Blog
/
/
December 2, 2019

Containing Cyber Threats with Autonomous Response

Autonomous response technology can stop cyber threats in their tracks. Discover how these solutions enable rapid threat containment.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Dec 2019
“The next phase in our journey toward autonomous security is Autonomous Response decision-making.”

Lawrence Pingree, Research Vice President, Gartner

We’ve talked extensively on this blog about Autonomous Response: the AI-powered technology that, according to Gartner, represents a paradigm shift in cyber defense. As the first such Autonomous Response tool, Darktrace Antigena has already thwarted countless cyber-attacks, from a spear phishing campaign against a major city to an IoT smart locker attack targeting a popular amusement park. Antigena’s surgical intervention afforded their security teams the time they needed to investigate — stopping the clock in seconds by containing just the malicious behavior.

For all its benefits, however, Autonomous Response does have one drawback: it can make for slightly anticlimactic blog posts. In place of captivating, step-by-step descriptions of malware spreading throughout the enterprise and inflicting irrevocable damage, Antigena case studies end a mere moment after they start, with the “patient zero” employee completely unaware of the compromise that could have been.

In this particular case, however, Antigena was deployed in Human Confirmation Mode — a starter mode wherein the AI’s actions must first be approved by the security team. Absent such approval, the result was both an in-depth look at a sophisticated ransomware attack, as well as a remarkable illustration of how Antigena reacted in real time to every stage of that attack’s lifecycle:

Initial download

Patient zero here was a device that Darktrace detected downloading an executable file from a server with which no other devices on the network had ever communicated. Downloads like this one regularly bypass conventional endpoint tools, since they cannot be programmed in advance to catch the full range of unpredictable future threats. By contrast, because Darktrace AI learned the typical behavior of the company’s unique users and devices while ‘on the job’, it easily determined the download to be anomalous.

Figure 1: Darktrace alerts on the 100% rare connection and subsequent download — as it occurs.

Had Antigena been in Active Mode at the time, this would have marked the end of the blog post. By blocking all connections to the associated IP and port, Antigena would have instantly stopped the download — without otherwise impacting the device at all.

Figure 2: Antigena, in Human Confirmation Mode, recommends that it block the suspicious activity.

Command and control

Following the download, Darktrace observed the device making an HTTP GET request to the same rare endpoint. The continuation of this suspicious activity precipitated an escalation in Antigena’s recommended response, which would now have blocked all outgoing traffic from the breached device to prevent any infection from spreading.

Darktrace then detected the device making yet more unusual external connections to endpoints that, in many cases, had self-signed SSL certificates. Such self-signed certificates do not require verification by a trusted authority and are therefore frequently utilized by cyber-criminals. As a consequence, the outgoing connections from our infected device are likely the installed malware communicating with its command and control infrastructure, as Darktrace flagged below:

Figure 3: Darktrace alerts on the suspicious SSL certificates.

Figure 4: Antigena recommends taking action to block the connections in question.

Internal reconnaissance

Beyond the unusual external activity observed from the breached device, it also began to deviate significantly from its typical pattern of internal behavior. Indeed, Darktrace detected the device making over 160,000 failed internal connections on two key ports: Remote Desktop Protocol port 3389 and SMB port 445. This activity — known as network scanning — provides crucial reconnaissance, giving the attacker insight into the network structure, the services available on each device, and any potential vulnerabilities. Ports 3389 and 445 are especially common targets.

Figure 5: Darktrace tracks this ransomware attack at every step, though the security team does not mount a response in time.

The unusual external connections to self-signed SSL certificates, combined with the highly anomalous internal connectivity from the device, would have caused Antigena to escalate further. Alas, the attack proceeds.

Darktrace detected no further anomalous activity from patient zero for the next four days — perhaps a mechanism to remain under the radar. Yet this period of dormancy concluded when, once again, the device connected to a rare domain with a self-signed SSL certificate, likely reaching out to its command and control infrastructure for additional instructions.

Lateral movement

A day later — in a sign that suggests the prior scanning was somewhat fruitful — the infected device performed a large amount of unusual SMB activity consistent with the malware attempting to move laterally across the network. Darktrace picked up on the breached device sending unusual outgoing SMB writes to the remote administration tool PsExec to a total of 38 destination devices, 28 of which it compromised with a malicious file.

Darktrace recognized this activity as highly anomalous for the particular device, as it doesn’t usually communicate with these destination devices in this manner. Antigena would therefore would have surgically blocked the remote administration behavior by first containing the patient zero device to its normal ‘pattern of life’, and then by escalating to blocking all outgoing connections from the device if lateral movement had continued. Antigena’s escalation can be seen below: the first action is taken at 08:03, the second, more severe action at 08:43.

Figure 6: Darktrace repeatedly alerts on the unusual SMB traffic with high confidence — thanks to its evolving understanding of the device’s typical ‘pattern of life’.
Figure 7: Antigena again recommends immediate intervention, this time to impede lateral movement.

Encryption

Darktrace observed the first sign of the ransomware’s ultimate objective — encrypting files — on a different device, which also performed a large volume of unusual SMB activity. After accessing a multitude of SMB shares that it hadn’t accessed previously, it systematically appended those files with the .locked extension. When all was said and done, this encryption activity was seen from no less than 40 internal devices.

In Active Mode, Antigena Ransomware Block would have fully quarantined the devices — a culmination of increasingly severe Antigena actions from the initial infection of patient zero, to the command and control communication, to the internal reconnaissance, to the lateral movement, and finally to the file encryption.

Figure 8: Antigena Ransomware Block was fully armed and prepared to fight back against the infection.

The case for boring blog posts

No other approach to cyber security is able to track ransomware so comprehensively throughout its lifecycle, as programming legacy tools to flag all remote administration behavior, for instance, would inundate security teams with thousands of false positive alerts. Thus, only Darktrace’s understanding ‘self’ for each infected device can shed light on such activities — in the rare cases when they are anomalous.

Figure 9: An overview of Darktrace’s myriad warnings throughout the five-day attack with each colored dot representing a high-confidence alert.

However, intriguing though it may be to track this lifecycle to conclusion, the technology to write far less intriguing blog posts already exists and is already proven. Autonomous Response will render this kind of threat story a relic of the past, and for organizations with sensitive data and critical intellectual property to safeguard, the days of boring security blogs cannot come soon enough.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI