Blog
/

RESPOND

/
June 19, 2019

How Autonomous Response AI is Winning Automated Extortion

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
Jun 2019
Darktrace, creator of the first enterprise-grade autonomous response technology, leverages AI algorithms to stop malware in its tracks. Learn more here!

Just threat detection is not enough

At a time when automated cyber-attacks execute at machine speed, the reality is that merely detecting these attacks is no longer sufficient to stop them before the damage is done. According to the Ponemon Institute’s oft-cited study on the topic, US companies take an average of 206 days to identify a data breach. And even when security teams discover a potential compromise the moment it begins, human professionals are fundamentally overmatched by malicious code that can encrypt or exfiltrate data in under a minute.

In this era of fast-acting threats, the only way forward is to fight code with code, to pit algorithm against algorithm, and to counter machine-speed attacks with machine-speed defenses. Darktrace, creator of the first enterprise-grade autonomous response technology, leverages AI algorithms to stop malware in its tracks, allowing incident responders to investigate and take action at their own pace. And critically, Darktrace safeguards the digital estate day and night, weekend and holiday, because cyber-criminals don’t wait until business hours to strike.

Examined below are three sophisticated attacks that Darktrace neutralized on behalf of security teams that were either out of office or unable to react in time. Collectively, they demonstrate that the future of autonomous cyber defense has already arrived.

Automated extortion, absent security team

The quintessential example of a cyber-threat too rapid for human professionals to parry, ransomware has become a top-of-mind concern for organizations around the world. In fact, previous research has found that approximately 70% of companies simply hand over the ransom upon getting hit, regardless of the cost. However, Darktrace's Autonomous Response prevents ransomware from spreading by confining users and devices to their typical ‘patterns of life’. Rooted in a constantly refined understanding of ‘self’ versus ‘not self’, Darktrace AI surgically intervenes to shut off just the anomalous activity, while still allowing business operations to continue uninterrupted.

At 7:05 pm on a Friday, an employee at a large telecommunications firm accessed his personal email from a corporate smartphone and was tricked into downloading a malicious file that contained ransomware. Seconds later, the device began connecting to an external server on the Tor network — executing the attack just after the company’s security team had left the office for the weekend.

Darktrace AI, meanwhile, responded nine seconds after encryption began, raising a prioritized alert that called for immediate action. As the behavior persisted over the next few seconds, Darktrace activated AI-enabled autonomous response, which interrupted all attempts to write encrypted files before the ransomware spread across the telecom’s network. Critically, the autonomous response technology was on guard, even when the security team couldn’t be.

Darktrace anticipates the alphabet

Nearly 95% of all successful cyber-attacks begin with a phishing email, which dupe employees into breaching their organizations before the security team realizes that anything is wrong. Even more difficult to catch are personalized “spear phishing” emails that use reconnaissance gathered from either social media or physical surveillance to impersonate trusted colleagues. Thwarting an advanced spear phishing campaign requires understanding normal behavior for each user well enough to flag subtly suspicious emails, as well as the ability to autonomously disable their malicious links — a combination that only Darktrace AI has achieved.

On the network of a major US city, a sophisticated spear phishing campaign managed to bypass the city’s native email controls. The attackers, who had obtained the city’s address book, were emailing recipients alphabetically, from “A” to “Z,” with ostensibly harmless emails that contained a malicious payload. Despite the well-disguised nature of this attack, Darktrace immediately flagged the domain linked in the emails as abnormal for the city’s employees, an action only possible with the evolving understanding of ‘self’ that Darktrace AI learns.

Darktrace's Autonomouse Response was deployed in ‘Passive Mode’ at the time, a trust-building setting that restricts the AI to communicating what it would have done in response to the threat rather than actually interceding. Interestingly enough, however, this nuance served to demonstrate the technology’s ability to stop attacks that conventional tools miss. Whereas Darktrace detected the campaign at the letter “A,” the city’s array of legacy tools finally woke up to the threat at “R.” In ‘Active Mode’, Darktrace would have neutralized the attack before it reached a single user.

Serious threat at amusement park

Data exfiltration is among the most common objectives of cyber-criminals today, as stolen personal information and credentials can be sold on the Dark Web, used to commit identity theft, or leveraged to move laterally within a victim’s network. At a North American amusement park, an advanced attacker targeted an IoT device — a physical locker designed to store personal belongings — in an attempt to exfiltrate such data. As part of its default setting, the ‘smart’ locker regularly established contact with the supplier’s third-party online platform, a process that the attackers hijacked to compromise the device.

Once infiltrated, the locker started to transfer more than a gigabyte of unencrypted data across the network to a rare external site. The connections, which likely included identifying details and sensitive credentials, had the potential to be transmitted over the internet entirely unprotected — allowing the attackers to intercept the connections and use the information to breach the company’s network perimeter.

Due to the severity of the threat, Darktrace determined that an autonomous response was required. Within seconds, Darktrace AI took action by intelligently blocking all outgoing connections from the compromised locker. In doing so, it gave ample time for the security team to remove the smart locker from the internet — before any sensitive company or consumer data could be exfiltrated.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Justin Fier
SVP, Red Team Operations

Justin is one of the US’s leading cyber intelligence experts, and holds the position of SVP, Red Team Operations at Darktrace. His insights on cyber security and artificial intelligence have been widely reported in leading media outlets, including the Wall Street Journal, CNN, The Washington Post, and VICELAND. With over 10 years’ experience in cyber defense, Justin has supported various elements in the US intelligence community, holding mission-critical security roles with Lockheed Martin, Northrop Grumman Mission Systems and Abraxas. Justin is also a highly-skilled technical specialist, and works with Darktrace’s strategic global customers on threat analysis, defensive cyber operations, protecting IoT, and machine learning.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 30, 2025

/
No items found.

Reimagining Your SOC: Overcoming Alert Fatigue with AI-Led Investigations  

Default blog imageDefault blog image

The efficiency of a Security Operations Center (SOC) hinges on its ability to detect, analyze and respond to threats effectively. With advancements in AI and automation, key early SOC team metrics such as Mean Time to Detect (MTTD) have seen significant improvements:

  • 96% of defenders believing AI-powered solutions significantly boost the speed and efficiency of prevention, detection, response, and recovery.
  • Organizations leveraging AI and automation can shorten their breach lifecycle by an average of 108 days compared to those without these technologies.

While tool advances have improved performance and effectiveness in the detection phase, this has not been as beneficial to the next step of the process where initial alerts are investigated further to determine their relevance and how they relate to other activities. This is often measured with the metric Mean Time to Analysis (MTTA), although some SOC teams operate a two-level process with teams for initial triage to filter out more obviously uninteresting alerts and for more detailed analysis of the remainder. SOC teams continue to grapple with alert fatigue, overwhelmed analysts, and inefficient triage processes, preventing them from achieving the operational efficiency necessary for a high-performing SOC.

Addressing this core inefficiency requires extending AI's capabilities beyond detection to streamline and optimize the following investigative workflows that underpin effective analysis.

Challenges with SOC alert investigation

Detecting cyber threats is only the beginning of a much broader challenge of SOC efficiency. The real bottleneck often lies in the investigation process.

Detection tools and techniques have evolved significantly with the use of machine learning methods, improving early threat detection. However, after a detection pops up, human analysts still typically step in to evaluate the alert, gather context, and determine whether it’s a true threat or a false alarm and why. If it is a threat, further investigation must be performed to understand the full scope of what may be a much larger problem. This phase, measured by the mean time to analysis, is critical for swift incident response.

Challenges with manual alert investigation:

  • Too many alerts
  • Alerts lack context
  • Cognitive load sits with analysts
  • Insufficient talent in the industry
  • Fierce competition for experienced analysts

For many organizations, investigation is where the struggle of efficiency intensifies. Analysts face overwhelming volumes of alerts, a lack of consolidated context, and the mental strain of juggling multiple systems. With a worldwide shortage of 4 million experienced level two and three SOC analysts, the cognitive burden placed on teams is immense, often leading to alert fatigue and missed threats.

Even with advanced systems in place not all potential detections are investigated. In many cases, only a quarter of initial alerts are triaged (or analyzed). However, the issue runs deeper. Triaging occurs after detection engineering and alert tuning, which often disable many alerts that could potentially reveal true threats but are not accurate enough to justify the time and effort of the security team. This means some potential threats slip through unnoticed.

Understanding alerts in the SOC: Stopping cyber incidents is hard

Let’s take a look at the cyber-attack lifecycle and the steps involved in detecting and stopping an attack:

First we need a trace of an attack…

The attack will produce some sort of digital trace. Novel attacks, insider threats, and attacker techniques such as living-off-the-land can make attacker activities extremely hard to distinguish.

A detection is created…

Then we have to detect the trace, for example some beaconing to a rare domain. Initial detection alerts being raised underpin the MTTD (mean time to detection). Reducing this initial unseen duration is where we have seen significant improvement with modern threat detection tools.

When it comes to threat detection, the possibilities are vast. Your initial lead could come from anything: an alert about unusual network activity, a potential known malware detection, or an odd email. Once that lead comes in, it’s up to your security team to investigate further and determine if this is this a legitimate threat or a false alarm and what the context is behind the alert.

Investigation begins…

It doesn’t just stop at a detection. Typically, humans also need to look at the alert, investigate, understand, analyze, and conclude whether this is a genuine threat that needs a response. We normally measure this as MTTA (mean time to analyze).

Conducting the investigation effectively requires a high degree of skill and efficiency, as every second counts in mitigating potential damage. Security teams must analyze the available data, correlate it across multiple sources, and piece together the timeline of events to understand the full scope of the incident. This process involves navigating through vast amounts of information, identifying patterns, and discerning relevant details. All while managing the pressure of minimizing downtime and preventing further escalation.

Containment begins…

Once we confirm something as a threat, and the human team determines a response is required and understand the scope, we need to contain the incident. That's normally the MTTC (mean time to containment) and can be further split into immediate and more permanent measures.

For more about how AI-led solutions can help in the containment stage read here: Autonomous Response: Streamlining Cybersecurity and Business Operations

The challenge is not only in 1) detecting threats quickly, but also 2) triaging and investigating them rapidly and with precision, and 3) prioritizing the most critical findings to avoid missed opportunities. Effective investigation demands a combination of advanced tools, robust workflows, and the expertise to interpret and act on the insights they generate. Without these, organizations risk delaying critical containment and response efforts, leaving them vulnerable to greater impacts.

While there are further steps (remediation, and of course complete recovery) here we will focus on investigation.

Developing an AI analyst: How Darktrace replicates human investigation

Darktrace has been working on understanding the investigative process of a skilled analyst since 2017. By conducting internal research between Darktrace expert SOC analysts and machine learning engineers, we developed a formalized understanding of investigative processes. This understanding formed the basis of a multi-layered AI system that systematically investigates data, taking advantage of the speed and breadth afforded by machine systems.

With this research we found that the investigative process often revolves around iterating three key steps: hypothesis creation, data collection, and results evaluation.

All these details are crucial for an analyst to determine the nature of a potential threat. Similarly, they are integral components of our Cyber AI Analyst which is an integral component across our product suite. In doing so, Darktrace has been able to replicate the human-driven approach to investigating alerts using machine learning speed and scale.

Here’s how it works:

  • When an initial or third-party alert is triggered, the Cyber AI Analyst initiates a forensic investigation by building multiple hypotheses and gathering relevant data to confirm or refute the nature of suspicious activity, iterating as necessary, and continuously refining the original hypothesis as new data emerges throughout the investigation.
  • Using a combination of machine learning including supervised and unsupervised methods, NLP and graph theory to assess activity, this investigation engine conducts a deep analysis with incidents raised to the human team only when the behavior is deemed sufficiently concerning.
  • After classification, the incident information is organized and processed to generate the analysis summary, including the most important descriptive details, and priority classification, ensuring that critical alerts are prioritized for further action by the human-analyst team.
  • If the alert is deemed unimportant, the complete analysis process is made available to the human team so that they can see what investigation was performed and why this conclusion was drawn.
Darktrace cyber ai analyst workflow, how it works

To illustrate this via example, if a laptop is beaconing to a rare domain, the Cyber AI Analyst would create hypotheses including whether this could be command and control traffic, data exfiltration, or something else. The AI analyst then collects data, analyzes it, makes decisions, iterates, and ultimately raises a new high-level incident alert describing and detailing its findings for human analysts to review and follow up.

For more information on Darktrace’s Cyber AI Analyst click here!

Unlocking an efficient SOC

To create a mature and proactive SOC, addressing the inefficiencies in the alert investigation process is essential. By extending AI's capabilities beyond detection, SOC teams can streamline and optimize investigative workflows, reducing alert fatigue and enhancing analyst efficiency.

This holistic approach not only improves Mean Time to Analysis (MTTA) but also ensures that SOCs are well-equipped to handle the evolving threat landscape. Embracing AI augmentation and automation in every phase of threat management will pave the way for a more resilient and proactive security posture, ultimately leading to a high-performing SOC that can effectively safeguard organizational assets.

Every relevant alert is investigated

The Cyber AI Analyst is not a generative AI system, or an XDR or SEIM aggregator that simply prompts you on what to do next. It uses a multi-layered combination of many different specialized AI methods to investigate every relevant alert from across your enterprise, native, 3rd party, and manual triggers, operating at machine speed and scale. This also positively affects detection engineering and alert tuning, because it does not suffer from fatigue when presented with low accuracy but potentially valuable alerts.

Retain and improve analyst skills

Transferring most analysis processes to AI systems can risk team skills if they don't maintain or build them and if the AI doesn't explain its process. This can reduce the ability to challenge or build on AI results and cause issues if the AI is unavailable. The Cyber AI Analyst, by revealing its investigation process, data gathering, and decisions, promotes and improves these skills. Its deep understanding of cyber incidents can be used for skill training and incident response practice by simulating incidents for security teams to handle.

Create time for cyber risk reduction

Human cybersecurity professionals excel in areas that require critical thinking, strategic planning, and nuanced decision-making. With alert fatigue minimized and investigations streamlined, your analysts can avoid the tedious data collection and analysis stages and instead focus on critical decision-making tasks such as implementing recovery actions and performing threat hunting.

Stay tuned for part 3/3

Part 3/3 in the Reimagine your SOC series explores the preventative security solutions market and effective risk management strategies.

Coming soon!

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI