Blog
/
AI
/
February 27, 2025

New Threat on the Prowl: Investigating Lynx Ransomware

Lynx ransomware, emerging in 2024, targets finance, architecture, and manufacturing sectors with phishing and double extortion. Read on for Darktrace's findings.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Feb 2025

What is Lynx ransomware?

In mid-2024, a new ransomware actor named Lynx emerged in the threat landscape. This Ransomware-as-a-Service (RaaS) strain is known to target organizations in the finance, architecture, and manufacturing sectors [1] [2]. However, Darktrace’s Threat Research teams also identified Lynx incidents affecting energy and retail organizations in the Middle East and Asia-Pacific (APAC) regions. Despite being a relatively new actor, Lynx’s malware shares large portions of its source code with the INC ransomware variant, suggesting that the group may have acquired and repurposed the readily available INC code to develop its own strain [2].

What techniques does Lynx ransomware group use?

Lynx employs several common attack vectors, including phishing emails which result in the download and installation of ransomware onto systems upon user interaction. The group poses a sophisticated double extortion threat to organizations, exfiltrating sensitive data prior to encryption [1]. This tactic allows threat actors to pressure their targets by threatening to release sensitive information publicly or sell it if the ransom is not paid. The group has also been known to gradually release small batches of sensitive information (i.e., “drip” data) to increase pressure.

Once executed, the malware encrypts files and appends the extension ‘.LYNX’ to all encrypted files. It eventually drops a Base64 encoded text file as a ransom note (i.e., README.txt) [1]. Should initial file encryption attempts fail, the operators have been known to employ privilege escalation techniques to ensure full impact [2].

In the Annual Threat Report 2024, Darktrace’s Threat Research team identified Lynx ransomware as one of the top five most significant threats, impacting both its customers and the broader threat landscape.

Darktrace Coverage of Lynx Ransomware

In cases of Lynx ransomware observed across the Darktrace customer base, Darktrace / NETWORK identified and suggested Autonomous Response actions to contain network compromises from the onset of activity.  

Detection of lateral movement

One such Lynx compromise occurred in December 2024 when Darktrace observed multiple indicators of lateral movement on a customer network. The lateral movement activity started with a high volume of attempted binds to the service control endpoint of various destination devices, suggesting SMB file share enumeration. This activity also included repeated attempts to establish internal connections over destination port 445, as well as other privileged ports. Spikes in failed internal connectivity, such as those exhibited by the device in question, can indicate network scanning. Elements of the internal connectivity also suggested the use of the attack and reconnaissance tool, Nmap.

Indicators of compromised administrative credentials

Although an initial access point could not be confirmed, the widespread use of administrative credentials throughout the lateral movement process demonstrated the likely compromise of such privileged usernames and passwords. The operators of the malware frequently used both 'admin' and 'administrator' credentials throughout the incident, suggesting that attackers may have leveraged compromised default administrative credentials to gain access and escalate privileges. These credentials were observed on numerous devices across the network, triggering Darktrace models that detect unusual use of administrative usernames via methods like NTLM and Kerberos.

Data exfiltration

The lateral movement and reconnaissance behavior was then followed by unusual internal and external data transfers. One such device exhibited an unusual spike in internal data download activity, downloading around 150 GiB over port 3260 from internal network devices. The device then proceeded to upload large volumes of data to the external AWS S3 storage bucket: wt-prod-euwest1-storm.s3.eu-west-1.amazonaws[.]com. Usage of external cloud storage providers is a common tactic to avoid detection of exfiltration, given the added level of legitimacy afforded by cloud service provider domains.

Furthermore, Darktrace observed the device exhibiting behavior suggesting the use of the remote management tool AnyDesk when it made outbound TCP connections to hostnames such as:

relay-48ce591e[.]net[.]anydesk[.]com

relay-c9990d24[.]net[.]anydesk[.]com

relay-da1ad7b4[.]net[.]anydesk[.]com

Tools like AnyDesk can be used for legitimate administrative purposes. However, such tools are also commonly leveraged by threat actors to enable remote access and further compromise activity. The activity observed from the noted device during this time suggests the tool was used by the ransomware operators to advance their compromise goals.

The observed activity culminated in the encryption of thousands of files with the '.Lynx' extension. Darktrace detected devices performing uncommon SMB write and move operations on the drives of destination network devices, featuring the appending of the Lynx extension to local host files. Darktrace also identified similar levels of SMB read and write sizes originating from certain devices. Parallel volumes of SMB read and write activity strongly suggest encryption, as the malware opens, reads, and then encrypts local files on the hosted SMB disk share. This encryption activity frequently highlighted the use of the seemingly-default credential: "Administrator".

In this instance, Darktrace’s Autonomous Response capability was configured to only take action upon human confirmation, meaning the customer’s security team had to manually apply any suggested actions. Had the deployment been fully autonomous, Darktrace would have blocked connectivity to and from the affected devices, giving the customer additional time to contain the attack and enforce existing network behavior patterns while the IT team responded accordingly.

Conclusion

As reported by Darktrace’s Threat Research team in the Annual Threat Report 2024, both new and old ransomware strains were prominent across the threat landscape last year. Due to the continually improving security postures of organizations, ransomware actors are forced to constantly evolve and adopt new tactics to successfully carry out their attacks.

The Lynx group’s use of INC source code, for example, suggests a growing accessibility for threat actors to launch new ransomware strains based on existing code – reducing the cost, resources, and expertise required to build new malware and carry out an attack. This decreased barrier to entry will surely lead to an increased number of ransomware incidents, with attacks not being limited to experienced threat actors.

While Darktrace expects ransomware strains like Lynx to remain prominent in the threat landscape in 2025 and beyond, Darktrace’s ability to identify and respond to emerging ransomware incidents – as demonstrated here – ensures that customers can safeguard their networks and resume normal business operations as quickly as possible, even in an increasingly complex threat landscape.

Credit to Justin Torres (Senior Cyber Analyst) and Adam Potter (Senior Cyber Analyst).

[related-resource]

Appendices

References

1.     https://unit42.paloaltonetworks.com/inc-ransomware-rebrand-to-lynx/

2.     https://cybersecsentinel.com/lynx-ransomware-strikes-new-targets-unveiling-advanced-encryption-techniques/

Autonomous Response Model Alerts

·      Antigena::Network::Significant Anomaly::Antigena Alerts Over Time Block

·      Antigena::Network::Insider Threat::Antigena Active Threat SMB Write Block

·      Antigena::Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

·      Antigena::Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

·      Antigena::Network::Insider Threat::Antigena Network Scan Block

·      Antigena::Network::Insider Threat::Antigena Internal Anomalous File Activity

·      Antigena::Network::Insider Threat::Antigena Unusual Privileged User Activities Block

·      Antigena::Network::Insider Threat::Antigena Unusual Privileged User Activities Pattern of Life Block

·      Antigena::Network::Insider Threat::Antigena Large Data Volume Outbound Block

Darktrace / NETWORK Model Alerts

·      Device::Multiple Lateral Movement Model Alerts

·      Device::Suspicious Network Scan Activity

·      Anomalous File::Internal::Additional Extension Appended to SMB File

·      Device::SMB Lateral Movement

·      Compliance::SMB Drive Write

·      Compromise::Ransomware::Suspicious SMB Activity

·      Anomalous File::Internal::Unusual SMB Script Write

·      Device::Network Scan

·      Device::Suspicious SMB Scanning Activity

·      Device::RDP Scan

·      Unusual Activity::Anomalous SMB Move & Write

·      Anomalous Connection::Sustained MIME Type Conversion

·      Compromise::Ransomware::SMB Reads then Writes with Additional Extensions

·      Unusual Activity::Sustained Anomalous SMB Activity

·      Device::ICMP Address Scan

·      Compromise::Ransomware::Ransom or Offensive Words Written to SMB

·      Anomalous Connection::Suspicious Read Write Ratio

·      Anomalous File::Internal::Masqueraded Executable SMB Write

·      Compliance::Possible Unencrypted Password File On Server

·      User::New Admin Credentials on Client

·      Compliance::Remote Management Tool On Server

·      User::New Admin Credentials on Server

·      Anomalous Connection::Unusual Admin RDP Session

·      Anomalous Connection::Download and Upload

·      Anomalous Connection::Uncommon 1 GiB Outbound

·      Unusual Activity::Unusual File Storage Data Transfer

List of IoCs

IoC - Type - Description + Confidence

- ‘. LYNX’ -  File Extension -  Lynx Ransomware file extension appended to encrypted files

MITRE ATT&CK Mapping  

(Technique Name - Tactic - ID - Sub-Technique of)

Taint Shared Content - LATERAL MOVEMENT - T1080

Data Encrypted for - Impact - IMPACT T1486

Rename System Utilities - DEFENSE EVASION - T1036.003 - T1036

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI