Blog
/

Inside the SOC

/
May 25, 2022

Uncovering the Sysrv-Hello Crypto-Jacking Bonet

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
May 2022
Discover the cyber kill chain of a Sysrv-hello botnet infection in France and gain insights into the latest TTPs of the botnet in March and April 2022.

In recent years, the prevalence of crypto-jacking botnets has risen in tandem with the popularity and value of cryptocurrencies. Increasingly crypto-mining malware programs are distributed by botnets as they allow threat actors to harness the cumulative processing power of a large number of machines (discussed in our other Darktrace blogs.1 2 One of these botnets is Sysrv-hello, which in addition to crypto-mining, propagates aggressively across the Internet in a worm-like manner by trolling for Remote Code Execution (RCE) vulnerabilities and SSH worming from the compromised victim devices. This all has the purpose of expanding the botnet.

First identified in December 2020, Sysrv-hello’s operators constantly update and change the bots’ behavior to evolve and stay ahead of security researchers and law enforcement. As such, infected systems can easily go unnoticed by both users and organizations. This blog examines the cyber kill chain sequence of a Sysrv-hello botnet infection detected at the network level by Darktrace DETECT/Network, as well as the botnet’s tactics, techniques, and procedures (TTPs) in March and April 2022.

Figure 1: Timeline of the attack

Delivery and exploitation

The organization, which was trialing Darktrace, had deployed the technology on March 2, 2022. On the very same day, the initial host infection was seen through the download of a first-stage PowerShell loader script from a rare external endpoint by a device in the internal network. Although initial exploitation of the device happened prior to the installation and was not observed, this botnet is known to target RCE vulnerabilities in various applications such as MySQL, Tomcat, PHPUnit, Apache Solar, Confluence, Laravel, JBoss, Jira, Sonatype, Oracle WebLogic and Apache Struts to gain initial access to internal systems.3 Recent iterations have also been reported to have been deployed via drive-by-downloads from an empty HTML iframe pointing to a malicious executable that downloads to the device from a user visiting a compromised website.4

Initial intrusion

The Sysrv-hello botnet is distributed for both Linux and Windows environments, with the corresponding compatible script pulled based on the architecture of the system. In this incident, the Windows version was observed.

On March 2, 2022 at 15:15:28 UTC, the device made a successful HTTP GET request to a malicious IP address5 that had a rarity score of 100% in the network. It subsequently downloaded a malicious PowerShell script named ‘ldr.ps1'6 onto the system. The associated IP address ‘194.145.227[.]21’ belongs to ‘ASN AS48693 Rices Privately owned enterprise’ and had been identified as a Sysrv-hello botnet command and control (C2) server in April the previous year. 3

Looking at the URI ‘/ldr.ps1?b0f895_admin:admin_81.255.222.82:8443_https’, it appears some form of query was being executed onto the object. The question mark ‘?’ in this URI is used to delimit the boundary between the URI of the queryable object and the set of strings used to express a query onto that object. Conventionally, we see the set of strings contains a list of key/value pairs with equal signs ‘=’, which are separated by the ampersand symbol ‘&’ between each of those parameters (e.g. www.youtube[.]com/watch?v=RdcCjDS0s6s&ab_channel=SANSCyberDefense), though the exact structure of the query string is not standardized and different servers may parse it differently. Instead, this case saw a set of strings with the hexadecimal color code #b0f895 (a light shade of green), admin username and password login credentials, and the IP address ‘81.255.222[.]82’ being applied during the object query (via HTTPS protocol on port 8443). In recent months this French IP has also had reports of abuse from the OSINT community.7

On March 2, 2022 at 15:15:33 UTC, the PowerShell loader script further downloaded second-stage executables named ‘sys.exe’ and ‘xmrig.2 sver.8 9 These have been identified as the worm and cryptocurrency miner payloads respectively.

Establish foothold

On March 2, 2022 at 17:46:55 UTC, after the downloads of the worm and cryptocurrency miner payloads, the device initiated multiple SSL connections in a regular, automated manner to Pastebin – a text storage website. This technique was used as a vector to download/upload data and drop further malicious scripts onto the host. OSINT sources suggest the JA3 client SSL fingerprint (05af1f5ca1b87cc9cc9b25185115607d) is associated with PowerShell usage, corroborating with the observation that further tooling was initiated by the PowerShell script ‘ldr.ps1’.

Continual Pastebin C2 connections were still being made by the device almost two months since the initiation of such connections. These Pastebin C2 connections point to new tactics and techniques employed by Sysrv-hello — reports earlier than May do not appear to mention any usage of the file storage site. These new TTPs serve two purposes: defense evasion using a web service/protocol and persistence. Persistence was likely achieved through scheduling daemons downloaded from this web service and shellcode executions at set intervals to kill off other malware processes, as similarly seen in other botnets.10 Recent reports have seen other malware programs also switch to Pastebin C2 tunnels to deliver subsequent payloads, scrapping the need for traditional C2 servers and evading detection.11

Figure 2: A section of the constant SSL connections that the device was still making to ‘pastebin[.]com’ even in the month of April, which resembles beaconing scheduled activity

Throughout the months of March and April, suspicious SSL connections were made from a second potentially compromised device in the internal network to the infected breach device. The suspicious French IP address ‘81.255.222[.]82’ previously seen in the URI object query was revealed as the value of the Server Name Indicator (SNI) in these SSL connections where, typically, a hostname or domain name is indicated.

After an initial compromise, attackers usually aim to gain long-term remote shell access to continue the attack. As the breach device does not have a public IP address and is most certainly behind a firewall, for it to be directly accessible from the Internet a reverse shell would need to be established. Outgoing connections often succeed because firewalls generally filter only incoming traffic. Darktrace observed the device making continuous outgoing connections to an external host listening on an unusual port, 8443, indicating the presence of a reverse shell for pivoting and remote administration.

Figure 3: SSL connections to server name ‘81.255.222[.]8’ at end of March and start of April

Accomplish mission

On March 4, 2022 at 15:07:04 UTC, the device made a total of 16,029 failed connections to a large volume of external endpoints on the same port (8080). This behavior is consistent with address scanning. From the country codes, it appears that public IP addresses for various countries around the world were contacted (at least 99 unique addresses), with the US being the most targeted.

From 19:44:36 UTC onwards, the device performed cryptocurrency mining using the Minergate mining pool protocol to generate profits for the attacker. A login credential called ‘x’ was observed in the Minergate connections to ‘194.145.227[.]21’ via port 5443. JSON-RPC methods of ‘login’ and ‘submit’ were seen from the connection originator (the infected breach device) and ‘job’ was seen from the connection responder (the C2 server). A high volume of connections using the JSON-RPC application protocol to ‘pool-fr.supportxmr[.]com’ were also made on port 80.

When the botnet was first discovered in December 2020, mining pools MineXMR and F2Pool were used. In February 2021, MineXMR was removed and in March 2021, Nanopool mining pool was added,12 before switching to the present SupportXMR and Minergate mining pools. Threat actors utilize such proxy pools to help hide the actual crypto wallet address where the contributions are made by the crypto-mining activity. From April onwards, the device appears to download the ‘xmrig.exe’ executable from a rare IP address ‘61.103.177[.]229’ in Korea every few days – likely in an attempt to establish persistency and ensure the cryptocurrency mining payload continues to exist on the compromised system for continued mining.

On March 9, 2022 from 18:16:20 UTC onwards, trolling for various RCE vulnerabilities (including but not limited to these four) was observed over HTTP connections to public IP addresses:

  1. Through March, the device made around 5,417 HTTP POSTs with the URI ‘/vendor/phpunit/phpunit/src/Util/PHP/eval-stdin.php’ to at least 99 unique public IPs. This appears to be related to CVE-2017-9841, which in PHPUnit allows remote attackers to execute arbitrary PHP code via HTTP POST data beginning with a ‘13 PHPUnit is a common testing framework for PHP, used for performing unit tests during application development. It is used by a variety of popular Content Management Systems (CMS) such as WordPress, Drupal and Prestashop. This CVE has been called “one of the most exploitable CVEs of 2019,” with around seven million attack attempts being observed that year.14 This framework is not designed to be exposed on the critical paths serving web pages and should not be reachable by external HTTP requests. Looking at the status messages of the HTTP POSTs in this incident, some ‘Found’ and ‘OK’ messages were seen, suggesting the vulnerable path could be accessible on some of those endpoints.

Figure 4: PCAP of CVE-2017-9841 vulnerability trolling

Figure 5: The CVE-2017-9841 vulnerable path appears to be reachable on some endpoints

  1. Through March, the device also made around 5,500 HTTP POSTs with the URI ‘/_ignition/execute-solution’ to at least 99 unique public IPs. This appears related to CVE-2021-3129, which allows unauthenticated remote attackers to execute arbitrary code using debug mode with Laravel, a PHP web application framework in versions prior to 8.4.2.15 The POST request below makes the variable ‘username’ optional, and the ‘viewFile’ parameter is empty, as a test to see if the endpoint is vulnerable.16

Figure 6: PCAP of CVE-2021-3129 vulnerability trolling

  1. The device made approximately a further 252 HTTP GETs with URIs containing ‘invokefunction&function’ to another minimum of 99 unique public IPs. This appears related to a RCE vulnerability in ThinkPHP, an open-source web framework.17

Figure 7: Some of the URIs associated with ThinkPHP RCE vulnerability

  1. A HTTP header related to a RCE vulnerability for the Jakarta Multipart parser used by Apache struts2 in CVE-2017-563818 was also seen during the connection attempts. In this case the payload used a custom Content-Type header.

Figure 8: PCAP of CVE-2017-5638 vulnerability trolling

Two widely used methods of SSH authentication are public key authentication and password authentication. After gaining a foothold in the network, previous reports3 19 have mentioned that Sysrv-hello harvests private SSH keys from the compromised device, along with identifying known devices. Being a known device means the system can communicate with the other system without any further authentication checks after the initial key exchange. This technique was likely performed in conjunction with password brute-force attacks against the known devices. Starting from March 9, 2022 at 20:31:25 UTC, Darktrace observed the device making a large number of SSH connections and login failures to public IP ranges. For example, between 00:05:41 UTC on March 26 and 05:00:02 UTC on April 14, around 83,389 SSH connection attempts were made to 31 unique public IPs.

Figure 9: Darktrace’s Threat Visualizer shows large spikes in SSH connections by the breach device

Figure 10: Beaconing SSH connections to a single external endpoint, indicating a potential brute-force attack

Darktrace coverage

Cyber AI Analyst was able to connect the events and present them in a digestible, chronological order for the organization. In the aftermath of any security incidents, this is a convenient way for security users to conduct assisted investigations and reduce the workload on human analysts. However, it is good to note that this activity was also easily observed in real time from the model section on the Threat Visualizer due to the large number of escalating model breaches.

Figure 11: Cyber AI Analyst consolidating the events in the month of March into a summary

Figure 12: Cyber AI Analyst shows the progression of the attack through the month of March

As this incident occurred during a trial, Darktrace RESPOND was enabled in passive mode – with a valid license to display the actions that it would have taken, but with no active control performed. In this instance, no Antigena models breached for the initial compromised device as it was not tagged to be eligible for Antigena actions. Nonetheless, Darktrace was able to provide visibility into these anomalous connections.

Had Antigena been deployed in active mode, and the breach device appropriately tagged with Antigena All or Antigena External Threat, Darktrace would have been able to respond and neutralize different stages of the attack through network inhibitors Block Matching Connections and Enforce Group Pattern of Life, and relevant Antigena models such as Antigena Suspicious File Block, Antigena Suspicious File Pattern of Life Block, Antigena Pastebin Block and Antigena Crypto Currency Mining Block. The first of these inhibitors, Block Matching Connections, will block the specific connection and all future connections that matches the same criteria (e.g. all future outbound HTTP connections from the breach device to destination port 80) for a set period of time. Enforce Group Pattern of Life allows a device to only make connections and data transfers that it or any of its peer group typically make.

Conclusion

Resource hijacking results in unauthorized consumption of system resources and monetary loss for affected organizations. Compromised devices can potentially be rented out to other threat actors and botnet operators could switch from conducting crypto-mining to other more destructive illicit activities (e.g. DDoS or dropping of ransomware) whilst changing their TTPs in the future. Defenders are constantly playing catch-up to this continual evolution, and retrospective rules and signatures solutions or threat intelligence that relies on humans to spot future threats will not be able to keep up.

In this case, it appears the botnet operator has added an object query in the URL of the initial PowerShell loader script download, added Pastebin C2 for evasion and persistence, and utilized new cryptocurrency mining pools. Despite this, Darktrace’s Self-Learning AI was able to identify the threats the moment attackers changed their approach, detecting every step of the attack in the network without relying on known indicators of threat.

Appendix

Darktrace model detections

  • Anomalous File / Script from Rare Location
  • Anomalous File / EXE from Rare External Location
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Beaconing Activity To External Rare
  • Device / External Address Scan
  • Compromise / Crypto Currency Mining Activity
  • Compromise / High Priority Crypto Currency Mining
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / SSL Beaconing to Rare Destination
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Device / Large Number of Model Breaches
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / SSH Brute Force
  • Compromise / SSH Beacon
  • Compliance / SSH to Rare External AWS
  • Compromise / High Frequency SSH Beacon
  • Compliance / SSH to Rare External Destination
  • Device / Multiple C2 Model Breaches
  • Anomalous Connection / POST to PHP on New External Host

MITRE ATT&CK techniques observed:

IoCs

Thanks to Victoria Baldie and Yung Ju Chua for their contributions.

Footnotes

1. https://www.darktrace.com/en/blog/crypto-botnets-moving-laterally

2. https://www.darktrace.com/en/blog/how-ai-uncovered-outlaws-secret-crypto-mining-operation

3. https://www.lacework.com/blog/sysrv-hello-expands-infrastructure

4. https://www.riskiq.com/blog/external-threat-management/sysrv-hello-cryptojacking-botnet

5. https://www.virustotal.com/gui/ip-address/194.145.227.21

6. https://www.virustotal.com/gui/url/c586845daa2aec275453659f287dcb302921321e04cb476b0d98d731d57c4e83?nocache=1

7. https://www.abuseipdb.com/check/81.255.222.82

8. https://www.virustotal.com/gui/file/586e271b5095068484446ee222a4bb0f885987a0b77e59eb24511f6d4a774c30

9. https://www.virustotal.com/gui/file/f5bef6ace91110289a2977cfc9f4dbec1e32fecdbe77326e8efe7b353c58e639

10. https://www.ironnet.com/blog/continued-exploitation-of-cve-2021-26084

11. https://www.zdnet.com/article/njrat-trojan-operators-are-now-using-pastebin-as-alternative-to-central-command-server

12. https://blogs.juniper.net/en-us/threat-research/sysrv-botnet-expands-and-gains-persistence

13. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9841

14. https://www.imperva.com/blog/the-resurrection-of-phpunit-rce-vulnerability

15. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3129

16. https://isc.sans.edu/forums/diary/Laravel+v842+exploit+attempts+for+CVE20213129+debug+mode+Remote+code+execution/27758

17. https://securitynews.sonicwall.com/xmlpost/thinkphp-remote-code-execution-rce-bug-is-actively-being-exploited

18. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638

19. https://sysdig.com/blog/crypto-sysrv-hello-wordpress

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Shuh Chin Goh
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

December 19, 2024

/
No items found.

Darktrace Recognized in the Gartner® Magic Quadrant™ for Email Security Platforms

Default blog imageDefault blog image

Darktrace has been recognized in the first ever Gartner Magic Quadrant for Email Security Platforms (ESP).  As a Challenger, we have been recognized based on our Ability to Execute and Completeness of Vision.

The Gartner Magic Quadrant for Email Security is designed to help organizations evaluate which email security solutions might be the best fit for their needs by providing a visual representation of the market vendors and the strengths and cautions of different vendors. We encourage our customers to read the full report to get the complete picture.

Darktrace / EMAIL has a unique AI approach to identifying threats, including NLP and behavioral analysis, instead of traditional security measures like signatures and sandboxing – providing protection against advanced attacks like Business Email Compromise (BEC) and spear phishing. We believe our AI-first approach delivers high-quality solutions that our customers trust, allowing them to stay ahead of sophisticated threats that other tools miss.  

We’re proud of Darktrace’s rapid growth, geographic scale, and ability to execute effectively in the email security market, which reflect our commitment to delivering high-quality, reliable solutions that meet the evolving needs of our customers.

What do we believe makes Darktrace the fastest growing email security solution on the market?

An AI-first approach to innovation: Catching the threats others miss

As one of the founders of the ICES category, Darktrace has a long history of innovation, backed by over 200 patents. While other email security solutions are only just starting to apply machine learning (ML) techniques to outdated methods like signature analysis, reputation lists, and sandboxing, Darktrace has redefined the approach to email threat detection with its pioneering AI-driven anomaly detection engine.

Traditional ESPs often miss advanced threats because they rely on rules and signatures that focus on payloads and blindly trust known sources. This approach requires constant updates and frequently fails to detect threats like Business Email Compromise and Spear Phishing. In contrast, Darktrace / EMAIL uses advanced anomaly detection to identify the most sophisticated threats by focusing on unusual patterns and behaviors. This innovative approach has consistently delivered superior detection, stopping on average 58% of the threats that other solutions in the security stack miss.1

But our AI-first approach doesn’t stop at the inbox. At Darktrace, we transcend the limitations of traditional email security by leveraging a platform that unifies insights across multiple domains, providing robust protection against multi-domain threats. Our award-winning solutions defend the most popular attack vectors, including email, messaging, network, and identity protection. By combining signals from all domains, we establish unique behavioral profiles for each device and user, significantly enhancing detection precision.  

This pioneering approach has led to introducing industry-first advancements like QR code analysis and automated incident investigations, alongside game-changing functionality including:

  • Microsoft Teams security with advanced messaging analysis: The ability to identify critical early phishing and insider threats across both email and Microsoft Teams messaging.  
  • AI analyst narratives for improved end user reporting: that reduces phishing investigations by 60% by exposing unique narratives that provide the context of each received email and give feedback to each employee as they interact with their mail.2
  • Mailbox Security Assistant: to perform advanced behavioral browser analysis and stop malicious links within webpages, detecting and remediating 70% more malicious phishing links than traditional tools.3  
  • AI based, autonomous data loss prevention: to immediately secure your organization from misdirected emails, insider threats, and data loss—both classified and unclassified- without any administrative overhead.

Customer trust that fuels exponential growth

With almost 5,000 customers in under 5 years, we've doubled the growth rate of other vendors in the email security market. Our rapid market penetration, fueled by customer satisfaction and pioneering technology, showcases our revolutionary approach and sets new industry standards. 

Darktrace’s exceptional customer retention is fueled by an unparalleled customer experience, extensive regional support, dedicated account teams, and cutting-edge scalable technology. We pride ourselves on having a global network with local expertise, consisting of 110 worldwide offices which provide local language and technical support to offer multilingual, in-house assistance to our customer base.

Check it out – Darktrace / EMAIL has the highest percentage of 5-star ratings with a 4.8 rating on Gartner® Peer Insights™.4

Supporting every stage of your email security journey

Darktrace / EMAIL supports your security maturity journey, from first time security buyers to mature security stacks looking to augment their existing ESPs – by handling advanced threats without extensive tuning. And unlike other solutions that create a siloed and parallel solution, it works harmoniously with native email providers to create a modern email security stack. That’s why Darktrace performs well with first-time email security buyers and has strong renewal rates.

Integrating with Microsoft and Google via API, we replace traditional Secure Email Gateways (SEGs) with a modern, comprehensive email security stack. By combining approaches, our solution merges attack-centric analysis, which learns attack patterns and threat intelligence, with a business-centric approach that understands user behavior and inbox activity to deliver a unified stack that defends the entire threat spectrum – leading Darktrace to be recognized as Microsoft Partner of the year UK 2024.  

Our user-friendly, self-learning AI solution requires minimal tuning and deployment, making it perfect for customers looking for a highly usable but lightly configurable solution that will accompany them throughout their lifetime as they mature their email security stack in line with the evolving threat landscape.

Learn more

Get complimentary access to the full Gartner® Magic Quadrant™ for Email Security Platforms here.

To learn more about Darktrace / EMAIL or to get a free demo, check out the product hub.

References

1 From September 1 – December 31 2023, 58% of the phishing emails analyzed by Darktrace / EMAIL had already passed through native spam filtering and email security controls. (Darktrace End of Year Threat Report 2023)

2 When customers deployed the Darktrace / EMAIL Outlook Add-in there was a 60% decrease in incorrectly reported phishing emails. Darktrace Internal Research, 2024

3 Once a user reports phishing that contains a link, an automated second level triage engages our link analysis infrastructure expanding the signals analyzed. Darktrace Internal Research, 2024

4 Based on 252 reviews as of 19th December 2024

Continue reading
About the author
Carlos Gray
Product Manager

Blog

/

December 17, 2024

/

Inside the SOC

Cleo File Transfer Vulnerability: Patch Pitfalls and Darktrace’s Detection of Post-Exploitation Activities

Default blog imageDefault blog image

File transfer applications: A target for ransomware

File transfer applications have been a consistent target, particularly for ransomware groups, in recent years because they are key parts of business operations and have trusted access across different parts of an organization that include potentially confidential and personal information about an organization and its employees.

Recent targets of ransomware criminals includes applications like Acellion, Moveit, and GoAnywhere [1]. This seems to have been the case for Cleo’s managed file transfer (MFT) software solutions and the vulnerability CVE-2024-50623.

Threat overview: Understanding Cleo file transfer vulnerability

This vulnerability was believed to have been patched with the release of version 5.8.0.21 in late October 2024. However, open-source intelligence (OSINT) reported that the Clop ransomware group had managed to bypass the initial patch in late November, leading to the successful exploitation of the previously patched CVE.

In the last few days Cleo has published a new vulnerability, CVE-2024-55956, which is not a patch bypass of the CVE-2024-50623 but rather another vulnerability. This is also an unauthenticated file write vulnerability but while CVE-2024-50623 allows for both reading and writing arbitrary files, the CVE-2024-55956 only allows for writing arbitrary files and was addressed in version 5.8.0.24 [2].

Darktrace Threat Research analysts have already started investigating potential signs of devices running the Cleo software with network traffic supporting this initial hypothesis.

Comparison of CVE-2024-50623 and CVE-2024-55956

While CVE-2024-50623 was initially listed as a cross-site scripting issue, it was updated on December 10 to reflect unrestricted file upload and download. This vulnerability could lead to remote code execution (RCE) in versions of Cleo’s Harmony, VLTrader, and LexiCom products prior to 5.8.0.24. Attackers could leverage the fact that files are placed in the "autorun" sub-directory within the installation folder and are immediately read, interpreted, and evaluated by the susceptible software [3].

CVE-2024-55956, refers to an unauthenticated user who can import and execute arbitrary Bash or PowerShell commands on the host system by leveraging the default settings of the Autorun directory [4]. Both CVEs have occurred due to separate issues in the “/Synchronization” endpoint.

Investigating post exploitation patterns of activity on Cleo software

Proof of exploitation

Darktrace’s Threat Research analysts investigated multiple cases where devices identified as likely running Cleo software were detected engaging in unusual behavior. Analysts also attempted to identify any possible association between publicly available indicators of compromise (IoCs) and the exploitation of the vulnerability, using evidence of anomalous network traffic.

One case involved an Internet-facing device likely running Cleo VLTrader software (based on its hostname) reaching out to the 100% rare Lithuanian IP 181.214.147[.]164 · AS 15440 (UAB Baltnetos komunikacijos).

This activity occurred in the early hours of December 8 on the network of a customer in the energy sector. Darktrace detected a Cleo server transferring around over 500 MB of data over multiple SSL connections via port 443 to the Lithuanian IP. External research reported that this IP appears to be a callback IP observed in post-exploitation activity of vulnerable Cleo devices [3].

While this device was regularly observed sending data to external endpoints, this transfer represented a small increase in data sent to public IPs and coupled with the rarity of the destination, triggered a model alert as well as a Cyber AI Analyst Incident summarizing the transfer. Unfortunately, due to the encrypted connection no further analysis of the transmitted data was possible. However, due to the rarity of the activity, Darktrace’s Autonomous Response intervened and prevented any further connections to the IP.

 Model Alert Event Log show repeated connections to the rare IP, filtered with the rarity metric.
Figure 1: Model Alert Event Log show repeated connections to the rare IP, filtered with the rarity metric.
Shows connections to 181.214.147[.]164 and the amount of data transferred.
Figure 2: Shows connections to 181.214.147[.]164 and the amount of data transferred.

On the same day, external connections were observed to the external IP 45.182.189[.]225, along with inbound SSL connections from the same endpoint. OSINT has also linked this IP to the exploitation of Cleo software vulnerabilities [5].

Outgoing connections from a Cleo server to an anomalous endpoint.
Figure 3: Outgoing connections from a Cleo server to an anomalous endpoint.
 Incoming SSL connections from the external IP 45.182.189[.]225.
Figure 4: Incoming SSL connections from the external IP 45.182.189[.]225.

Hours after the last connection to 181.214.147[.]164, the integration detection tool from CrowdStrike, which the customer had integrated with Darktrace, issued an alert. This alert provided additional visibility into host-level processes and highlighted the following command executed on the Cleo server:

“D:\VLTrader\jre\bin\java.exe" -jar cleo.4889

Figure 5: The executed comand “D:\VLTrader\jre\bin\java.exe" -jar cleo.4889 and the Resource Location: \Device\HarddiskVolume3\VLTrader\jre\bin\java.exe.

Three days later, on December 11, another CrowdStrike integration alert was generated, this time following encoded PowerShell command activity on the server. This is consistent with post-exploitation activity where arbitrary PowerShell commands are executed on compromised systems leveraging the default settings of the Autorun directory, as highlighted by Cleo support [6]. According to external researchers , this process initiates connections to an external IP to retrieve JAR files with webshell-like functionality for continued post-exploitation [3]. The IP embedded in both commands observed by Darktrace was 38.180.242[.]122, hosted on ASN 58061(Scalaxy B.V.). There is no OSINT associating this IP with Cleo vulnerability exploitation at the time of writing.

Another device within the same customer network exhibited similar data transfer and command execution activity around the same time, suggesting it had also been compromised through this vulnerability. However, this second device contacted a different external IP, 5.45.74[.]137, hosted on AS 58061 (Scalaxy B.V.).

Like the first device, multiple connections to this IP were detected, with almost 600 MB of data transferred over the SSL protocol.

The Security Integration Detection Model that was triggered  and the PowerShell command observed
Figure 6: The Security Integration Detection Model that was triggered  and the PowerShell command observed
 Incoming connections from the external IP 38.180.242[.]122.
Figure 7: Incoming connections from the external IP 38.180.242[.]122.
Connections to the external IP 5.45.74[.]137.
Figure 8: Connections to the external IP 5.45.74[.]137.
Figure 9: Autonomous Response Actions triggered during the suspicious activities

While investigating potential Cleo servers involved in similar outgoing data activity, Darktrace’s Threat Research team identified two additional instances of likely Cleo vulnerability exploitation used to exfiltrate data outside the network. In those two instances, unusual outgoing data transfers were observed to the IP 176.123.4[.]22 (AS 200019, AlexHost SRL), with around 500 MB of data being exfiltrated over port 443 in one case (the exact volume could not be confirmed in the other instance). This IP was found embedded in encoded PowerShell commands examined by external researchers in the context of Cleo vulnerability exploitation investigations.

Conclusion

Overall, Cleo software represents a critical component of many business operations, being utilized by over 4,000 organizations worldwide. This renders the software an attractive target for threat actors who aim at exploiting internet-facing devices that could be used to compromise the software’s direct users but also other dependent industries resulting in supply chain attacks.

Darktrace / NETWORK was able to capture traffic linked to exploitation of CVE-2024-50623 within models that triggered such as Unusual Activity / Unusual External Data to New Endpoint while its Autonomous Response capability successfully blocked the anomalous connections and exfiltration attempts.

Information on new CVEs, how they're being exploited, and whether they've been patched can be fast-changing, sometimes limited and often confusing. Regardless, Darktrace is able to identify and alert to unusual behavior on these systems, indicating exploitation.

Credit to Maria Geronikolou, Alexandra Sentenac, Emma Fougler, Signe Zaharka and the Darktrace Threat Research team

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

References

[1] https://blog.httpcs.com/en/file-sharing-and-transfer-software-the-new-target-of-hackers/

[2] https://attackerkb.com/topics/geR0H8dgrE/cve-2024-55956/rapid7-analysis

[3] https://www.huntress.com/blog/threat-advisory-oh-no-cleo-cleo-software-actively-being-exploited-in-the-wild

[4] https://nvd.nist.gov/vuln/detail/CVE-2024-55956

[5] https://arcticwolf.com/resources/blog/cleopatras-shadow-a-mass-exploitation-campaign/

[6] https://support.cleo.com/hc/en-us/articles/28408134019735-Cleo-Product-Security-Advisory-CVE-Pending

[7] https://support.cleo.com/hc/en-us/articles/360034260293-Local-HTTP-Users-Configuration

Darktrace Model Alerts

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data to New Endpoint

Unusual Activity / Unusual External Data Transfer

Device / Internet Facing Device with High Priority Alert

Anomalous Server Activity / Rare External from Server

Anomalous Connection / New User Agent to IP Without Hostname

Security Integration / High Severity Integration Incident

Security Integration / Low Severity Integration Detection

Autonomous Response Model Detections

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Cyber AI Analyst Incidents

Unusual External Data Transfer

MITRE ATT&CK Mapping

Tactic – Technique

INITIAL ACCESS – Exploit Public-Facing Application

COMMAND AND CONTROL – Application Layer Protocol (Web Protocols)

COMMAND AND CONTROL – Encrypted Channel

PERSISTENCE – Web Shell

EXFILTRATION - Exfiltration Over C2 Channel

IoC List

IoC       Type    Description + Probability

181.214.147[.]164      IP Address       Likely C2 Infrastructure

176.123.4[.]22            IP Address       Likely C2 Infrastructure

5.45.74[.]137               IP Address           Possible C2 Infrastructure

38.180.242[.]122        IP Address       Possible C2 Infrastructure

Continue reading
About the author
Maria Geronikolou
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI