Blog
/

Threat Finds

RESPOND

/
December 2, 2019

Autonomous Action Prevents Cyber-Threats' Malicious Behavior

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Dec 2019
Darktrace Antigena allows your security team to take the time they need to investigate malicious behavior. Learn how this can benefit your cyber security!
“The next phase in our journey toward autonomous security is Autonomous Response decision-making.”

Lawrence Pingree, Research Vice President, Gartner

We’ve talked extensively on this blog about Autonomous Response: the AI-powered technology that, according to Gartner, represents a paradigm shift in cyber defense. As the first such Autonomous Response tool, Darktrace Antigena has already thwarted countless cyber-attacks, from a spear phishing campaign against a major city to an IoT smart locker attack targeting a popular amusement park. Antigena’s surgical intervention afforded their security teams the time they needed to investigate — stopping the clock in seconds by containing just the malicious behavior.

For all its benefits, however, Autonomous Response does have one drawback: it can make for slightly anticlimactic blog posts. In place of captivating, step-by-step descriptions of malware spreading throughout the enterprise and inflicting irrevocable damage, Antigena case studies end a mere moment after they start, with the “patient zero” employee completely unaware of the compromise that could have been.

In this particular case, however, Antigena was deployed in Human Confirmation Mode — a starter mode wherein the AI’s actions must first be approved by the security team. Absent such approval, the result was both an in-depth look at a sophisticated ransomware attack, as well as a remarkable illustration of how Antigena reacted in real time to every stage of that attack’s lifecycle:

Initial download

Patient zero here was a device that Darktrace detected downloading an executable file from a server with which no other devices on the network had ever communicated. Downloads like this one regularly bypass conventional endpoint tools, since they cannot be programmed in advance to catch the full range of unpredictable future threats. By contrast, because Darktrace AI learned the typical behavior of the company’s unique users and devices while ‘on the job’, it easily determined the download to be anomalous.

Figure 1: Darktrace alerts on the 100% rare connection and subsequent download — as it occurs.

Had Antigena been in Active Mode at the time, this would have marked the end of the blog post. By blocking all connections to the associated IP and port, Antigena would have instantly stopped the download — without otherwise impacting the device at all.

Figure 2: Antigena, in Human Confirmation Mode, recommends that it block the suspicious activity.

Command and control

Following the download, Darktrace observed the device making an HTTP GET request to the same rare endpoint. The continuation of this suspicious activity precipitated an escalation in Antigena’s recommended response, which would now have blocked all outgoing traffic from the breached device to prevent any infection from spreading.

Darktrace then detected the device making yet more unusual external connections to endpoints that, in many cases, had self-signed SSL certificates. Such self-signed certificates do not require verification by a trusted authority and are therefore frequently utilized by cyber-criminals. As a consequence, the outgoing connections from our infected device are likely the installed malware communicating with its command and control infrastructure, as Darktrace flagged below:

Figure 3: Darktrace alerts on the suspicious SSL certificates.

Figure 4: Antigena recommends taking action to block the connections in question.

Internal reconnaissance

Beyond the unusual external activity observed from the breached device, it also began to deviate significantly from its typical pattern of internal behavior. Indeed, Darktrace detected the device making over 160,000 failed internal connections on two key ports: Remote Desktop Protocol port 3389 and SMB port 445. This activity — known as network scanning — provides crucial reconnaissance, giving the attacker insight into the network structure, the services available on each device, and any potential vulnerabilities. Ports 3389 and 445 are especially common targets.

Figure 5: Darktrace tracks this ransomware attack at every step, though the security team does not mount a response in time.

The unusual external connections to self-signed SSL certificates, combined with the highly anomalous internal connectivity from the device, would have caused Antigena to escalate further. Alas, the attack proceeds.

Darktrace detected no further anomalous activity from patient zero for the next four days — perhaps a mechanism to remain under the radar. Yet this period of dormancy concluded when, once again, the device connected to a rare domain with a self-signed SSL certificate, likely reaching out to its command and control infrastructure for additional instructions.

Lateral movement

A day later — in a sign that suggests the prior scanning was somewhat fruitful — the infected device performed a large amount of unusual SMB activity consistent with the malware attempting to move laterally across the network. Darktrace picked up on the breached device sending unusual outgoing SMB writes to the remote administration tool PsExec to a total of 38 destination devices, 28 of which it compromised with a malicious file.

Darktrace recognized this activity as highly anomalous for the particular device, as it doesn’t usually communicate with these destination devices in this manner. Antigena would therefore would have surgically blocked the remote administration behavior by first containing the patient zero device to its normal ‘pattern of life’, and then by escalating to blocking all outgoing connections from the device if lateral movement had continued. Antigena’s escalation can be seen below: the first action is taken at 08:03, the second, more severe action at 08:43.

Figure 6: Darktrace repeatedly alerts on the unusual SMB traffic with high confidence — thanks to its evolving understanding of the device’s typical ‘pattern of life’.
Figure 7: Antigena again recommends immediate intervention, this time to impede lateral movement.

Encryption

Darktrace observed the first sign of the ransomware’s ultimate objective — encrypting files — on a different device, which also performed a large volume of unusual SMB activity. After accessing a multitude of SMB shares that it hadn’t accessed previously, it systematically appended those files with the .locked extension. When all was said and done, this encryption activity was seen from no less than 40 internal devices.

In Active Mode, Antigena Ransomware Block would have fully quarantined the devices — a culmination of increasingly severe Antigena actions from the initial infection of patient zero, to the command and control communication, to the internal reconnaissance, to the lateral movement, and finally to the file encryption.

Figure 8: Antigena Ransomware Block was fully armed and prepared to fight back against the infection.

The case for boring blog posts

No other approach to cyber security is able to track ransomware so comprehensively throughout its lifecycle, as programming legacy tools to flag all remote administration behavior, for instance, would inundate security teams with thousands of false positive alerts. Thus, only Darktrace’s understanding ‘self’ for each infected device can shed light on such activities — in the rare cases when they are anomalous.

Figure 9: An overview of Darktrace’s myriad warnings throughout the five-day attack with each colored dot representing a high-confidence alert.

However, intriguing though it may be to track this lifecycle to conclusion, the technology to write far less intriguing blog posts already exists and is already proven. Autonomous Response will render this kind of threat story a relic of the past, and for organizations with sensitive data and critical intellectual property to safeguard, the days of boring security blogs cannot come soon enough.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Max Heinemeyer
Chief Product Officer

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

December 19, 2024

/
No items found.

Darktrace Recognized in the Gartner® Magic Quadrant™ for Email Security Platforms

Default blog imageDefault blog image

Darktrace has been recognized in the first ever Gartner Magic Quadrant for Email Security Platforms (ESP).  As a Challenger, we have been recognized based on our Ability to Execute and Completeness of Vision.

The Gartner Magic Quadrant for Email Security is designed to help organizations evaluate which email security solutions might be the best fit for their needs by providing a visual representation of the market vendors and the strengths and cautions of different vendors. We encourage our customers to read the full report to get the complete picture.

Darktrace / EMAIL has a unique AI approach to identifying threats, including NLP and behavioral analysis, instead of traditional security measures like signatures and sandboxing – providing protection against advanced attacks like Business Email Compromise (BEC) and spear phishing. We believe our AI-first approach delivers high-quality solutions that our customers trust, allowing them to stay ahead of sophisticated threats that other tools miss.  

We’re proud of Darktrace’s rapid growth, geographic scale, and ability to execute effectively in the email security market, which reflect our commitment to delivering high-quality, reliable solutions that meet the evolving needs of our customers.

What do we believe makes Darktrace the fastest growing email security solution on the market?

An AI-first approach to innovation: Catching the threats others miss

As one of the founders of the ICES category, Darktrace has a long history of innovation, backed by over 200 patents. While other email security solutions are only just starting to apply machine learning (ML) techniques to outdated methods like signature analysis, reputation lists, and sandboxing, Darktrace has redefined the approach to email threat detection with its pioneering AI-driven anomaly detection engine.

Traditional ESPs often miss advanced threats because they rely on rules and signatures that focus on payloads and blindly trust known sources. This approach requires constant updates and frequently fails to detect threats like Business Email Compromise and Spear Phishing. In contrast, Darktrace / EMAIL uses advanced anomaly detection to identify the most sophisticated threats by focusing on unusual patterns and behaviors. This innovative approach has consistently delivered superior detection, stopping on average 58% of the threats that other solutions in the security stack miss.1

But our AI-first approach doesn’t stop at the inbox. At Darktrace, we transcend the limitations of traditional email security by leveraging a platform that unifies insights across multiple domains, providing robust protection against multi-domain threats. Our award-winning solutions defend the most popular attack vectors, including email, messaging, network, and identity protection. By combining signals from all domains, we establish unique behavioral profiles for each device and user, significantly enhancing detection precision.  

This pioneering approach has led to introducing industry-first advancements like QR code analysis and automated incident investigations, alongside game-changing functionality including:

  • Microsoft Teams security with advanced messaging analysis: The ability to identify critical early phishing and insider threats across both email and Microsoft Teams messaging.  
  • AI analyst narratives for improved end user reporting: that reduces phishing investigations by 60% by exposing unique narratives that provide the context of each received email and give feedback to each employee as they interact with their mail.2
  • Mailbox Security Assistant: to perform advanced behavioral browser analysis and stop malicious links within webpages, detecting and remediating 70% more malicious phishing links than traditional tools.3  
  • AI based, autonomous data loss prevention: to immediately secure your organization from misdirected emails, insider threats, and data loss—both classified and unclassified- without any administrative overhead.

Customer trust that fuels exponential growth

With almost 5,000 customers in under 5 years, we've doubled the growth rate of other vendors in the email security market. Our rapid market penetration, fueled by customer satisfaction and pioneering technology, showcases our revolutionary approach and sets new industry standards. 

Darktrace’s exceptional customer retention is fueled by an unparalleled customer experience, extensive regional support, dedicated account teams, and cutting-edge scalable technology. We pride ourselves on having a global network with local expertise, consisting of 110 worldwide offices which provide local language and technical support to offer multilingual, in-house assistance to our customer base.

Check it out – Darktrace / EMAIL has the highest percentage of 5-star ratings with a 4.8 rating on Gartner® Peer Insights™.4

Supporting every stage of your email security journey

Darktrace / EMAIL supports your security maturity journey, from first time security buyers to mature security stacks looking to augment their existing ESPs – by handling advanced threats without extensive tuning. And unlike other solutions that create a siloed and parallel solution, it works harmoniously with native email providers to create a modern email security stack. That’s why Darktrace performs well with first-time email security buyers and has strong renewal rates.

Integrating with Microsoft and Google via API, we replace traditional Secure Email Gateways (SEGs) with a modern, comprehensive email security stack. By combining approaches, our solution merges attack-centric analysis, which learns attack patterns and threat intelligence, with a business-centric approach that understands user behavior and inbox activity to deliver a unified stack that defends the entire threat spectrum – leading Darktrace to be recognized as Microsoft Partner of the year UK 2024.  

Our user-friendly, self-learning AI solution requires minimal tuning and deployment, making it perfect for customers looking for a highly usable but lightly configurable solution that will accompany them throughout their lifetime as they mature their email security stack in line with the evolving threat landscape.

Learn more

Get complimentary access to the full Gartner® Magic Quadrant™ for Email Security Platforms here.

To learn more about Darktrace / EMAIL or to get a free demo, check out the product hub.

References

1 From September 1 – December 31 2023, 58% of the phishing emails analyzed by Darktrace / EMAIL had already passed through native spam filtering and email security controls. (Darktrace End of Year Threat Report 2023)

2 When customers deployed the Darktrace / EMAIL Outlook Add-in there was a 60% decrease in incorrectly reported phishing emails. Darktrace Internal Research, 2024

3 Once a user reports phishing that contains a link, an automated second level triage engages our link analysis infrastructure expanding the signals analyzed. Darktrace Internal Research, 2024

4 Based on 252 reviews as of 19th December 2024

Continue reading
About the author
Carlos Gray
Product Manager

Blog

/

December 17, 2024

/

Inside the SOC

Cleo File Transfer Vulnerability: Patch Pitfalls and Darktrace’s Detection of Post-Exploitation Activities

Default blog imageDefault blog image

File transfer applications: A target for ransomware

File transfer applications have been a consistent target, particularly for ransomware groups, in recent years because they are key parts of business operations and have trusted access across different parts of an organization that include potentially confidential and personal information about an organization and its employees.

Recent targets of ransomware criminals includes applications like Acellion, Moveit, and GoAnywhere [1]. This seems to have been the case for Cleo’s managed file transfer (MFT) software solutions and the vulnerability CVE-2024-50623.

Threat overview: Understanding Cleo file transfer vulnerability

This vulnerability was believed to have been patched with the release of version 5.8.0.21 in late October 2024. However, open-source intelligence (OSINT) reported that the Clop ransomware group had managed to bypass the initial patch in late November, leading to the successful exploitation of the previously patched CVE.

In the last few days Cleo has published a new vulnerability, CVE-2024-55956, which is not a patch bypass of the CVE-2024-50623 but rather another vulnerability. This is also an unauthenticated file write vulnerability but while CVE-2024-50623 allows for both reading and writing arbitrary files, the CVE-2024-55956 only allows for writing arbitrary files and was addressed in version 5.8.0.24 [2].

Darktrace Threat Research analysts have already started investigating potential signs of devices running the Cleo software with network traffic supporting this initial hypothesis.

Comparison of CVE-2024-50623 and CVE-2024-55956

While CVE-2024-50623 was initially listed as a cross-site scripting issue, it was updated on December 10 to reflect unrestricted file upload and download. This vulnerability could lead to remote code execution (RCE) in versions of Cleo’s Harmony, VLTrader, and LexiCom products prior to 5.8.0.24. Attackers could leverage the fact that files are placed in the "autorun" sub-directory within the installation folder and are immediately read, interpreted, and evaluated by the susceptible software [3].

CVE-2024-55956, refers to an unauthenticated user who can import and execute arbitrary Bash or PowerShell commands on the host system by leveraging the default settings of the Autorun directory [4]. Both CVEs have occurred due to separate issues in the “/Synchronization” endpoint.

Investigating post exploitation patterns of activity on Cleo software

Proof of exploitation

Darktrace’s Threat Research analysts investigated multiple cases where devices identified as likely running Cleo software were detected engaging in unusual behavior. Analysts also attempted to identify any possible association between publicly available indicators of compromise (IoCs) and the exploitation of the vulnerability, using evidence of anomalous network traffic.

One case involved an Internet-facing device likely running Cleo VLTrader software (based on its hostname) reaching out to the 100% rare Lithuanian IP 181.214.147[.]164 · AS 15440 (UAB Baltnetos komunikacijos).

This activity occurred in the early hours of December 8 on the network of a customer in the energy sector. Darktrace detected a Cleo server transferring around over 500 MB of data over multiple SSL connections via port 443 to the Lithuanian IP. External research reported that this IP appears to be a callback IP observed in post-exploitation activity of vulnerable Cleo devices [3].

While this device was regularly observed sending data to external endpoints, this transfer represented a small increase in data sent to public IPs and coupled with the rarity of the destination, triggered a model alert as well as a Cyber AI Analyst Incident summarizing the transfer. Unfortunately, due to the encrypted connection no further analysis of the transmitted data was possible. However, due to the rarity of the activity, Darktrace’s Autonomous Response intervened and prevented any further connections to the IP.

 Model Alert Event Log show repeated connections to the rare IP, filtered with the rarity metric.
Figure 1: Model Alert Event Log show repeated connections to the rare IP, filtered with the rarity metric.
Shows connections to 181.214.147[.]164 and the amount of data transferred.
Figure 2: Shows connections to 181.214.147[.]164 and the amount of data transferred.

On the same day, external connections were observed to the external IP 45.182.189[.]225, along with inbound SSL connections from the same endpoint. OSINT has also linked this IP to the exploitation of Cleo software vulnerabilities [5].

Outgoing connections from a Cleo server to an anomalous endpoint.
Figure 3: Outgoing connections from a Cleo server to an anomalous endpoint.
 Incoming SSL connections from the external IP 45.182.189[.]225.
Figure 4: Incoming SSL connections from the external IP 45.182.189[.]225.

Hours after the last connection to 181.214.147[.]164, the integration detection tool from CrowdStrike, which the customer had integrated with Darktrace, issued an alert. This alert provided additional visibility into host-level processes and highlighted the following command executed on the Cleo server:

“D:\VLTrader\jre\bin\java.exe" -jar cleo.4889

Figure 5: The executed comand “D:\VLTrader\jre\bin\java.exe" -jar cleo.4889 and the Resource Location: \Device\HarddiskVolume3\VLTrader\jre\bin\java.exe.

Three days later, on December 11, another CrowdStrike integration alert was generated, this time following encoded PowerShell command activity on the server. This is consistent with post-exploitation activity where arbitrary PowerShell commands are executed on compromised systems leveraging the default settings of the Autorun directory, as highlighted by Cleo support [6]. According to external researchers , this process initiates connections to an external IP to retrieve JAR files with webshell-like functionality for continued post-exploitation [3]. The IP embedded in both commands observed by Darktrace was 38.180.242[.]122, hosted on ASN 58061(Scalaxy B.V.). There is no OSINT associating this IP with Cleo vulnerability exploitation at the time of writing.

Another device within the same customer network exhibited similar data transfer and command execution activity around the same time, suggesting it had also been compromised through this vulnerability. However, this second device contacted a different external IP, 5.45.74[.]137, hosted on AS 58061 (Scalaxy B.V.).

Like the first device, multiple connections to this IP were detected, with almost 600 MB of data transferred over the SSL protocol.

The Security Integration Detection Model that was triggered  and the PowerShell command observed
Figure 6: The Security Integration Detection Model that was triggered  and the PowerShell command observed
 Incoming connections from the external IP 38.180.242[.]122.
Figure 7: Incoming connections from the external IP 38.180.242[.]122.
Connections to the external IP 5.45.74[.]137.
Figure 8: Connections to the external IP 5.45.74[.]137.
Figure 9: Autonomous Response Actions triggered during the suspicious activities

While investigating potential Cleo servers involved in similar outgoing data activity, Darktrace’s Threat Research team identified two additional instances of likely Cleo vulnerability exploitation used to exfiltrate data outside the network. In those two instances, unusual outgoing data transfers were observed to the IP 176.123.4[.]22 (AS 200019, AlexHost SRL), with around 500 MB of data being exfiltrated over port 443 in one case (the exact volume could not be confirmed in the other instance). This IP was found embedded in encoded PowerShell commands examined by external researchers in the context of Cleo vulnerability exploitation investigations.

Conclusion

Overall, Cleo software represents a critical component of many business operations, being utilized by over 4,000 organizations worldwide. This renders the software an attractive target for threat actors who aim at exploiting internet-facing devices that could be used to compromise the software’s direct users but also other dependent industries resulting in supply chain attacks.

Darktrace / NETWORK was able to capture traffic linked to exploitation of CVE-2024-50623 within models that triggered such as Unusual Activity / Unusual External Data to New Endpoint while its Autonomous Response capability successfully blocked the anomalous connections and exfiltration attempts.

Information on new CVEs, how they're being exploited, and whether they've been patched can be fast-changing, sometimes limited and often confusing. Regardless, Darktrace is able to identify and alert to unusual behavior on these systems, indicating exploitation.

Credit to Maria Geronikolou, Alexandra Sentenac, Emma Fougler, Signe Zaharka and the Darktrace Threat Research team

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

References

[1] https://blog.httpcs.com/en/file-sharing-and-transfer-software-the-new-target-of-hackers/

[2] https://attackerkb.com/topics/geR0H8dgrE/cve-2024-55956/rapid7-analysis

[3] https://www.huntress.com/blog/threat-advisory-oh-no-cleo-cleo-software-actively-being-exploited-in-the-wild

[4] https://nvd.nist.gov/vuln/detail/CVE-2024-55956

[5] https://arcticwolf.com/resources/blog/cleopatras-shadow-a-mass-exploitation-campaign/

[6] https://support.cleo.com/hc/en-us/articles/28408134019735-Cleo-Product-Security-Advisory-CVE-Pending

[7] https://support.cleo.com/hc/en-us/articles/360034260293-Local-HTTP-Users-Configuration

Darktrace Model Alerts

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data to New Endpoint

Unusual Activity / Unusual External Data Transfer

Device / Internet Facing Device with High Priority Alert

Anomalous Server Activity / Rare External from Server

Anomalous Connection / New User Agent to IP Without Hostname

Security Integration / High Severity Integration Incident

Security Integration / Low Severity Integration Detection

Autonomous Response Model Detections

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Cyber AI Analyst Incidents

Unusual External Data Transfer

MITRE ATT&CK Mapping

Tactic – Technique

INITIAL ACCESS – Exploit Public-Facing Application

COMMAND AND CONTROL – Application Layer Protocol (Web Protocols)

COMMAND AND CONTROL – Encrypted Channel

PERSISTENCE – Web Shell

EXFILTRATION - Exfiltration Over C2 Channel

IoC List

IoC       Type    Description + Probability

181.214.147[.]164      IP Address       Likely C2 Infrastructure

176.123.4[.]22            IP Address       Likely C2 Infrastructure

5.45.74[.]137               IP Address           Possible C2 Infrastructure

38.180.242[.]122        IP Address       Possible C2 Infrastructure

Continue reading
About the author
Maria Geronikolou
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI