Blog
/
Compliance
/
March 12, 2023

Compliance Breach Mitigation

Uncover the significance of compliance in preventing cyber threats and learn strategies for effective breach mitigation in your organization.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rachel Resnekov
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Mar 2023

Compliance is often an afterthought for security teams responding to cyber security incidents, with many organizations seeing compliance issues as “rule breaking employees” rather than legitimate threats to their network. However, even seemingly innocuous compliance breaches can significantly damage a company’s finances and reputation if not properly addressed.

Adhering to cyber security standards and regulatory requirements is essential, but can often result in “tick box compliance” wherein meeting standards does not result in a reduction of non-compliant activity, lacking tangible impact for many organizations. Protecting data is of paramount importance, especially given the implementation of numerous data protection laws concerned with protecting sensitive data, such as Personally Identifiable Information (PII), financial information, and Protected Health Information (PHI). However, many compliance breaches which do not result in data loss go unadressed, inevitably leading to vulnerabilities within the network that are advantageous to threat actors. Darktrace detects compliance issues in real time and escalates them accordingly, using a dedicated compliance model stack. It highlights incidents of concern, from insecure password storage to device updates, ensuring that users adhere to company standards.

Finding ways to prioritize and quickly triage through these compliance issues, rather than focusing on log auditing or more manually intensive processes, can result in immense gains for security teams.  

Darktrace Coverage of Compliance Breaches   

Incident: Outgoing Operational Technology Connection 

Compliance issues in Operational Technology (OT) are difficult to detect using traditional security measures. The OT space faces unique challenges, such as legacy systems, limited visibility, and convergence between OT and Information Technology (IT). Darktrace’s compliance stack includes an OT-specific subset, allowing users to quickly identify and remediate issues as they arise.

In early 2022, Darktrace observed a compliance incident on the network of a customer based in the energy sector when an individual inserted a mobile phone SIM card into the Human-Machine Interface (HMI) of an Industrial Control System (ICS). The HMI proceeded to access several non-compliant external endpoints, including Facebook. Typically IT and OT networks should be air-gapped to keep critical industrial infrastructure protected and operational.

In this case, Darktrace DETECT triggered a compliance model breach (ICS:: OT Compliance External Connection) and the customer was quickly able mitigate the issue before any meaningful harm could be done to the network.

Incident: Personal Email Use in Corporate Setting

The email space contains a litany of compliance standards and is one of the most common places where security standards are breached, with research demonstrating that “91% of all cyber attacks start with a phishing email.”[1]

In late October 2022, Darktrace/Email identified an email from the recipient’s personal address containing a suspicious link. As the user regularly sent emails between their corporate and personal addresses, this freemail address was a known correspondent. However, this personal email address had been compromised and sent a phishing email to the user’s corporate address. Darktrace/Email immediately identified the suspicious link and alerted the customer, recommending that their security team lock the link. Unfortunately, the customer did not have autonomous response actions for Email enabled, so the recipient was able to open the link and input their corporate credentials on the phishing page. 

Not only is Darktrace/Email able to assess and mitigate threats from personal email addresses, it can also identify suspicious links inside these emails that may have evaded traditional security measures by using a known correspondence. By enabling autonomous response actions, Darktrace/Email is able to follow this up by instantaneously locking such links, ensuring they cannot be opened and preventing the account from being compromised.

Incident: Multi-Factor Authentication for SaaS Accounts

A desire for increased efficiency and cost-effectiveness are two of the reasons underpinning the widespread adoption of cloud-based Software-as-a-Service (SaaS) solutions. However, third-party SaaS environments are not always held to the same compliance standards as traditional on-premisis network infrastructure.

Multi-factor Authentication (MFA) in SaaS environments requires users to prove their identity in at least two ways before granting them access to applications. This significantly reduces the risk of compromise,  but it is not a silver-bullet to prevent account compromise and is still not universally adopted as a baseline security practice.

In October 2022, Darktrace observed an unusual login from a rare IP address on the SaaS account of a customer that did not have MFA employed. Following this initial access, the actor created a new rule and sent emails containing suspicious links to several internal recipients. Further investigation revealed that the link directed to a fake Office365 login portal intended to harvest user credentials. Darktrace/Email and RESPOND for Apps worked in tandem to instantaneously detect this suspicious activity and force the user to log out, while alerting the customer’s security team to the incident.  As a security practice, MFA provides an additional but not guaranteed means of protecting companies from internal theft, data loss, and external access from malicious actors, but its effectiveness is contingent on its roll out across a company. Darktrace DETECT and RESPOND provide an autonomous early warning system and additional layer of security to quickly isolate and contain compromised accounts even in the absence of MFA.

Conclusion

Compliance standards are the building blocks for the cyber hygiene of any organization, but in the current cyber security landscape simply adhering to standards is not enough to close gaps from non-compliant behavior. Following up compliance standard obedience supported by additional measures and technology to tackle compliance breaches significantly reduces the risk of compromise and data breaches, in addition to financial and reputational damage. Ensuring compliance issues are not disregarded as background noise by security teams will help to ensure that minor breaches do not escalate and become legitimate threats.

Darktrace’s suite of products provides an additional layer of detection and autonomous response, alerting customers to ongoing compliance issues and preventing them from causing genuine harm or compromise to the network.

Credit to: Rachel Resznekov, Cyber Security Analyst, Roberto Romeu, Senior SOC Analyst 

Appendices

External Sources: 

hxxps[:]//www[.]comptia[.]org/content/articles/what-is-cybersecurity-compliance#\

hxxps[:]//darkcubed[.]com/compliance

hxxps[:]//www[.]zeguro[.]com/blog/cybersecurity-compliance-101

hxxps[:]//www[.]itgovernanceusa[.]com/cybersecurity-standards

hxxps[:]//www[.]linkedin[.]com/pulse/dangers-using-personal-email-work-partners-plus

hxxps[:]//www[.]metacompliance[.]com/lp/ultimate-guide-phishing

[1] hxxps[:]//www[.]metacompliance[.]com/lp/ultimate-guide-phishing

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rachel Resnekov
Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
David Ison
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI