in search engine algorithms [4]. In more advanced operations, these tactics are reinforced with paid promotion, such as Google ads, enabling malicious domains to appear above organic search results as sponsored links. This placement not only accelerates visibility but also impacts an unwarranted sense of legitimacy to unsuspected users.
Once a user lands on one of these fake pages, they are presented with what looks like a legitimate software download option. Upon clicking the download indicator, the user will be redirected to another separate domain that actually hosts the payload. This hosting domain is usually unrelated to the nominally referenced software. These third-party sites can involve recently registered domains but may also include legitimate websites that have been recently compromised. By hosting malware on a variety of infrastructure, attackers can prolong the availability of distribution methods for these malicious files before they are taken down.
What is the Oyster backdoor?
Oyster, also known as Broomstick or CleanUpLoader, is a C++ based backdoor malware first identified in July 2023. It enables remote access to infected systems, offering features such as command-line interaction and file transfers.
Oyster has been widely adopted by various threat actors, often as an entry point for ransomware attacks. Notable examples include Vanilla Tempest and Rhysida ransomware groups, both of which have been observed leveraging the Oyster backdoor to enhance their attack capabilities. Vanilla Tempest is known for using Oyster’s stealth persistence to maintain long-term access within targeted networks, often aligning their operations with ransomware deployment [5]. Rhysida has taken this further by deploying Oyster as an initial access tool in ransomware campaigns, using it to conduct reconnaissance and move laterally before executing encryption activities [6].
Once installed, the backdoor gathers basic system information before communicating with a command-and-control (C2) server. The malware largely relies on a ‘cmd.exe’ instance to execute commands and launch other files [1].
In previous SEO poisoning cases, the file downloaded from the fake pages is not just PuTTY, but a trojanized version that includes the stealthy Oyster backdoor. PuTTY is a free and open-source terminal emulator for Windows that allows users to connect to remote servers and devices using protocols like SSH and Telnet. In the recent campaign, once a user visits the fake software download site, ranked highly through SEO poisoning, the malicious payload is downloaded through direct user interaction and subsequently installed on the local device, initiating the compromise. The malware then performs two actions simultaneously: it installs a fully functional version of PuTTY to avoid user suspicion, while silently deploying the Oyster backdoor. Given PuTTY’s nature, it is prominently used by IT administrators with highly privileged account as opposed to standard users in a business, possibly narrowing the scope of the targets.
Oyster’s persistence mechanism involves creating a Windows Scheduled Task that runs every few minutes. Notably, the infection uses Dynamic Link Library (DLL) side loading, where a malicious DLL, often named ‘twain_96.dll’, is executed via the legitimate Windows utility ‘rundll32.exe’, which is commonly used to run DLLs [2]. This technique is frequently used by malicious actors to blend their activity with normal system operations.
Darktrace’s Coverage of the Oyster Backdoor
In June 2025, security analysts at Darktrace identified a campaign leveraging search engine manipulation to deliver malware masquerading as the popular SSH client, PuTTY. Darktrace / NETWORK’s anomaly-based detection identified signs of malicious activity, and when properly configured, its Autonomous Response capability swiftly shut down the threar before it could escalate into a more disruptive attack. Subsequent analysis by Darktrace’s Threat Research team revealed that the payload was a variant of the Oyster backdoor.
The first indicators of an emerging Oyster SEO campaign typically appeared when user devices navigated to a typosquatted domain, such as putty[.]run or putty app[.]naymin[.]com, via a TLS/SSL connection.
Figure 1: Darktrace’s detection of a device connecting to the typosquatted domain putty[.]run.
The device would then initiate a connection to a secondary domain that hosts the malicious installer, likely triggered by user interaction with redirect elements on the landing page. This secondary site may not have any immediate connection to PuTTY itself but is instead a hijacked blog, a file-sharing service, or a legitimate-looking content delivery subdomain.
Figure 2: Darktrace’s detection of the device making subsequent connections to the payload domain.
Following installation, multiple affected devices were observed attempting outbound connectivity to rare external IP addresses, specifically requesting the ‘/secure’ endpoint as noted within the declared URIs. After the initial callback, the malware continued communicating with additional infrastructure, maintaining its foothold and likely waiting for tasking instructions. Communication patterns included:
· Endpoints with URIs /api/kcehc and /api/jgfnsfnuefcnegfnehjbfncejfh
· Endpoints with URI /reg and user agent “WordPressAgent”, “FingerPrint” or “FingerPrintpersistent”
This tactic has been consistently linked to the Oyster backdoor, which has shown similar URI patterns across multiple campaigns [3].
Darktrace analysts also noted the sophisticated use of spoofed user agent strings across multiple investigated customer networks. These headers, which are typically used to identify the application making an HTTP request, are carefully crafted to appear benign or mimic legitimate software. One common example seen in the campaign is the user agent string “WordPressAgent”. While this string references a legitimate web application or plugin, it does not appear to correspond to any known WordPress services or APIs. Its inclusion is most likely designed to mimic background web traffic commonly associated with WordPress-based content management systems.
Figure 3: Cyber AI Analyst investigation linking the HTTP C2 activity.
Case-Specific Observations
While the previous section focused on tactics and techniques common across observed Oyster infections, a closer examination reveals notable variations and unique elements in specific cases. These distinct features offer valuable insights into the diverse operational approaches employed by threat actors. These distinct features, from unusual user agent strings to atypical network behavior, offer valuable insights into the diverse operational approaches employed by the threat actors. Crucially, the divergence in post-exploitation activity reflects a broader trend in the use of widely available malware families like Oyster as flexible entry points, rather than fixed tools with a single purpose. This modular use of the backdoor reflects the growing Malware-as-a-Service (MaaS) ecosystem, where a single initial infection can be repurposed depending on the operator’s goals.
From Infection to Data Egress
In one observed incident, Darktrace observed an infected device downloading a ZIP file named ‘host[.]zip’ via curl from the URI path /333/host[.]zip, following the standard payload delivery chain. This file likely contained additional tools or payloads intended to expand the attacker’s capabilities within the compromised environment. Shortly afterwards, the device exhibited indicators of probable data exfiltration, with outbound HTTP POST requests featuring the URI pattern: /upload?dir=NAME_FOLDER/KEY_KEY_KEY/redacted/c/users/public.
This format suggests the malware was actively engaged in local host data staging and attempting to transmit files from the target machine. The affected device, identified as a laptop, aligns with the expected target profile in SEO poisoning scenarios, where unsuspecting end users download and execute trojanized software.
Irregular RDP Activity and Scanning Behavior
Several instances within the campaign revealed anomalous or unexpected Remote Desktop Protocol (RDP) sessions occurring shortly after DNS requests to fake PuTTY domains. Unusual RDP connections frequently followed communication with Oyster backdoor C2 servers. Additionally, Darktrace detected patterns of RDP scanning, suggesting the attackers were actively probing for accessible systems within the network. This behavior indicates a move beyond initial compromise toward lateral movement and privilege escalation, common objectives once persistence is established.
The presence of unauthorized and administrative RDP sessions following Oyster infections aligns with the malware’s historical role as a gateway for broader impact. In previous campaigns, Oyster has often been leveraged to enable credential theft, lateral movement, and ultimately ransomware deployment. The observed RDP activity in this case suggests a similar progression, where the backdoor is not the final objective but rather a means to expand access and establish control over the target environment.
Cryptic User Agent Strings?
In multiple investigated cases, the user agent string identified in these connections featured formatting that appeared nonsensical or cryptic. One such string containing seemingly random Chinese-language characters translated into an unusual phrase: “Weihe river is where the water and river flow.” Legitimate software would not typically use such wording, suggesting that the string was intended as a symbolic marker rather than a technical necessity. Whether meant as a calling card or deliberately crafted to frame attribution, its presence highlights how subtle linguistic cues can complicate analysis.
Figure 4: Darktrace’s detection of malicious connections using a user agent with randomized Chinese-language formatting.
Strategic Implications
What makes this campaign particularly noteworthy is not simply the use of Oyster, but its delivery mechanism. SEO poisoning has traditionally been associated with cybercriminal operations focused on opportunistic gains, such as credential theft and fraud. Its strength lies in casting a wide net, luring unsuspecting users searching for popular software and tricking them into downloading malicious binaries. Unlike other campaigns, SEO poisoning is inherently indiscriminate, given that the attacker cannot control exactly who lands on their poisoned search results. However, in this case, the use of PuTTY as the luring mechanism possibly indicates a narrowed scope - targeting IT administrators and accounts with high privileges due to the nature of PuTTY’s functionalities.
This raises important implications when considered alongside Oyster. As a backdoor often linked to ransomware operations and persistent access frameworks, Oyster is far more valuable as an entry point into corporate or government networks than small-scale cybercrime. The presence of this malware in an SEO-driven delivery chain suggests a potential convergence between traditional cybercriminal delivery tactics and objectives often associated with more sophisticated attackers. If actors with state-sponsored or strategic objectives are indeed experimenting with SEO poisoning, it could signal a broadening of their targeting approaches. This trend aligns with the growing prominence of MaaS and the role of initial access brokers in today’s cybercrime ecosystem.
Whether the operators seek financial extortion through ransomware or longer-term espionage campaigns, the use of such techniques blurs the traditional distinctions. What looks like a mass-market infection vector might, in practice, be seeding footholds for high-value strategic intrusions.
Credit to Christina Kreza (Cyber Analyst) and Adam Potter (Senior Cyber Analyst)
Appendices
MITRE ATT&CK Mapping
· T1071.001 – Command and Control – Web Protocols
· T1008 – Command and Control – Fallback Channels
· T0885 – Command and Control – Commonly Used Port
· T1571 – Command and Control – Non-Standard Port
· T1176 – Persistence – Browser Extensions
· T1189 – Initial Access – Drive-by Compromise
· T1566.002 – Initial Access – Spearphishing Link
· T1574.001 – Persistence – DLL
Indicators of Compromise (IoCs)
· 85.239.52[.]99 – IP address
· 194.213.18[.]89/reg – IP address / URI
· 185.28.119[.]113/secure – IP address / URI
· 185.196.8[.]217 – IP address
· 185.208.158[.]119 – IP address
· putty[.]run – Endpoint
· putty-app[.]naymin[.]com – Endpoint
· /api/jgfnsfnuefcnegfnehjbfncejfh
· /api/kcehc
Darktrace Model Detections
· Anomalous Connection / New User Agent to IP Without Hostname
· Anomalous Connection / Posting HTTP to IP Without Hostname
· Compromise / HTTP Beaconing to Rare Destination
· Compromise / Large Number of Suspicious Failed Connections
· Compromise / Beaconing Activity to External Rare
· Compromise / Quick and Regular Windows HTTP Beaconing
· Device / Large Number of Model Alerts
· Device / Initial Attack Chain Activity
· Device / Suspicious Domain
· Device / New User Agent
· Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.
Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.
Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.
The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.
The benefits of bringing together network and email security
In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.
This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.
A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.
Technical advantages
Pre-alert intelligence: Gathering data before the threat strikes
Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.
By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.
That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.
This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.
Alert-related intelligence: Connecting the dots in real time
Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.
Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.
This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.
Operational advantages
Streamlining SecOps across teams
In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.
When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.
The outcome is more than convenience: it’s faster, more informed decision-making across the board.
Reducing time-to-meaning and enabling faster response
A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.
Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.
Commercial advantages
While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.
On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.
With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.
Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.