Blog
/

Inside the SOC

/
February 8, 2024

How CoinLoader Hijacks Networks

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Feb 2024
Discover how Darktrace decrypted the CoinLoader malware hijacking networks for cryptomining. Learn about the tactics and protection strategies employed.

About Loader Malware

Loader malware was a frequent topic of conversation and investigation within the Darktrace Threat Research team throughout 2023, with a wide range of existing and novel variants affecting a significant number of Darktrace customers, as detailed in Darktrace’s inaugural End of Year Threat Report. The multi-phase nature of such compromises poses a significant threat to organizations due to the need to defend against multiple threats at the same time.

CoinLoader, a variant of loader malware first observed in the wild in 2018 [1], is an example of one of the more prominent variant of loaders observed by Darktrace in 2023, with over 65 customers affected by the malware. Darktrace’s Threat Research team conducted a deep dive investigation into the patterns of behavior exhibited by devices infected with CoinLoader in the latter part of 2023, with compromises observed in Europe, the Middle East and Africa (EMEA), Asia-Pacific (APAC) and the Americas.

The autonomous threat detection capabilities of Darktrace DETECT™ allowed for the effective identification of these CoinLoader infections whilst Darktrace RESPOND™, if active, was able to quickly curtail attacker’s efforts and prevent more disruptive, and potentially costly, secondary compromises from occurring.

What is CoinLoader?

Much like other strains of loader, CoinLoader typically serves as a first stage malware that allows threat actors to gain initial access to a network and establish a foothold in the environment before delivering subsequent malicious payloads, including adware, botnets, trojans or pay-per-install campaigns.

CoinLoader is generally propagated through trojanized popular software or game installation archive files, usually in the rar or zip formats. These files tend can be easily obtained via top results displayed in search engines when searching for such keywords as "crack" or "keygen" in conjunction with the name of the software the user wishes to pirate [1,2,3,4]. By disguising the payload as a legitimate programme, CoinLoader is more likely to be unknowingly downloaded by endpoint users, whilst also bypassing traditional security measures that trust the download.

It also has several additional counter-detection methods including using junk code, variable obfuscation, and encryption for shellcode and URL schemes. It relies on dynamic-link library (DLL) search order hijacking to load malicious DLLs to legitimate executable files. The malware is also capable of performing a variety of checks for anti-virus processes and disabling endpoint protection solutions.

In addition to these counter-detection tactics, CoinLoader is also able to prevent the execution of its malicious DLL files in sandboxed environments without the presence of specific DNS cache records, making it extremely difficult for security teams and researchers to analyze.

In 2020 it was reported that CoinLoader compromises were regularly seen alongside cryptomining activity and even used the alias “CoinMiner” in some cases [2]. Darktrace’s investigations into CoinLoader in 2023 largely confirmed this theory, with around 15% of observed CoinLoader connections being related to cryptomining activity.

Cryptomining malware consumes large amounts of a hijacked (or cryptojacked) device's resources to perform complex mathematical calculations and generate income for the attacker all while quietly working in the background. Cryptojacking can lead to high electricity costs, device slow down, loss of functionality, and in the worst case scenario can be a potential fire hazard.

Darktrace Coverage of CoinLoader

In September 2023, Darktrace observed several cases of CoinLoader that served to exemplify the command-and-control (C2) communication and subsequent cryptocurrency mining activities typically observed during CoinLoader compromises. While the initial infection method in these cases was outside of Darktrace’s purview, it likely occurred via socially engineered phishing emails or, as discussed earlier, trojanized software downloads.

Command-and-Control Activity

CoinLoader compromises observed across the Darktrace customer base were typically identified by encrypted C2 connections over port 433 to rare external endpoints using self-signed certificates containing "OU=IT,O=MyCompany LLC,L=San Francisco,ST=California,C=US" in their issue fields.

All observed CoinLoader C2 servers were associated with the ASN of MivoCloud, a Virtual Private Server (VPS) hosting service (AS39798 MivoCloud SRL). It had been reported that Russian-state sponsored threat actors had previously abused MivoCloud’s infrastructure in order to bypass geo-blocking measures during phishing attacks against western nations [5].

Darktrace observed that the majority of CoinLoader infrastructure utilized IP addresses in the 185.225.0.0/19 range and were associated with servers hosted in Romania, with just one instance of an IP address based in Moldova. The domain names of these servers typically followed the naming pattern ‘*[a-d]{1}[.]info’, with 'ams-updatea[.]info’, ‘ams-updateb[.]info’, ‘ams-updatec[.]info’, and ‘ams-updated[.]info’ routinely identified on affected networks.

Researchers found that CoinLoader typically uses DNS tunnelling in order to covertly exchange information with attacker-controlled infrastructure, including the domains ‘candatamsnsdn[.]info’, ‘mapdatamsnsdn[.]info’, ‘rqmetrixsdn[.]info’ [4].

While Darktrace did not observe these particular domains, it did observer similar DNS lookups to a similar suspicous domain, namely ‘ucmetrixsdn[.]info’, in addition to the aforementioned HTTPS C2 connections.

Cryptomining Activity and Possible Additional Tooling

After establishing communication channels with CoinLoader servers, affected devices were observed carrying out a range of cryptocurrency mining activities. Darktrace detected devices connecting to multiple MivoCloud associated IP addresses using the MinerGate protocol alongside the credential “x”, a MinerGate credential observed by Darktrace in previous cryptojacking compromises, including the Sysrv-hello botnet.

Figure 1: Darktrace DETECT breach log showing an alerted mining activity model breach on an infected device.
Figure 2: Darktrace's Cyber AI Analyst providing details about unusual repeated connections to multiple endpoints related to CoinLoader cryptomining.

In a number of customer environments, Darktrace observed affected devices connected to endpoints associated with other malware such as the Andromeda botnet and the ViperSoftX information stealer. It was, however, not possible to confirm whether CoinLoader had dropped these additional malware variants onto infected devices.

On customer networks where Darktrace RESPOND was enabled in autonomous response mode, Darktrace was able to take swift targeted steps to shut down suspicious connections and contain CoinLoader compromises. In one example, following DETECT’s initial identification of an affected device connecting to multiple MivoCloud endpoints, RESPOND autonomously blocked the device from carrying out such connections, effectively shutting down C2 communication and preventing threat actors carrying out any cryptomining activity, or downloading subsequent malicious payloads. The autonomous response capability of RESPOND provides customer security teams with precious time to remove infected devices from their network and action their remediation strategies.

Figure 3: Darktrace RESPOND autonomously blocking CoinLoader connections on an affected device.

Additionally, customers subscribed to Darktrace’s Proactive Threat Notification (PTN) service would be alerted about potential CoinLoader activity observed on their network, prompting Darktrace’s Security Operations Center (SOC) to triage and investigate the activity, allowing customers to prioritize incidents that require immediate attention.

Conclusion

By masquerading as free or ‘cracked’ versions of legitimate popular software, loader malware like CoinLoader is able to indiscriminately target a large number of endpoint users without arousing suspicion. What’s more, once a network has been compromised by the loader, it is then left open to a secondary compromise in the form of potentially costly information stealers, ransomware or, in this case, cryptocurrency miners.

While urging employees to think twice before installing seemingly legitimate software unknown or untrusted locations is an essential first step in protecting an organization against threats like CoinLoader, its stealthy tactics mean this may not be enough.

In order to fully safeguard against such increasingly widespread yet evasive threats, organizations must adopt security solutions that are able to identify anomalies and subtle deviations in device behavior that could indicate an emerging compromise. The Darktrace suite of products, including DETECT and RESPOND, are well-placed to identify and contain these threats in the first instance and ensure they cannot escalate to more damaging network compromises.

Credit to: Signe Zaharka, Senior Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

Appendix

Darktrace DETECT Model Detections

  • Anomalous Connection/Multiple Connections to New External TCP Port
  • Anomalous Connection/Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection/Rare External SSL Self-Signed
  • Anomalous Connection/Repeated Rare External SSL Self-Signed
  • Anomalous Connection/Suspicious Self-Signed SSL
  • Anomalous Connection/Young or Invalid Certificate SSL Connections to Rare
  • Anomalous Server Activity/Rare External from Server
  • Compromise/Agent Beacon (Long Period)
  • Compromise/Beacon for 4 Days
  • Compromise/Beacon to Young Endpoint
  • Compromise/Beaconing Activity To External Rare
  • Compromise/High Priority Crypto Currency Mining
  • Compromise/High Volume of Connections with Beacon Score
  • Compromise/Large Number of Suspicious Failed Connections
  • Compromise/New or Repeated to Unusual SSL Port
  • Compromise/Rare Domain Pointing to Internal IP
  • Compromise/Repeating Connections Over 4 Days
  • Compromise/Slow Beaconing Activity To External Rare
  • Compromise/SSL Beaconing to Rare Destination
  • Compromise/Suspicious File and C2
  • Compromise/Suspicious TLS Beaconing To Rare External
  • Device/ Anomalous Github Download
  • Device/ Suspicious Domain
  • Device/Internet Facing Device with High Priority Alert
  • Device/New Failed External Connections

Indicators of Compromise (IoCs)

IoC - Hostname C2 Server

ams-updatea[.]info

ams-updateb[.]info

ams-updatec[.]info

ams-updated[.]info

candatamsna[.]info

candatamsnb[.]info

candatamsnc[.]info

candatamsnd[.]info

mapdatamsna[.]info

mapdatamsnb[.]info

mapdatamsnc[.]info

mapdatamsnd[.]info

res-smarta[.]info

res-smartb[.]info

res-smartc[.]info

res-smartd[.]info

rqmetrixa[.]info

rqmetrixb[.]info

rqmetrixc[.]info

rqmetrixd[.]info

ucmetrixa[.]info

ucmetrixb[.]info

ucmetrixc[.]info

ucmetrixd[.]info

any-updatea[.]icu

IoC - IP Address - C2 Server

185.225[.]16.192

185.225[.]16.61

185.225[.]16.62

185.225[.]16.63

185.225[.]16.88

185.225[.]17.108

185.225[.]17.109

185.225[.]17.12

185.225[.]17.13

185.225[.]17.135

185.225[.]17.14

185.225[.]17.145

185.225[.]17.157

185.225[.]17.159

185.225[.]18.141

185.225[.]18.142

185.225[.]18.143

185.225[.]19.218

185.225[.]19.51

194.180[.]157.179

194.180[.]157.185

194.180[.]158.55

194.180[.]158.56

194.180[.]158.62

194.180[.]158.63

5.252.178[.]74

94.158.246[.]124

IoC - IP Address - Cryptocurrency mining related endpoint

185.225.17[.]114

185.225.17[.]118

185.225.17[.]130

185.225.17[.]131

185.225.17[.]132

185.225.17[.]142

IoC - SSL/TLS certificate issuer information - C2 server certificate example

emailAddress=admin@example[.]ltd,CN=example[.]ltd,OU=IT,O=MyCompany LLC,L=San Francisco,ST=California,C=US

emailAddress=admin@'res-smartd[.]info,CN=res-smartd[.]info,OU=IT,O=MyCompany LLC,L=San Francisco,ST=California,C=US

CN=ucmetrixd[.]info,OU=IT,O=MyCompany LLC,L=San Francisco,ST=California,C=US

MITRE ATT&CK Mapping

INITIAL ACCESS

Exploit Public-Facing Application - T1190

Spearphishing Link - T1566.002

Drive-by Compromise - T1189

COMMAND AND CONTROL

Non-Application Layer Protocol - T1095

Non-Standard Port - T1571

External Proxy - T1090.002

Encrypted Channel - T1573

Web Protocols - T1071.001

Application Layer Protocol - T1071

DNS - T1071.004

Fallback Channels - T1008

Multi-Stage Channels - T1104

PERSISTENCE

Browser Extensions

T1176

RESOURCE DEVELOPMENT

Web Services - T1583.006

Malware - T1588.001

COLLECTION

Man in the Browser - T1185

IMPACT

Resource Hijacking - T1496

References

1. https://www.avira.com/en/blog/coinloader-a-sophisticated-malware-loader-campaign

2. https://asec.ahnlab.com/en/17909/

3. https://www.cybereason.co.jp/blog/cyberattack/5687/

4. https://research.checkpoint.com/2023/tunnel-warfare-exposing-dns-tunneling-campaigns-using-generative-models-coinloader-case-study/

5. https://securityboulevard.com/2023/02/three-cases-of-cyber-attacks-on-the-security-service-of-ukraine-and-nato-allies-likely-by-russian-state-sponsored-gamaredon/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Signe Zaharka
Senior Cyber Security Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 13, 2025

/

Cloud

Agent vs. Agentless cloud security: Why deployment methods matter

Default blog imageDefault blog image

The rapid adoption of cloud technologies has brought significant security challenges for organizations of all sizes. According to recent studies, over 70% of enterprises now operate in hybrid or multi-cloud environments, with 93% employing a multi-cloud strategy[1]. This complexity requires robust security tools, but opinions vary on the best deployment method—agent-based, agentless, or a combination of both.

Agent-based and agentless cloud security approaches offer distinct benefits and limitations, and organizations often make deployment choices based on their unique needs depending on the function of the specific assets covered, the types of data stored, and cloud architecture, such as hybrid or multi-cloud deployments.

For example, agentless solutions are increasingly favored for their ease of deployment and ability to provide broad visibility across dynamic cloud environments. These are especially useful for DevOps teams, with 64% of organizations citing faster deployment as a key reason for adopting agentless tools[2].

On the other hand, agent-based solutions remain the preferred choice for environments requiring deep monitoring and granular control, such as securing sensitive high-value workloads in industries like finance and healthcare. In fact, over 50% of enterprises with critical infrastructure report relying on agent-based solutions for their advanced protection capabilities[3].

As the debate continues, many organizations are turning to combined approaches, leveraging the strengths of both agent-based and agentless tools to address the full spectrum of their security needs for comprehensive coverage. Understanding the capabilities and limitations of these methods is critical to building an effective cloud security strategy that adapts to evolving threats and complex infrastructures.

Agent-based cloud security

Agent-based security solutions involve deploying software agents on each device or system that needs protection. Agent-based solutions are great choices when you need in-depth monitoring and protection capabilities. They are ideal for organizations that require deep security controls and real-time active response, particularly in hybrid and on-premises environments.

Key advantages include:

1. Real-time monitoring and protection: Agents detect and block threats like malware, ransomware, and anomalous behaviors in real time, providing ongoing protection and enforcing compliance by continuously monitoring workload activities.  Agents enable full control over workloads for active response such as blocking IP addresses, killing processes, disabling accounts, and isolating infected systems from the network, stopping lateral movement.

2. Deep visibility for hybrid environments: Agent-based approaches allow for full visibility across on-premises, hybrid, and multi-cloud environments by deploying agents on physical and virtual machines. Agents offer detailed insights into system behavior, including processes, files, memory, network connections, and more, detecting subtle anomalies that might indicate security threats. Host-based monitoring tracks vulnerabilities at the system and application level, including unpatched software, rogue processes, and unauthorized network activity.

3. Comprehensive coverage: Agents are very effective in hybrid environments (cloud and on-premises), as they can be installed on both physical and virtual machines.  Agents can function independently on each host device onto which they are installed, which is especially helpful for endpoints that may operate outside of constant network connectivity.

Challenges:

1. Resource-intensive: Agents can consume CPU, memory, and network resources, which may affect performance, especially in environments with large numbers of workloads or ephemeral resources.

2. Challenging in dynamic environments: Managing hundreds or thousands of agents in highly dynamic or ephemeral environments (e.g., containers, serverless functions) can be complex and labor-intensive.

3. Slower deployment: Requires agent installation on each workload or instance, which can be time-consuming, particularly in large or complex environments.  

Agentless cloud security

Agentless security does not require software agents to be installed on each device. Instead, it uses cloud infrastructure and APIs to perform security checks. Agentless solutions are highly scalable with minimal impact on performance, and ideal for cloud-native and highly dynamic environments like serverless and containerized. These solutions are great choices for your cloud-native and multi-cloud environments where rapid deployment, scalability, and minimal impact on performance are critical, but response actions can be handled through external tools or manual processes.

Key advantages include:

1. Scalability and ease of deployment: Because agentless security doesn’t require installation on each individual device, it is much easier to deploy and can quickly scale across a vast number of cloud assets. This approach is ideal for environments where resources are frequently created and destroyed (e.g., serverless, containerized workloads), as there is no need for agent installation or maintenance.

2. Reduced system overhead: Without the need to run local agents, agentless security minimizes the impact on system performance. This is crucial in high-performance environments.

3. Broad visibility: Agentless security connects via API to cloud service providers, offering near-instant visibility and threat detection. It provides a comprehensive view of your cloud environment, making it easier to manage and secure large and complex infrastructures.

Challenges

1. Infrastructure-level monitoring: Agentless solutions rely on cloud service provider logs and API calls, meaning that detection might not be as immediate as agent-based solutions. They collect configuration data and logs, focusing on infrastructure misconfigurations, identity risks, exposed resources, and network traffic, but lack visibility and access to detailed, system-level information such as running processes and host-level vulnerabilities.

2. Cloud-focused: Primarily for cloud environments, although some tools may integrate with on-premises systems through API-based data gathering. For organizations with hybrid cloud environments, this approach fragments visibility and security, leading to blind spots and increasing security risk.

3. Passive remediation: Typically provides alerts and recommendations, but lacks deep control over workloads, requiring manual intervention or orchestration tools (e.g., SOAR platforms) to execute responses. Some agentless tools trigger automated responses via cloud provider APIs (e.g., revoking permissions, adjusting security groups), but with limited scope.

Combined agent-based and agentless approaches

A combined approach leverages the strengths of both agent-based and agentless security for complete coverage. This hybrid strategy helps security teams achieve comprehensive coverage by:

  • Using agent-based solutions for deep, real-time protection and detailed monitoring of critical systems or sensitive workloads.
  • Employing agentless solutions for fast deployment, broader visibility, and easier scalability across all cloud assets, which is particularly useful in dynamic cloud environments where workloads frequently change.

The combined approach has distinct practical applications. For example, imagine a financial services company that deals with sensitive transactions. Its security team might use agent-based security for critical databases to ensure stringent protections are in place. Meanwhile, agentless solutions could be ideal for less critical, transient workloads in the cloud, where rapid scalability and minimal performance impact are priorities. With different data types and infrastructures, the combined approach is best.

Best of both worlds: The benefits of a combined approach

The combined approach not only maximizes security efficacy but also aligns with diverse operational needs. This means that all parts of the cloud environment are secured according to their risk profile and functional requirements. Agent-based deployment provides in-depth monitoring and active protection against threats, suitable for environments requiring tight security controls, such as financial services or healthcare data processing systems. Agentless deployment complements agents by offering broader visibility and easier scalability across diverse and dynamic cloud environments, ideal for rapidly changing cloud resources.

There are three major benefits from combining agent-based and agentless approaches.

1. Building a holistic security posture: By integrating both agent-based and agentless technologies, organizations can ensure that all parts of their cloud environments are covered—from persistent, high-risk endpoints to transient cloud resources. This comprehensive coverage is crucial for detecting and responding to threats promptly and effectively.

2. Reducing overhead while boosting scalability: Agentless systems require no software installation on each device, reducing overhead and eliminating the need to update and maintain agents on a large number of endpoints. This makes it easier to scale security as the organization grows or as the cloud environment changes.

3. Applying targeted protection where needed: Agent-based solutions can be deployed on selected assets that handle sensitive information or are critical to business operations, thus providing focused protection without incurring the costs and complexity of universal deployment.

Use cases for a combined approach

A combined approach gives security teams the flexibility to deploy agent-based and agentless solutions based on the specific security requirements of different assets and environments. As a result, organizations can optimize their security expenditures and operational efforts, allowing for greater adaptability in cloud security use cases.

Let’s take a look at how this could practically play out. In the combined approach, agent-based security can perform the following:

1. Deep monitoring and real-time protection:

  • Workload threat detection: Agent-based solutions monitor individual workloads for suspicious activity, such as unauthorized file changes or unusual resource usage, providing high granularity for detecting threats within critical cloud applications.
  • Behavioral analysis of applications: By deploying agents on virtual machines or containers, organizations can monitor behavior patterns and flag anomalies indicative of insider threats, lateral movement, or Advanced Persistent Threats (APTs).
  • Protecting high-sensitivity environments: Agents provide continuous monitoring and advanced threat protection for environments processing sensitive data, such as payment processing systems or healthcare records, leveraging capabilities like memory protection and file integrity monitoring.

2. Cloud asset protection:

  • Securing critical infrastructure: Agent-based deployments are ideal for assets like databases or storage systems that require real-time defense against exploits and ransomware.
  • Advanced packet inspection: For high-value assets, agents offer deep packet inspection and in-depth logging to detect stealthy attacks such as data exfiltration.
  • Customizable threat response: Agents allow for tailored security rules and automated responses at the workload level, such as shutting down compromised instances or quarantining infected files.

At the same time, agentless cloud security provides complementary benefits such as:

1. Broad visibility and compliance:

  • Asset discovery and management: Agentless systems can quickly scan the entire cloud environment to identify and inventory all assets, a crucial capability for maintaining compliance with regulations like GDPR or HIPAA, which require up-to-date records of data locations and usage.
  • Regulatory compliance auditing and configuration management: Quickly identify gaps in compliance frameworks like PCI DSS or SOC 2 by scanning configurations, permissions, and audit trails without installing agents. Using APIs to check configurations across cloud services ensures that all instances comply with organizational and regulatory standards, an essential aspect for maintaining security hygiene and compliance.
  • Shadow IT Detection: Detect and map unauthorized cloud services or assets that are spun up without security oversight, ensuring full inventory coverage.

2. Rapid environmental assessment:

  • Vulnerability assessment of new deployments: In environments where new code is frequently deployed, agentless security can quickly assess new instances, containers, or workloads in CI/CD pipelines for vulnerabilities and misconfigurations, enabling secure deployments at DevOps speed.
  • Misconfiguration alerts: Detect and alert on common cloud configuration issues, such as exposed storage buckets or overly permissive IAM roles, across cloud providers like AWS, Azure, and GCP.
  • Policy enforcement: Validate that new resources adhere to established security baselines and organizational policies, preventing security drift during rapid cloud scaling.

Combining agent-based and agentless approaches in cloud security not only maximizes the protective capabilities, but also offers flexibility, efficiency, and comprehensive coverage tailored to the diverse and evolving needs of modern cloud environments. This integrated strategy ensures that organizations can protect their assets more effectively while also adapting quickly to new threats and regulatory requirements.

Darktrace offers complementary and flexible deployment options for holistic cloud security

Powered by multilayered AI, Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that is agentless by default, with optional lightweight, host-based server agents for enhanced real-time actioning and deep inspection. As such, it can deploy in cloud environments in minutes and provide unified visibility and security across hybrid, multi-cloud environments.

With any deployment method, Darktrace supports multi-tenant, hybrid, and serverless cloud environments. Its Self-Learning AI learns the normal behavior across architectures, assets, and users to identify unusual activity that may indicate a threat. With this approach, Darktrace / CLOUD quickly disarms threats, whether they are known, unknown, or completely novel. It then accelerates the investigation process and responds to threats at machine speed.

Learn more about how Darktrace / CLOUD secures multi and hybrid cloud environments in the Solution Brief.

References:

1. Flexera 2023 State of the Cloud Report

2. ESG Research 2023 Report on Cloud-Native Security

3. Gartner, Market Guide for Cloud Workload Protection Platforms, 2023

Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

January 13, 2025

/

Inside the SOC

Detecting and Mitigating Adversary-in-the-Middle Phishing Attacks with Darktrace Services

Default blog imageDefault blog image

What is an Adversary-in-the-Middle Attack?

Threat actors are increasingly utilizing advanced phishing toolkits and techniques to carry out Adversary-in-the-Middle (AitM) attacks. These attacks involve the use of a proxy to a legitimate service, where the attacker’s webpage mimics the expected site. While the victim believes they are visiting the legitimate site, they are actually interacting with the attacker’s device, allowing the malicious actor to monitor all interactions and control the authenticated session, ultimately gaining access to the user’s account [1][2].

This blog will explore how Darktrace detected AitM techniques being leveraged in a Business Email Compromise (BEC) attack that used the widely used and trusted cloud storage service, Dropbox, for delivery. Dropbox’s popularity has made it a prime target for attackers to exploit in recent years. Threat actors can exploit the service for various malicious activities, including distributing malware and exposing sensitive information.

Attack Overview

In these types of AitM BEC attacks, recipients are often targeted with Dropbox-related emails, featuring subject headings like ‘FirstLast shared "Filename" with you,’ which suggest an individual is sharing an invoice-related attachment. These email subjects are common in such attacks, as threat actors attempt to encourage victims to access Dropbox links by masquerading them as legitimate files.

While higher priority users are, of course, targeted, the scope of these attacks remains broad. For instance, if a lower priority user is targeted by a phishing attack or their token is stolen, an attacker can still attempt BEC for further malicious intent and financial gain.

In October 2024, a Darktrace customer received a phishing email from a seemingly legitimate Dropbox address. This email originated from the IP, 54.240.39[.]219 and contained multiple link payloads to Dropbox-related hostnames were observed, inviting the user to access a file. Based on anomaly indicators and detection by Darktrace / EMAIL, Darktrace recognized that one of the payloads was attempting to abuse a legitimate cloud platform to share files or other unwanted material with the recipient.

Figure 1: Overview of the malicious email in the Darktrace / EMAIL console, highlighting Dropbox associated content/link payloads.

Following the recipient’s engagement with this email, Darktrace / IDENTITY identified a series of suspicious activities within the customer’s environment.

AitM attacks allow threat actors to bypass multi-factor authentication (MFA). Initially, when a user is phished, the malicious infrastructure captures both the user’s credentials and the token. This includes replaying a token issued to user that has already completed the MFA requirement, allowing the threat actor to satisfy the validity of the requirement and gain access to sensitive organizational resources. Darktrace is able to analyze user activity and authentication patterns to determine whether MFA requirements were met. This capability helps verify and indicate token theft via AitM.

Darktrace observed the associated user account making requests over Microsoft 365 from the IP 41.90.175[.]46. Given the unusual nature and rare geolocation based in Kenya, Africa, this activity did not appear indicative of legitimate business operations.

Figure 2: Geographical location of the SaaS user in relation to the source IP 41.90.175[.]46.

Further analysis using open-source intelligence (OSINT) revealed that the endpoint was likely associated with a call-back proxy network [3]. This suggested the presence of a network device capable of re-routing traffic and harvesting information.

Darktrace also detected that the same SaaS user was logging in from two different locations around the same time. One login was from a common, expected location, while the other was from an unusual location. Additionally, the user was observed registering security information using the Microsoft Authenticator app, indicating an attempt by an attacker to maintain access to the account by establishing a new method of MFA. This new MFA method could be used to bypass future MFA requirements, allowing the attacker to access sensitive material or carry out further malicious activities.

Figure 3: External sites summary for the SaaS account in relation to the source IP 13.74.161[.]104, observed with Registering Security Information.

Ultimately, this anomalous behavior was escalated to the Darktrace Security Operations Centre (SOC) via the Managed Detection & Response service for prompt triage and investigation by Darktrace’s SOC Analysts who notified the customer of strong evidence of compromise.

Fortunately, since this customer had Darktrace enabled in Autonomous Response mode, the compromised SaaS account had already been disabled, containing the attack. Darktrace’s SOC elected to extend this action to ensure the malicious activity remained halted until the customer could take further remedial action.

Figure 4: Attack timeline of observed activity, in chronological order; This highlighted anomalous SaaS events such as, MailItemsAccessed’, ‘Use of Unusual Credentials’, ‘User Registered Security Info’ events, and a ‘Disable User’ Autonomous Response action.

Conclusion

AitM attacks can play a crucial role in BEC campaigns. These attacks are often part of multi-staged operations, where an initial AitM attack is leveraged to launch a BEC by delivering a malicious URL through a trusted vendor or service. Attackers often attempt to lay low on their target network, sometimes persisting for extended periods, as they monitor user accounts or network segments to intercept sensitive communications.

In this instance, Darktrace successfully identified and acted against AitM techniques being leveraged in a BEC attack that used Dropbox for delivery. While Dropbox is widely used for legitimate purposes, its popularity has also made it a target for exploitation by threat actors, who have used it for a variety of malicious purposes, including delivering malware and revealing sensitive information.

Darktrace’s Security Operations Support service, combined with its Autonomous Response technology, provided timely and effective mitigation. Dedicated Security Operations Support analysts triaged the incident and implemented preventative measures, ensuring the customer was promptly notified. Meanwhile, Darktrace swiftly disabled the compromised SaaS account, allowing the customer to take further necessary actions, such as resetting the user’s password.

This case highlights the capabilities of Darktrace’s solutions, enabling the customer to resume normal business operations despite the malicious activity.

Credit to Justin Torres (Senior Cyber Analyst), Stefan Rowe (Technical Director, SOC) and Ryan Traill (Analyst Content Lead)

Appendices

References

1.    https://www.proofpoint.com/us/threat-reference/man-in-the-middle-attack-mitm

2.    https://thehackernews.com/2024/08/how-to-stop-aitm-phishing-attack.html

3.    https://spur.us/context/41.90.175.46

Darktrace Model Detections

Darktrace / NETWORK Model Alert(s):

SaaS / Compromise::SaaS Anomaly Following Anomalous Login

SaaS / Unusual Activity::Multiple Unusual SaaS Activities

SaaS / Compromise::Unusual Login and Account Update

SaaS / Compromise::Login From Rare Endpoint While User Is Active

SaaS / Access::Unusual External Source for SaaS Credential Use

SaaS / Email Nexus::Unusual Login Location Following Link to File Storage

SaaS / Access::MailItemsAccessed from Rare Endpoint

Darktrace/Autonomous Response Model Alert(s):

Antigena / SaaS::Antigena Suspicious SaaS Activity Block

List of Indicators of Compromise (IoCs)

(IoC - Type - Description)

41.90.175[.]46 – Source IP Observed with Suspicious Login Behavior

MITRE ATT&CK Mapping

(Technique Name - Tactic - ID - Sub-Technique of)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Email Accounts - RESOURCE DEVELOPMENT - T1586.002 - T1586

Cloud Service Dashboard - DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Continue reading
About the author
Justin Torres
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI