Blog
/
/
January 6, 2021

Darktrace Insights On SolarWinds Hack

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Jan 2021
Learn how Darktrace analyzed the SolarWinds hack without signatures. Understand the techniques used to identify and mitigate this major cyber threat.

For a high-level explanation of the SolarWinds hack, watch our video below.

The SUNBURST malware attacks against SolarWinds have heightened companies’ concerns about the risk to their digital environments. Malware installed during software updates in March 2020 has allowed advanced attackers to gain unauthorized access to files that may include customer data and intellectual property.

Darktrace does not use SolarWinds, and its operations remain unaffected by this breach. However, SolarWinds is an IT discovery tool that is used by a significant number of Darktrace customers. In what follows, we explore a set of Darktrace detections that highlight and alert security teams to the types of behaviors related to this breach.

This is not an example of a SolarWinds compromise, but examples of anomalous behaviors we can expect to see from this type of breach. These examples stress the value of self-learning Cyber AI capable of understanding the evolving normal ‘patterns of life’ within an enterprise – as opposed to a signature-based approach that looks at historical data to predict today’s threat.

As Darktrace detects device activity patterns rather than known malicious signatures, detecting use of these techniques will fall into the scope of Darktrace’s capabilities without further need for configuration. The technology automatically clusters devices into ‘peer groups’, allowing it to detect cases of an individual device behaving unusually. Using a self-learning approach is the best possible mechanism to catch an attacker who gains access into your systems using a degree of stealth so as to not trigger signature-based detection.

A number of these models may fire in combination with other models in order to make a strong detection over a time-series – and this is exactly where Darktrace’s autonomous incident triage capability, Cyber AI Analyst, plays a crucial role in investigating the alerts on behalf of security teams. Cyber AI Analyst saves critical time for security teams, and its results should be treated with a high priority during this period of vigilance.

How SolarWinds was detected with AI

We want to focus on the most sophisticated details of the hands-on intrusion that in many cases followed the initial automated attack. This post-exploitation part of the attack is much more varied and stealthy. These stages are also near-impossible to predict, as they are driven by the attacker’s intentions and goals for each individual victim at this stage – making the use of signatures, threat intelligence or static use cases virtually useless.

While the automated, initial malware execution is a critical initial step to understand, the behavior was pre-configured for the malware and included the download of further payloads and the connection to domain-generation-algorithm (DGA) based subdomains of avsvmcloud[.]com. These automated first stages of the attack have been sufficiently researched in depth by the community. This post is not aiming to add anything to these findings, but instead takes a look at the potential post-infection activities.

Malware / C2 domains

The threat-actor set the hostnames on their later-stage command and control (C2) infrastructure to match a legitimate hostname found within the victim’s environment. This allowed the adversary to blend into the environment, avoid suspicion, and evade detection. They further used C2 servers in geopolitical proximity to their victims, further circumventing static geo-based trusts lists. Darktrace is unaffected by this type of tradecraft as it does not have implicit, pre-defined trust of any geo-locations.

This would be very likely to trigger the following Darktrace Cyber AI models. The models were not specifically designed to detect SolarWinds modifications but have been in place for years – they are designed to detect the subtle but significant attacker activities occurring within an organization’s network.

  • Compromise / Agent Beacon to New Endpoint
  • Compromise / SSL Beaconing to New Endpoint
  • Compromise / HTTP Beaconing to New Endpoint*

*The implant uses SSL, but may be identified as HTTP if using a proxy.

Lateral movement using different credentials

Once the attacker gained access to the network with compromised credentials, they moved laterally using multiple different credentials. The credentials used for lateral movement were always different from those used for remote access.

This very likely would trigger the following Cyber AI models:

  • User / Multiple Uncommon New Credentials on Device
Figure 1: Example breach event log showing anomalous (new) logins from a single device, with multiple user credentials
  • User / New Admin Credentials on Client
Figure 2: Example breach event log showing anomalous admin login

Temporary file replacement and temporary task modification

The attacker used a temporary file replacement technique to remotely execute utilities: they replaced a legitimate utility with theirs, executed their payload, and then restored the legitimate original file. They similarly manipulated scheduled tasks by updating an existing legitimate task to execute their tools and then returned the scheduled task to its original configuration. They routinely removed their tools – including the removal of backdoors once legitimate remote access was achieved.

This would be very likely to trigger the following Cyber AI models:

  • Anomalous Connection / New or Uncommon Service Control
Figure 3: Example breach showing uncommon service control
  • Anomalous Connection / High Volume of New or Uncommon Service Control
Figure 4: Example breach showing 10 uncommon service controls
  • Device / AT Service Scheduled Task
Figure 5: Breach event log shows new AT service scheduled task activity
  • Device / Multiple RPC Requests for Unknown Services
Figure 6: Breach shows multiple binds to unknown RPC services
  • Device / Anomalous SMB Followed By Multiple Model Breaches
Figure 7: Breach shows unusual SMB activity, combined with slow beaconing
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
Figure 8: Breach shows device writing .bat file to temp folder on another device
  • Unusual Activity / Anomalous SMB to New or Unusual Locations
Figure 9: Breach shows new access to SAMR, combined with SMB Reads and Kerberos login failures
  • Unusual Activity / Sustained Anomalous SMB Activity
Figure 10: Breach shows significant deviation in SMB activity from device

SolarWinds breach remembered

By understanding where credentials are used and which devices talk to each other, Cyber AI has an unprecedented and dynamic understanding of business systems. This empowers it to alert security teams to enterprise changes that could indicate cyber risk in real time.

These alerts demonstrate how AI learns ‘normal’ for the unique digital environment surrounding it, and then alerts operators to deviations, including those that are directly relevant to the SUNBURST compromise. It further provides insights into how the attacker exploited those networks that did not have the appropriate visibility and detection capabilities.

On top of these alerts, Cyber AI Analyst will also be automatically correlating these detections over time to identify patterns, generating comprehensive and intuitive incident summaries and significantly reducing triage time. Reviewing Cyber AI Analyst alerts should be given high priority over the next several weeks.


Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Max Heinemeyer
Global Field CISO

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Email

/

February 27, 2025

Fighting the Real Enemy: The Importance of Responsible Vulnerability Disclosure Between Email Security Vendors

Default blog imageDefault blog image

Part of being a cybersecurity vendor is recognizing our responsibility to the security community – while vendor competition exists, it pales in comparison to the threat of our shared adversary: malicious threat actors.

Darktrace is proud to be contributing to the shared mission of fighting attackers; without goodwill among defenders that task is made more difficult for everyone. Through collaboration, we can advance security standards across the board and make the world a safer place.  

With that in mind, Darktrace recently observed an exploitation capability latent in a competing email security vendor’s link rewriting infrastructure, which posed a risk to organizations. Following identification, Darktrace was able to report it to the vendor following their disclosure process. We’ll explore the vulnerability, the potential impact it may have had, how it could have been resolved, and the steps Darktrace took to raise it with the vendor.  

Please note that the following vulnerability we’re about to expose has already been resolved, so there is no risk of it being exploited by others. While keeping this vendor anonymous, we also want to thank them for their cordial response and swift remediation of the issue.

For more information about vulnerability disclosure best practices, refer to the UK National Cyber Security Center’s Vulnerability Disclosure Toolkit.

Details of the vulnerability

Let’s take a look at the weakness Darktrace identified in the link rewriting infrastructure.

In January 2025, Darktrace observed that links generated by a URL rewriting infrastructure could be re-engineered by a malicious actor to point to a URL of their choosing. In this way, a threat actor could effectively use the vendor’s domain to create a malicious domain under their control.

Because a majority of security vendors default to trust from known-safe domains, using one of these links as the payload greatly enhances the likelihood of that email being allow-listed to bypass email security, network URL filtering, and other such security tools, to reach the inbox. This issue meant any adversary could have abused the vendor’s safelink structure to deliver a malicious phishing link payload to any organization. It is likely this exploitation capability could have been found and abused at scale if not addressed.

The problem with said vendor’s link rewriting process was in using standard base-64 encoding instead of randomized encoding, so that anyone could replace the value of the parameter “b=” which contains a base64-encoded form of the original link with a base64-encoded form of a URL of their choosing.

This also posed issues from a privacy perspective. If, for example the encoded link was a SharePoint file, all the included folder names would be available for anyone to see in plaintext.

Example of a phishing attack caught by Darktrace that uses another email security solution’s compromised safelink
Fig 1: Example of a phishing attack caught by Darktrace that uses another email security solution’s compromised safelink

How the vulnerability was resolved

The solution for developers is to ensure the use of randomized encoding when developing link rewriting infrastructure to close the possibility of safelinks being deciphered and re-engineered by malicious actors.

Once Darktrace found this link issue we followed the vendor’s disclosure process to report the potential risk to customers and the wider community, while also conducting a review to ensure that Darktrace customers and their supply chains remained safe. We continued to follow up with the company directly to ensure that the vulnerability was fixed.

This instance highlights the importance of vendors having clear and visible vulnerability disclosure processes (such as RFC9116) and being available to listen to the security community in case of disclosures of this nature.

Why Darktrace was obliged to disclose this vulnerability

Here, Darktrace had two responsibilities: to the security community and to our customers.

As a company whose mission is to protect organizations today and for an ever-changing future, we will never stand by if there is a known risk. If attackers had used the safelinks to create new attacks, any organization could have been exposed due to the inherent trust in this vendor’s links within services that distribute or maintain global whitelists, harm which could have been multiplied by the interlinked nature of supply chains.

This means that not only the vendor’s customers were exposed, but any organization with their safelink in a whitelist was also exposed to this vulnerability. For Darktrace customers, an attack using this link would have been detected and stopped across various service offerings, and a secondary escalation by our Cyber AI Analyst would ensure security teams were aware. Even so, Darktrace has a responsibility to these customers to do everything in its power to minimize their exposure to risk, even if it comes from within their own security stack.

Why Darktrace customers remain protected

If a Darktrace / EMAIL, Darktrace / NETWORK, or any other Darktrace ActiveAI Security Platform customer was exposed to this type of vulnerability, our unique Self-Learning AI approach and defense-in-depth philosophy means they stay protected.

Darktrace / EMAIL doesn’t approach links from a binary perspective – as safe, or unsafe – instead every link is analyzed for hundreds of metrics including the content and context in which it was delivered. Because every user’s normal behavior is baselined, Darktrace can immediately detect anomalies in link-sharing patterns that may point to a threat. Furthermore, our advanced link analysis includes metrics on how links perform within a browser and in-depth visual analysis, to detect even well-disguised payloads.

None of Darktrace’s customers were compromised as a result of this vulnerability. But should a customer have clicked on a similar malicious link, that’s where a platform approach to security comes in. Detecting threats that traverse domains is one strength of the Darktrace ActiveAI Security Platform. Our AI correlates data from across the digital estate to spot suspicious activity in the network, endpoint or cloud that may have originated from a malicious email. Darktrace’s Cyber AI Analyst then performs triage and investigation of alerts to raise those of high importance to an incident, allowing for human-analyst validation and escalation.

As demonstrated by finding this vulnerability in another vendor, Darktrace’s R&D teams are always thinking like an attacker as they develop our products, to allow us to remain one step ahead for our customers.

Conclusion

We hope this example can be useful to developers working on link rewriting infrastructure, or to vendors figuring out how to proceed with a disclosure to another vendor. We’re pleased to have been able to collaborate with said vendor in this instance, and hope that it serves to illustrate the importance of defenders working together towards the common goal of keeping organizations safe from hostile cyber actors.

Continue reading
About the author
The Darktrace Community

Blog

/

Network

/

February 27, 2025

New Threat on the Prowl: Investigating Lynx Ransomware

Default blog imageDefault blog image

What is Lynx ransomware?

In mid-2024, a new ransomware actor named Lynx emerged in the threat landscape. This Ransomware-as-a-Service (RaaS) strain is known to target organizations in the finance, architecture, and manufacturing sectors [1] [2]. However, Darktrace’s Threat Research teams also identified Lynx incidents affecting energy and retail organizations in the Middle East and Asia-Pacific (APAC) regions. Despite being a relatively new actor, Lynx’s malware shares large portions of its source code with the INC ransomware variant, suggesting that the group may have acquired and repurposed the readily available INC code to develop its own strain [2].

What techniques does Lynx ransomware group use?

Lynx employs several common attack vectors, including phishing emails which result in the download and installation of ransomware onto systems upon user interaction. The group poses a sophisticated double extortion threat to organizations, exfiltrating sensitive data prior to encryption [1]. This tactic allows threat actors to pressure their targets by threatening to release sensitive information publicly or sell it if the ransom is not paid. The group has also been known to gradually release small batches of sensitive information (i.e., “drip” data) to increase pressure.

Once executed, the malware encrypts files and appends the extension ‘.LYNX’ to all encrypted files. It eventually drops a Base64 encoded text file as a ransom note (i.e., README.txt) [1]. Should initial file encryption attempts fail, the operators have been known to employ privilege escalation techniques to ensure full impact [2].

In the Annual Threat Report 2024, Darktrace’s Threat Research team identified Lynx ransomware as one of the top five most significant threats, impacting both its customers and the broader threat landscape.

Darktrace Coverage of Lynx Ransomware

In cases of Lynx ransomware observed across the Darktrace customer base, Darktrace / NETWORK identified and suggested Autonomous Response actions to contain network compromises from the onset of activity.  

Detection of lateral movement

One such Lynx compromise occurred in December 2024 when Darktrace observed multiple indicators of lateral movement on a customer network. The lateral movement activity started with a high volume of attempted binds to the service control endpoint of various destination devices, suggesting SMB file share enumeration. This activity also included repeated attempts to establish internal connections over destination port 445, as well as other privileged ports. Spikes in failed internal connectivity, such as those exhibited by the device in question, can indicate network scanning. Elements of the internal connectivity also suggested the use of the attack and reconnaissance tool, Nmap.

Indicators of compromised administrative credentials

Although an initial access point could not be confirmed, the widespread use of administrative credentials throughout the lateral movement process demonstrated the likely compromise of such privileged usernames and passwords. The operators of the malware frequently used both 'admin' and 'administrator' credentials throughout the incident, suggesting that attackers may have leveraged compromised default administrative credentials to gain access and escalate privileges. These credentials were observed on numerous devices across the network, triggering Darktrace models that detect unusual use of administrative usernames via methods like NTLM and Kerberos.

Data exfiltration

The lateral movement and reconnaissance behavior was then followed by unusual internal and external data transfers. One such device exhibited an unusual spike in internal data download activity, downloading around 150 GiB over port 3260 from internal network devices. The device then proceeded to upload large volumes of data to the external AWS S3 storage bucket: wt-prod-euwest1-storm.s3.eu-west-1.amazonaws[.]com. Usage of external cloud storage providers is a common tactic to avoid detection of exfiltration, given the added level of legitimacy afforded by cloud service provider domains.

Furthermore, Darktrace observed the device exhibiting behavior suggesting the use of the remote management tool AnyDesk when it made outbound TCP connections to hostnames such as:

relay-48ce591e[.]net[.]anydesk[.]com

relay-c9990d24[.]net[.]anydesk[.]com

relay-da1ad7b4[.]net[.]anydesk[.]com

Tools like AnyDesk can be used for legitimate administrative purposes. However, such tools are also commonly leveraged by threat actors to enable remote access and further compromise activity. The activity observed from the noted device during this time suggests the tool was used by the ransomware operators to advance their compromise goals.

The observed activity culminated in the encryption of thousands of files with the '.Lynx' extension. Darktrace detected devices performing uncommon SMB write and move operations on the drives of destination network devices, featuring the appending of the Lynx extension to local host files. Darktrace also identified similar levels of SMB read and write sizes originating from certain devices. Parallel volumes of SMB read and write activity strongly suggest encryption, as the malware opens, reads, and then encrypts local files on the hosted SMB disk share. This encryption activity frequently highlighted the use of the seemingly-default credential: "Administrator".

In this instance, Darktrace’s Autonomous Response capability was configured to only take action upon human confirmation, meaning the customer’s security team had to manually apply any suggested actions. Had the deployment been fully autonomous, Darktrace would have blocked connectivity to and from the affected devices, giving the customer additional time to contain the attack and enforce existing network behavior patterns while the IT team responded accordingly.

Conclusion

As reported by Darktrace’s Threat Research team in the Annual Threat Report 2024, both new and old ransomware strains were prominent across the threat landscape last year. Due to the continually improving security postures of organizations, ransomware actors are forced to constantly evolve and adopt new tactics to successfully carry out their attacks.

The Lynx group’s use of INC source code, for example, suggests a growing accessibility for threat actors to launch new ransomware strains based on existing code – reducing the cost, resources, and expertise required to build new malware and carry out an attack. This decreased barrier to entry will surely lead to an increased number of ransomware incidents, with attacks not being limited to experienced threat actors.

While Darktrace expects ransomware strains like Lynx to remain prominent in the threat landscape in 2025 and beyond, Darktrace’s ability to identify and respond to emerging ransomware incidents – as demonstrated here – ensures that customers can safeguard their networks and resume normal business operations as quickly as possible, even in an increasingly complex threat landscape.

Credit to Justin Torres (Senior Cyber Analyst) and Adam Potter (Senior Cyber Analyst).

Get the latest insights on emerging cyber threats

Attackers are adapting, are you ready? This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025.

  • Identity-based attacks: How attackers are bypassing traditional defenses
  • Zero-day exploitation: The rise of previously unknown vulnerabilities
  • AI-driven threats: How adversaries are leveraging AI to outmaneuver security controls

Stay ahead of evolving threats with expert analysis from Darktrace. Download the report here.

Appendices

References

1.     https://unit42.paloaltonetworks.com/inc-ransomware-rebrand-to-lynx/

2.     https://cybersecsentinel.com/lynx-ransomware-strikes-new-targets-unveiling-advanced-encryption-techniques/

Autonomous Response Model Alerts

·      Antigena::Network::Significant Anomaly::Antigena Alerts Over Time Block

·      Antigena::Network::Insider Threat::Antigena Active Threat SMB Write Block

·      Antigena::Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

·      Antigena::Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

·      Antigena::Network::Insider Threat::Antigena Network Scan Block

·      Antigena::Network::Insider Threat::Antigena Internal Anomalous File Activity

·      Antigena::Network::Insider Threat::Antigena Unusual Privileged User Activities Block

·      Antigena::Network::Insider Threat::Antigena Unusual Privileged User Activities Pattern of Life Block

·      Antigena::Network::Insider Threat::Antigena Large Data Volume Outbound Block

Darktrace / NETWORK Model Alerts

·      Device::Multiple Lateral Movement Model Alerts

·      Device::Suspicious Network Scan Activity

·      Anomalous File::Internal::Additional Extension Appended to SMB File

·      Device::SMB Lateral Movement

·      Compliance::SMB Drive Write

·      Compromise::Ransomware::Suspicious SMB Activity

·      Anomalous File::Internal::Unusual SMB Script Write

·      Device::Network Scan

·      Device::Suspicious SMB Scanning Activity

·      Device::RDP Scan

·      Unusual Activity::Anomalous SMB Move & Write

·      Anomalous Connection::Sustained MIME Type Conversion

·      Compromise::Ransomware::SMB Reads then Writes with Additional Extensions

·      Unusual Activity::Sustained Anomalous SMB Activity

·      Device::ICMP Address Scan

·      Compromise::Ransomware::Ransom or Offensive Words Written to SMB

·      Anomalous Connection::Suspicious Read Write Ratio

·      Anomalous File::Internal::Masqueraded Executable SMB Write

·      Compliance::Possible Unencrypted Password File On Server

·      User::New Admin Credentials on Client

·      Compliance::Remote Management Tool On Server

·      User::New Admin Credentials on Server

·      Anomalous Connection::Unusual Admin RDP Session

·      Anomalous Connection::Download and Upload

·      Anomalous Connection::Uncommon 1 GiB Outbound

·      Unusual Activity::Unusual File Storage Data Transfer

List of IoCs

IoC - Type - Description + Confidence

- ‘. LYNX’ -  File Extension -  Lynx Ransomware file extension appended to encrypted files

MITRE ATT&CK Mapping  

(Technique Name - Tactic - ID - Sub-Technique of)

Taint Shared Content - LATERAL MOVEMENT - T1080

Data Encrypted for - Impact - IMPACT T1486

Rename System Utilities - DEFENSE EVASION - T1036.003 - T1036

Continue reading
About the author
Justin Torres
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI