Blog
/
Network
/
December 16, 2024

Cleo File Transfer Vulnerability: Patch Pitfalls and Darktrace’s Detection of Post-Exploitation Activities

File transfer applications are prime targets for ransomware groups due to their critical role in business operations. Recent vulnerabilities in Cleo's MFT software, namely CVE-2024-50623 and CVE-2024-55956, highlight ongoing risks. Read more about the Darktrace Threat Research team’s investigation into these vulnerabilities.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Maria Geronikolou
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Dec 2024

File transfer applications: A target for ransomware

File transfer applications have been a consistent target, particularly for ransomware groups, in recent years because they are key parts of business operations and have trusted access across different parts of an organization that include potentially confidential and personal information about an organization and its employees.

Recent targets of ransomware criminals includes applications like Acellion, Moveit, and GoAnywhere [1]. This seems to have been the case for Cleo’s managed file transfer (MFT) software solutions and the vulnerability CVE-2024-50623.

Threat overview: Understanding Cleo file transfer vulnerability

This vulnerability was believed to have been patched with the release of version 5.8.0.21 in late October 2024. However, open-source intelligence (OSINT) reported that the Clop ransomware group had managed to bypass the initial patch in late November, leading to the successful exploitation of the previously patched CVE.

In the last few days Cleo has published a new vulnerability, CVE-2024-55956, which is not a patch bypass of the CVE-2024-50623 but rather another vulnerability. This is also an unauthenticated file write vulnerability but while CVE-2024-50623 allows for both reading and writing arbitrary files, the CVE-2024-55956 only allows for writing arbitrary files and was addressed in version 5.8.0.24 [2].

Darktrace Threat Research analysts have already started investigating potential signs of devices running the Cleo software with network traffic supporting this initial hypothesis.

Comparison of CVE-2024-50623 and CVE-2024-55956

While CVE-2024-50623 was initially listed as a cross-site scripting issue, it was updated on December 10 to reflect unrestricted file upload and download. This vulnerability could lead to remote code execution (RCE) in versions of Cleo’s Harmony, VLTrader, and LexiCom products prior to 5.8.0.24. Attackers could leverage the fact that files are placed in the "autorun" sub-directory within the installation folder and are immediately read, interpreted, and evaluated by the susceptible software [3].

CVE-2024-55956, refers to an unauthenticated user who can import and execute arbitrary Bash or PowerShell commands on the host system by leveraging the default settings of the Autorun directory [4]. Both CVEs have occurred due to separate issues in the “/Synchronization” endpoint.

Investigating post exploitation patterns of activity on Cleo software

Proof of exploitation

Darktrace’s Threat Research analysts investigated multiple cases where devices identified as likely running Cleo software were detected engaging in unusual behavior. Analysts also attempted to identify any possible association between publicly available indicators of compromise (IoCs) and the exploitation of the vulnerability, using evidence of anomalous network traffic.

One case involved an Internet-facing device likely running Cleo VLTrader software (based on its hostname) reaching out to the 100% rare Lithuanian IP 181.214.147[.]164 · AS 15440 (UAB Baltnetos komunikacijos).

This activity occurred in the early hours of December 8 on the network of a customer in the energy sector. Darktrace detected a Cleo server transferring around over 500 MB of data over multiple SSL connections via port 443 to the Lithuanian IP. External research reported that this IP appears to be a callback IP observed in post-exploitation activity of vulnerable Cleo devices [3].

While this device was regularly observed sending data to external endpoints, this transfer represented a small increase in data sent to public IPs and coupled with the rarity of the destination, triggered a model alert as well as a Cyber AI Analyst Incident summarizing the transfer. Unfortunately, due to the encrypted connection no further analysis of the transmitted data was possible. However, due to the rarity of the activity, Darktrace’s Autonomous Response intervened and prevented any further connections to the IP.

 Model Alert Event Log show repeated connections to the rare IP, filtered with the rarity metric.
Figure 1: Model Alert Event Log show repeated connections to the rare IP, filtered with the rarity metric.
Shows connections to 181.214.147[.]164 and the amount of data transferred.
Figure 2: Shows connections to 181.214.147[.]164 and the amount of data transferred.

On the same day, external connections were observed to the external IP 45.182.189[.]225, along with inbound SSL connections from the same endpoint. OSINT has also linked this IP to the exploitation of Cleo software vulnerabilities [5].

Outgoing connections from a Cleo server to an anomalous endpoint.
Figure 3: Outgoing connections from a Cleo server to an anomalous endpoint.
 Incoming SSL connections from the external IP 45.182.189[.]225.
Figure 4: Incoming SSL connections from the external IP 45.182.189[.]225.

Hours after the last connection to 181.214.147[.]164, the integration detection tool from CrowdStrike, which the customer had integrated with Darktrace, issued an alert. This alert provided additional visibility into host-level processes and highlighted the following command executed on the Cleo server:

“D:\VLTrader\jre\bin\java.exe" -jar cleo.4889

Figure 5: The executed comand “D:\VLTrader\jre\bin\java.exe" -jar cleo.4889 and the Resource Location: \Device\HarddiskVolume3\VLTrader\jre\bin\java.exe.

Three days later, on December 11, another CrowdStrike integration alert was generated, this time following encoded PowerShell command activity on the server. This is consistent with post-exploitation activity where arbitrary PowerShell commands are executed on compromised systems leveraging the default settings of the Autorun directory, as highlighted by Cleo support [6]. According to external researchers , this process initiates connections to an external IP to retrieve JAR files with webshell-like functionality for continued post-exploitation [3]. The IP embedded in both commands observed by Darktrace was 38.180.242[.]122, hosted on ASN 58061(Scalaxy B.V.). There is no OSINT associating this IP with Cleo vulnerability exploitation at the time of writing.

Another device within the same customer network exhibited similar data transfer and command execution activity around the same time, suggesting it had also been compromised through this vulnerability. However, this second device contacted a different external IP, 5.45.74[.]137, hosted on AS 58061 (Scalaxy B.V.).

Like the first device, multiple connections to this IP were detected, with almost 600 MB of data transferred over the SSL protocol.

The Security Integration Detection Model that was triggered  and the PowerShell command observed
Figure 6: The Security Integration Detection Model that was triggered  and the PowerShell command observed
 Incoming connections from the external IP 38.180.242[.]122.
Figure 7: Incoming connections from the external IP 38.180.242[.]122.
Connections to the external IP 5.45.74[.]137.
Figure 8: Connections to the external IP 5.45.74[.]137.
Figure 9: Autonomous Response Actions triggered during the suspicious activities

While investigating potential Cleo servers involved in similar outgoing data activity, Darktrace’s Threat Research team identified two additional instances of likely Cleo vulnerability exploitation used to exfiltrate data outside the network. In those two instances, unusual outgoing data transfers were observed to the IP 176.123.4[.]22 (AS 200019, AlexHost SRL), with around 500 MB of data being exfiltrated over port 443 in one case (the exact volume could not be confirmed in the other instance). This IP was found embedded in encoded PowerShell commands examined by external researchers in the context of Cleo vulnerability exploitation investigations.

Conclusion

Overall, Cleo software represents a critical component of many business operations, being utilized by over 4,000 organizations worldwide. This renders the software an attractive target for threat actors who aim at exploiting internet-facing devices that could be used to compromise the software’s direct users but also other dependent industries resulting in supply chain attacks.

Darktrace / NETWORK was able to capture traffic linked to exploitation of CVE-2024-50623 within models that triggered such as Unusual Activity / Unusual External Data to New Endpoint while its Autonomous Response capability successfully blocked the anomalous connections and exfiltration attempts.

Information on new CVEs, how they're being exploited, and whether they've been patched can be fast-changing, sometimes limited and often confusing. Regardless, Darktrace is able to identify and alert to unusual behavior on these systems, indicating exploitation.

Credit to Maria Geronikolou, Alexandra Sentenac, Emma Fougler, Signe Zaharka and the Darktrace Threat Research team

[related-resource]

Appendices

References

[1] https://blog.httpcs.com/en/file-sharing-and-transfer-software-the-new-target-of-hackers/

[2] https://attackerkb.com/topics/geR0H8dgrE/cve-2024-55956/rapid7-analysis

[3] https://www.huntress.com/blog/threat-advisory-oh-no-cleo-cleo-software-actively-being-exploited-in-the-wild

[4] https://nvd.nist.gov/vuln/detail/CVE-2024-55956

[5] https://arcticwolf.com/resources/blog/cleopatras-shadow-a-mass-exploitation-campaign/

[6] https://support.cleo.com/hc/en-us/articles/28408134019735-Cleo-Product-Security-Advisory-CVE-Pending

[7] https://support.cleo.com/hc/en-us/articles/360034260293-Local-HTTP-Users-Configuration

Darktrace Model Alerts

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data to New Endpoint

Unusual Activity / Unusual External Data Transfer

Device / Internet Facing Device with High Priority Alert

Anomalous Server Activity / Rare External from Server

Anomalous Connection / New User Agent to IP Without Hostname

Security Integration / High Severity Integration Incident

Security Integration / Low Severity Integration Detection

Autonomous Response Model Detections

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Cyber AI Analyst Incidents

Unusual External Data Transfer

MITRE ATT&CK Mapping

Tactic – Technique

INITIAL ACCESS – Exploit Public-Facing Application

COMMAND AND CONTROL – Application Layer Protocol (Web Protocols)

COMMAND AND CONTROL – Encrypted Channel

PERSISTENCE – Web Shell

EXFILTRATION - Exfiltration Over C2 Channel

IoC List

IoC       Type    Description + Probability

181.214.147[.]164      IP Address       Likely C2 Infrastructure

176.123.4[.]22            IP Address       Likely C2 Infrastructure

5.45.74[.]137               IP Address           Possible C2 Infrastructure

38.180.242[.]122        IP Address       Possible C2 Infrastructure

Get the latest insights on emerging cyber threats

Attackers are adapting, are you ready? This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Maria Geronikolou
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

Cloud

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI