Blog

Thought Leadership

How to Cut Through Cyber Security Noise

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Nov 2022
29
Nov 2022
Learn how Cyber AI Analyst tackles alert fatigue by categorizing vast amounts of data into actionable security incidents for your team's review.

For cyber security experts, it’s hard enough staying on top of the latest threats and emerging attacks without having to deal with a virtual tsunami of alert noise from systems monitoring email, SaaS environments, and endpoints – in addition to IaaS cloud and on-premises networks. Unfortunately, fatigue from these demands can lead to overworking, burnout, and crucially, high employee turnover. 

The worldwide industry shortage of 3.5 million cyber security professionals only exacerbates the problem. Not only does it add pressure to the current stock of skilled and available security professionals, but it also raises the stakes for CISOs and other security leaders to find a way to cut through the alert noise while staying on ahead of threat actors who never stop innovating and applying novel malware strains and attack techniques.

Working Smarter Not Harder

One way to help with retention is to empower security teams to break away from monotony and to think creatively and leverage their expertise where it can really add value. Working smarter, rather than harder, is often easier said than done, but by employing automation and AI-driven tools to take on the heavy lifting of threat detection, investigation, and response, human teams can be given the breathing room needed to focus on long-term objectives and think more deeply about their security approaches.

It is important for security programs to continuously level up alongside evolving threat landscapes by questioning existing security operations, and this cannot be achieved during times of hand-to-hand alert combat.

When alerts are fewer, higher quality, and context-heavy, the background to each can be easily explored, whether that’s reevaluating a policy or configuration, or simply asking useful questions around the company’s broader security approach. Work done at this level empowers security teams and fosters growth.

Less is More

Business risk– or the potential impact of cyber disruption– should be the number one concern driving a security team, but lack of resources is a near-constant constraint. Reducing the volume of alerts doesn’t just mean bringing the noise floor up. You can think of the noise floor as an alert threshold: if it is too high then there are fewer alerts, but more threats may be missed, whereas if it is too low, there are high volumes of unhelpful false positives. Freeing up time for the team must not equate to ignoring alerts; it should instead mean focusing on the alerts that matter.

Darktrace’s technologies make this possible, with Darktrace DETECT™ and Cyber AI Analyst working together to address alert fatigue and burnout for security teams while strengthening an organizations’ overall security posture. Cyber AI Analyst essentially takes over the busy work from the human analysts and elevates a team’s overall decision making. Teams now operate at higher levels, as they’re not stuck in mundane alert management and humans are brought in only after the machine and AI have done the heavy lifting.

“Before AI Analyst, we were barely treading water with all of the alerts, most of which were false positives, our old systems produced daily. With AI Analyst, we’ve been able to exponentially reduce those alerts, harden our environment, and get strategic.”

Dr. Robert Spangler, the CISO and Assistant Executive Director of the New Jersey State Bar Association.

Figure 1: Billions of individual events are reduced into a critical incident for review


Imagine a scenario in which Darktrace observed around 9.6 billion events over a 28-day period. DETECT and Cyber AI Analyst might distill that huge amount of data down into just, say, 54 critical incidents, or just two per day. Here’s how:

9.6 billion events

When trying to understand the full picture, every single puzzle piece counts. That’s why Darktrace’s Self-Learning AI goes wherever your organization has data, integrating with data sources across the digital estate, including network, email, endpoints, OT, cloud, and SaaS environments. And with an open architecture, Darktrace facilitates quick and easy integrations with everything from SIEMs and SOARs to public clouds and the latest Zero Trust technologies. So, any data can become learnable, whether directly ingested or via integration.

By examining this full and contextualized data set, Self-Learning AI builds a constantly evolving understanding of what ‘normal’ looks like for the entire organization. Every connection, every email, app login, resource accessed, VM spun up, PLC reprogrammed, and more become signals from which Darktrace can learn, evaluate, and improve its understanding.

40,404 model breaches

The billions of events are analyzed by Darktrace DETECT, which uses its extensive knowledge of ‘normal’ to draw out hosts of subtle anomalies or ‘AI model breaches.’ Many of these AI model breaches will be weak indicators of threatening activity, and most will not be sufficient to individually signal a threat. For that reason, no human attention is required at this stage. Darktrace DETECT will continue to draw anomalous behaviors from the ongoing stream of events without the need for intervention. 

200 incidents

The Cyber AI Analyst takes the total list of model breaches collated by DETECT and performs the truly sophisticated work of determining distinct threat incidents. By piecing together anomalies which may, in themselves, appear harmless, the AI Analyst draws out subtle and often wide-ranging attacks, tracking their route from the initial compromise to the present moment. This creates a much shorter list of genuine threat incidents, but there is still no need for human attention at this stage.

54 critical incidents

Once it has discovered the threat incidents facing an organization, the Cyber AI Analyst begins the crucial processes of triage to determine which incidents need to be surfaced to the security team, and in what order of priority. This supplies the human team with a highly focused briefing of the most pressing threats, massively reducing their overall workload and minimizing or potentially eradicating alert fatigue. In the above example of a month with over 9.6 billion distinct events, the team are left with just two incidents to address per day. These two incidents are clearly presented with natural language-processing and all the most relevant info, including details, devices, and dates. 

“When we had other, noisier systems, we didn’t have the time to have truly in-depth discussions or conduct deep investigations, so there were fewer teachable moments for junior team members and fewer opportunities to inform our cybersecurity strategy as a whole,” Spangler said. “Now, we’re not just a better team, we’re more efficient, responsive, and informed than we’ve ever been. We’re all better cyber security professionals as a result.”

In the event of a breach, CISOs and security leaders want the full incident report, and they want it yesterday. The promise of AI is to handle specific tasks at a speed and scale that humans can’t. Going from 9.6 billion events to 54 incidents demonstrates the scale, but it’s important to consider the impact of speed here as well, as the Cyber AI Analyst works in real time, meaning all relevant events are presented in an easy to consume downloadable report available immediately upon investigation.

This isn’t a black box either; every step of the AI Analyst’s investigation process is visible to the human team. Not only can they see the relevant events and breaches that led to the incident, but if required, they can pivot into them easily with a click. If the investigation requires going all the way down to the metadata level to easily peruse the filtered events of the 9.6 billion overall signals or even to PCAP data, those are available and easy to find too.

Since DETECT and Cyber AI Analyst not only reduce alert fatigue but also simplify incident investigations, security teams feel empowered and experience less burnout. 

“We’ve been stable and have had minimal turnover since we started using AI Analyst,” Spangler said. “We’re not scrambling to keep up with noisy and time-consuming false positives, making the investigations that we undertake stimulating and– I say this cautiously– fun! Put simply, the thing we all love about this career, the virtual chess game we play with attackers, is a lot more fun when you know you’re going to win.”

Autonomous Response

Organizations that deploy Darktrace RESPOND™ can address the incidents raised by DETECT and the Cyber AI Analyst autonomously, and in mere seconds. Using the full context of the organization built up by Self-Learning AI, RESPOND takes the least disruptive measures necessary to disarm threats at machine speed. By the time the security team learns about the attack, it is already contained, continuing to save them from the hand-to-hand combat of threat fighting.

With day-to-day threat detection, response, and analysis taken care of, security teams are free to give full and sustained attention to their overall security posture. Neutralized threats may yet reveal broader security gaps and potential improvements which the team now has the time and headspace to pursue.

For example, discovering a trend that users are uploading potentially sensitive data via third-party file-sharing services might lead to a discussion about whether it should be company policy to block access to this service, reducing to zero the number of future alerts that would have been triggered by this behavior. Importantly, this wouldn’t be altering the aforementioned noise floor, but instead fundamentally altering security policies to align with the needs of the business, which could indirectly affect future alerting, as activities may subside.

As a result, practitioners find more value in their work, security teams efforts are optimized, and organizations are strengthened overall.

“We’re now focused on the items that AI Analyst alerts us to, which are always worth looking into because they either identify an activity that we need to get eyes on and/or provide us with insight into ways we can harden our network,” Spangler said. “The hardening that we’ve done has been incalculably beneficial– it’s one of the reasons we get fewer alerts, and it’s also protected us against a wide variety of threats.”

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Dan Fein
VP, Product

Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.

Elliot Stocker
Product SME

After 2 years in a commercial role helping to deploy Darktrace across a broad range of digital environments, Elliot currently occupies the role of Product Subject Matter Expert, where he helps to articulate the value of Darktrace’s technology to customers around the world. Elliot holds a Masters degree in Data Science and Machine Learning, using this knowledge to communicate concepts around machine learning and AI in an accessible way to different audiences.

Book a 1-1 meeting with one of our experts
share this article
USE CASES
No items found.

More in this series

No items found.

Blog

No items found.

What you need to know about the new SEC Cybersecurity rules

Default blog imageDefault blog image
17
Jul 2024

What is new in 2023 to SEC cybersecurity rules?

Form 8-K Item 1.05: Requiring the timely disclosure of material cybersecurity incidents.

Regulation S-K item 106: requiring registrants’ annual reports on Form 10-K to address cybersecurity risk management, strategy, and governance processes.

Comparable disclosures are required for reporting foreign private issuers on Forms 6-K and 20-F respectively.

What is Form 8-K Item 1.05 SEC cybersecurity rules?

Form 8-K Item 1.05 requires the following to be reported within four business days from when an incident is determined to be “material” (1), unless extensions are granted by the SEC under certain qualifying conditions:

“If the registrant experiences a cybersecurity incident that is determined by the registrant to be material, describe the material aspects of the nature, scope, and timing of the incident, and the material impact or reasonably likely material impact on the registrant, including its financial condition and results of operations.” (2, 3)

How does the SEC define cybersecurity incident?

Cybersecurity incident defined by the SEC means an unauthorized occurrence, or a series of related unauthorized occurrences, on or conducted through a registrant’s information systems that jeopardizes the confidentiality, integrity, or availability of a registrant’s information systems or any information residing therein. (4)

How can Darktrace assist in the process of disclosing incidents to the SEC?

Accelerate reporting

Darktrace’s Cyber AI Analyst generates automated reports that synthesize discrete data points potentially indicative of cybersecurity threats, forming reports that provide an overview of the evolution and impact of a threat.

Thus, when a potential threat is identified by Darktrace, AI Analyst can quickly compile information that organizations might include in their disclosure of an occurrence they determined to be material, including the following: incident timelines, incident events, incident summary, related model breaches, investigation process (i.e., how Darktrace’s AI conducted the investigation), linked incident events, and incident details. The figure below illustrates how Darktrace compiles and presents incident information and insights in the UI.

Overview of information provided in an ‘AI Analyst Report’ that could be relevant to registrants reporting a material cybersecurity incident to the SEC
Figure 1: Overview of information provided in an ‘AI Analyst Report’ that could be relevant to registrants reporting a material cybersecurity incident to the SEC

It should be noted that Instruction 4 to the new Form 8-K Item 1.05 specifies the “registrant need not disclose specific or technical information about its planned response to the incident or its cybersecurity systems, related networks and devices, or potential system vulnerabilities in such detail as would impede the registrant’s response or remediation of the incident” (5).

As such, the incident report generated by Darktrace may provide more information, including technical details, than is needed for the 8-K disclosure. In general, users should take appropriate measures to ensure that the information they provide in SEC reports meets the requirements outlined by the relevant regulations. Darktrace cannot recommend that an incident should be reported, nor report an incident itself.

Determine if a cybersecurity incident is material

Item 1.05 requires registrants to determine for themselves whether cybersecurity incidents qualify as ‘material’. This involves considerations such as ‘the nature scope and timing of the incident, and the material impact or reasonably likely material impact on the registrant, including its financial condition and results of operations.’

While it is up to the registrant to determine, consistent with existing legal standards, the materiality of an incident, Darktrace’s solution can provide relevant information which might aid in this evaluation. Darktrace’s Threat Visualizer user interface provides a 3-D visualization of an organization’s digital environment, allowing users to assess the likely degree to which an attack may have spread throughout their digital environment. Darktrace Cyber AI Analyst identifies connections among discrete occurrences of threatening activity, which can help registrants quickly assess the ‘scope and timing of an incident'.

Furthermore, in order to establish materiality it would be useful to understand how an attack might extend across recipients and environments. In the image below, Darktrace/Email identifies how a user was impacted across different platforms. In this example, Darktrace/Email identified an attacker that deployed a dual channel social engineering attack via both email and a SaaS platform in an effort to acquire login credentials. In this case, the attacker useding a legitimate SharePoint link that only reveals itself to be malicious upon click. Once the attacker gained the credentials, it proceeded to change email rules to obfuscate its activity.

Darktrace/Email presents this information in one location, making such investigations easier for the end user.

Darktrace/Email indicating a threat across SaaS and email
Figure 2: Darktrace/Email indicating a threat across SaaS and email

What is regulation S-K item 106 of the SEC cybersecurity rules?

The new rules add Item 106 to Regulation S-K requiring registrants to disclose certain information regarding their risk management, strategy, and governance relating to cybersecurity in their annual reports on Form 10-K. The new rules add Item 16K to Form 20-F to require comparable disclosure by [foreign private issuers] in their annual reports on Form 20-F. (6)

SEC cybersecurity rules: Risk management

Specifically, with respect to risk management, Item 106(b) and Item 16K(b) require registrants to describe their processes, if any, for assessing, identifying, and managing material risks from cybersecurity threats, as well as whether any risks from cybersecurity threats, including as a result of any previous cybersecurity incidents, have materially affected or are reasonably likely to materially affect them. The new rules include a non-exclusive list of disclosure items registrants should provide based on their facts and circumstances. (6)

SEC cybersecurity rules: Governance

With respect to governance, Item 106 and Item 16K require registrants to describe the board of directors’ oversight of risks from cybersecurity threats (including identifying any board committee or subcommittee responsible for such oversight) and management’s role in assessing and managing material risks from cybersecurity threats. (6)

How can Darktrace solutions aid in disclosing their risk management, strategy, and governance related to cybersecurity?

Impact scores

Darktrace End-to-End (E2E) leverages AI to understand the complex relationships across users and devices to model possible attack paths, giving security teams a contextual understanding of risk across their digital environments beyond isolated CVEs or CVSS scores. Additionally, teams can prioritize risk management actions to increase their cyber resilience through the E2E Advisory dashboard.

Attack paths consider:

  • Potential damages: Both the potential consequences if a given device was compromised and its immediate implications on other devices.
  • Exposure: Devices' level of interactivity and accessibility. For example, how many emails does a user get via mailing lists and from what kind of sources?
  • Impact: Where a user or asset sits in terms of the IT or business hierarchy and how they communicate with each other. Darktrace can simulate a range of possible outcomes for an uncertain event.
  • Weakness: A device’s patch latency and difficulty, a composite metric that looks at attacker MITRE methods and our own scores to determine how hard each stage of compromise is to achieve.

Because the SEC cybersecurity rules require “oversight of risks from cybersecurity threats” and “management’s role in assessing and managing material risks from cybersecurity threats” (6), the scores generated by Darktrace E2E can aid end-user’s ability to identify risks facing their organization and assign responsibilities to address those risks.

E2E attack paths leverage a deep understanding of a customer’ digital environment and highlight potential attack routes that an attacker could leverage to reach critical assets or entities. Difficulty scores (see Figure 5) allow security teams to measure potential damage, exposure, and impact of an attack on a specific asset or entity.

An example of an attack path in a digital environment
Figure 3: An example of an attack path in a digital environment

Automatic executive threat reports

Darktrace’s solution automatically produces Executive Threat Reports that present a simple visual overview of model breaches (i.e., indicators of unusual and threatening behaviors) and activity in the network environment. Reports can be customized to include extra details or restricted to high level information.

These reports can be generated on a weekly, quarterly, and yearly basis, and can be documented by registrants in relation to Item 106(b) to document parts of their efforts toward assessing, identifying, and managing material risks from cybersecurity threats.

Moreover, Cyber AI Analyst incident reports (described above) can be leveraged to document key details concerning significant previous incidents identified by the Darktrace solution that the registrant determined to be ‘material’.

While the disclosures required by Item 106(c) relate to the governance processes by which the board of directors, the management, and other responsible bodies within an organization oversee risks resulting from cybersecurity threats, the information provided by Darktrace’s Executive Threat Reports and Cyber AI Analyst incident reports can also help relevant stakeholders communicate more effectively regarding the threat landscape and previous incidents.

DISCLAIMER

The material above is provided for informational purposes only. This summary does not constitute legal or compliance advice, recommendations, or guidance. Darktrace encourages you to verify the contents of this summary with your own advisors.

References

  1. Note that the rule does not set forth any specific timeline between the incident and the materiality determination, but the materiality determination should be made without unreasonable delay.
  2. https://www.sec.gov/files/form8-k.pdf
  3. https://www.sec.gov/news/press-release/2023-139
  4. https://www.ecfr.gov/current/title-17/chapter-II/part-229
  5. https://www.sec.gov/files/form8-k.pdf
  6. https://www.sec.gov/corpfin/secg-cybersecurity
Continue reading
About the author
Kendra Gonzalez Duran
Director of Technology Innovation

Blog

Inside the SOC

Hashing out TA577: Darktrace’s Detection of NTLM Hash Theft

Default blog imageDefault blog image
09
Jul 2024

What is credential theft and how does it work?

What began as a method to achieve unauthorized access to an account, often driven by the curiosity of individual attackers, credentials theft become a key tactic for malicious actors and groups, as stolen login credentials can be abused to gain unauthorized access to accounts and systems. This access can be leveraged to carry out malicious activities such as data exfiltration, fraud, espionage and malware deployment.

It is therefore no surprise that the number of dark web marketplaces selling privileged credentials has increased in recent years, making it easier for malicious actors to monetize stolen credentials [1]. This, in turn, has created new opportunities for threat actors to use increasingly sophisticated tactics such as phishing, social engineering and credential stuffing in their attacks, targeting individuals, organizations and government entities alike [1].

Credential theft example

TA577 Threat Actor

TA577 is a threat actor known to leverage stolen credentials, also known as Hive0118 [2], an initial access broker (IAB) group that was previously known for delivering malicious payloads [2]. On March 4, 2024, Proofpoint reported evidence of TA577 using a new attack chain with a different aim in mind: stealing NT LAN Manager (NTLM) hashes that can be used to authenticate to systems without needing to know plaintext passwords [3].

How does TA577 steal credentials?

Proofpoint reported that this new attack chain, which was first observed on February 26 and 27, was made up of two distinct campaigns. The first campaign consisted of a phishing attack featuring tens of thousands of emails targeting hundreds of organizations globally [3]. These phishing emails often appeared as replies to previous messages (thread hijacking) and contained zipped HTML attachments that each contained a unique file hash, customized for each recipient [3]. These attached files also contained a HTTP Meta refresh function, which triggered an automatic connection to a text file hosted on external IP addresses running as SMB servers [3].

When attempting to access the text file, the server requires an SMB session authentication via NTLM. This session is initiated when a client sends an ‘SMB_COM_NEGOTIATE’ request to the server, which answers with a ‘SMB_COM_NEGOTIATE’ response.

The client then proceeds to send a ‘SMB_COM_SESSION_SETUP_ANDX’ request to start the SMB session setup process, which includes initiating the NTLM authentication process. The server responds with an ‘SMB_COM_SESSION_SETUP_ANDX’ response, which includes an NTLM challenge message [6].

The client can then use the challenge message and its own credentials to generate a response by hashing its password using an NTLM hash algorithm. The response is sent to the server in an ‘SMB_COM_SESSION_SETUP_ANDX’ request. The server validates the response and, if the authentication is successful, the server answers with a final ‘SMB_COM_SESSION_SETUP_ANDX’ response, which completes the session setup process and allows the client to access the file listed on the server [6].

What is the goal of threat actor TA577?

As no malware delivery was detected during these sessions, researchers have suggested that the aim of TA577 was not to deliver malware, but rather to take advantage of the NTLMV2 challenge/response to steal NTLM authentication hashes [3] [4]. Hashes stolen by attackers can be exploited in pass-the-hash attacks to authenticate to a remote server or service [4]. They can also be used for offline password cracking which, if successful, could be utilized to escalate privileges or perform lateral movement through a target network [4]. Under certain circumstances, these hashes could also permit malicious actors to hijack accounts, access sensitive information and evade security products [4].

The open-source toolkit Impacket, which includes modules for password cracking [5] and which can be identified by the default NTLM server challenge “aaaaaaaaaaaaaaaa”[3], was observed during the SMB sessions. This indicates that TA577 actor aim to use stolen credentials for password cracking and pass-the-hash attacks.

TA577 has previously been associated with Black Basta ransomware infections and Qbot, and has been observed delivering various payloads including IcedID, SystemBC, SmokeLoader, Ursnif, and Cobalt Strike [2].This change in tactic to follow the current trend of credential theft may indicate that not only are TA577 actors aware of which methods are most effective in the current threat landscape, but they also have monetary and time resources needed to create new methods to bypass existing detection tools [3].  

Darktrace’s Coverage of TA577 Activity

On February 26 and 26, coinciding with the campaign activity reported by Proofpoint, Darktrace/Email™ observed a surge of inbound emails from numerous suspicious domains targeting multiple customer environments. These emails consistently included zip files with seemingly randomly generated names, containing HTLM content and links to an unusual external IP address [3].

A summary of anomaly indicators seen for a campaign email sent by TA577, as detected by Darktrace/Email.
Figure 1: A summary of anomaly indicators seen for a campaign email sent by TA577, as detected by Darktrace/Email.
Details of the name and size of the .zip file attached to a campaign email, along with the Darktrace/Email model alerts triggered by the email.
Figure 2: Details of the name and size of the .zip file attached to a campaign email, along with the Darktrace/Email model alerts triggered by the email.

The URL of these links contained an unusually named .txt file, which corresponds with Proofpoint reports of the automatic connection to a text file hosted on an external SMB server made when the attachment is opened [3].

A link to a rare external IP address seen within a campaign email, containing an unusually named .txt file.
Figure 3: A link to a rare external IP address seen within a campaign email, containing an unusually named .txt file.

Darktrace identified devices on multiple customer networks connecting to external SMB servers via the SMB protocol. It understood this activity was suspicious as the SMB protocol is typically reserved for internal connections and the endpoint in question had never previously been observed on the network.

The Event Log of a ‘Compliance / External Windows Communication’ model alert showing a connection to an external SMB server on destination port 445.
Figure 4: The Event Log of a ‘Compliance / External Windows Communication’ model alert showing a connection to an external SMB server on destination port 445.
External Sites Summary highlighting the rarity of the external SMB server.
Figure 5: External Sites Summary highlighting the rarity of the external SMB server.
External Sites Summary highlightin that the SMB server is geolocated in Moldova.
Figure 6: External Sites Summary highlightin that the SMB server is geolocated in Moldova.

During these connections, Darktrace observed multiple devices establishing an SMB session to this server via a NTLM challenge/response, representing the potential theft of the credentials used in this session. During this session, some devices also attempted to access an unusually named .txt file, further indicating that the affected devices were trying to access the .txt file hosted on external SMB servers [3].

Packet captures (PCAPs) of these sessions show the default NTLM server challenge, indicating the use of Impacket, suggesting that the captured NTLM hashes were to be used for password cracking or pass-the-hash-attacks [3]

PCAP analysis showing usage of the default NTLM server challenge associated with Impacket.
Figure 7: PCAP analysis showing usage of the default NTLM server challenge associated with Impacket.

Conclusions

Ultimately, Darktrace’s suite of products effectively detected and alerted for multiple aspects of the TA577 attack chain and NTLM hash data theft activity across its customer base. Darktrace/Email was able to uncover the inbound phishing emails that served as the initial access vector for TA577 actors, while Darktrace DETECT identified the subsequent external connections to unusual external locations and suspicious SMB sessions.

Furthermore, Darktrace’s anomaly-based approach enabled it to detect suspicious TA577 activity across the customer base on February 26 and 27, prior to Proofpoint’s report on their new attack chain. This showcases Darktrace’s ability to identify emerging threats based on the subtle deviations in a compromised device’s behavior, rather than relying on a static list of indicators of compromise (IoCs) or ‘known bads’.

This approach allows Darktrace to remain one step ahead of increasingly adaptive threat actors, providing organizations and their security teams with a robust AI-driven solution able to safeguard their networks in an ever-evolving threat landscape.

Credit to Charlotte Thompson, Cyber Analyst, Anna Gilbertson, Cyber Analyst.

References

1)    https://www.sentinelone.com/cybersecurity-101/what-is-credential-theft/

2)    https://malpedia.caad.fkie.fraunhofer.de/actor/ta577

3)    https://www.proofpoint.com/us/blog/threat-insight/ta577s-unusual-attack-chain-leads-ntlm-data-theft

4)    https://www.bleepingcomputer.com/news/security/hackers-steal-windows-ntlm-authentication-hashes-in-phishing-attacks/

5)    https://pawanjswal.medium.com/the-power-of-impacket-a-comprehensive-guide-with-examples-1288f3a4c674

6)    https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/c083583f-1a8f-4afe-a742-6ee08ffeb8cf

7)    https://www.hivepro.com/threat-advisory/ta577-targeting-windows-ntlm-hashes-in-global-campaigns/

Darktrace Model Detections

Darktrace/Email

·       Attachment / Unsolicited Archive File

·       Attachment / Unsolicited Attachment

·       Link / New Correspondent Classified Link

·       Link / New Correspondent Rare Link

·       Spoof / Internal User Similarities

Darktrace DETECT

·       Compliance / External Windows Communications

Darktrace RESPOND

·       Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

IoCs

IoC - Type - Description

176.123.2[.]146 - IP address -Likely malicious SMB Server

89.117.2[.]33 - IP address - Likely malicious SMB Server

89.117.1[.]161 - IP address - Likely malicious SMB Server

104.129.20[.]167 - IP address - Likely malicious SMB Server

89.117.1[.]160 - IP address - Likely malicious SMB Server

85.239.33[.]149 - IP address - Likely malicious SMB Server

89.117.2[.]34 - IP address - Likely malicious SMB Server

146.19.213[.]36 - IP address - Likely malicious SMB Server

66.63.188[.]19 - IP address - Likely malicious SMB Server

103.124.104[.]76 - IP address - Likely malicious SMB Server

103.124.106[.]224 - IP address - Likely malicious SMB Server

\5aohv\9mn.txt - SMB Path and File - SMB Path and File

\hvwsuw\udrh.txt - SMB Path and File - SMB Path and File

\zkf2rj4\VmD.txt = SMB Path and File - SMB Path and File

\naams\p3aV.txt - SMB Path and File - SMB Path and File

\epxq\A.txt - SMB Path and File - SMB Path and File

\dbna\H.txt - SMB Path and File - SMB Path and File

MAGNAMSB.zip – Filename - Phishing Attachment

e751f9dddd24f7656459e1e3a13307bd03ae4e67 - SHA1 Hash - Phishing Attachment

OMNIS2C.zip  - Filename - Phishing Attachment

db982783b97555232e28d5a333525118f10942e1 - SHA1 Hash - Phishing Attachment

aaaaaaaaaaaaaaaa - NTLM Server Challenge -Impacket Default NTLM Challenge

MITRE ATT&CK Tactics, Techniques and Procedures (TTPs)

Tactic - Technique

TA0001            Initial Access

TA0002            Execution

TA0008            Lateral Movement

TA0003            Persistence

TA0005            Defense Evasion

TA0006            Credential Access

T1021.002       SMB/Windows Admin Shares

T1021  Remote Services

T1566.001       Spearfishing Attachment

T1566  Phishing

T1204.002       Malicious File

T1204  User Execution

T1021.002       SMB/Windows Admin Shares

T1574  Hijack Execution Flow

T1021  Remote Services

T1555.004       Windows Credential Manager

T1555  Credentials from Password Stores

Continue reading
About the author
Charlotte Thompson
Cyber Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.