What you need to know about FAA Security Protection Regulations 2024
04
Sep 2024
This blog gives an overview of the proposed FAA regulations for safeguarding aviation systems and their cyber-physical networks. Read more to discover key points, challenges, and potential solutions for each use case.
Overview of FAA Rules 2024
Objective
The goal of the Federal Aviation Administration amended rules is to create new design standards that protect airplane systems from intentional unauthorized electronic interactions (IUEI), which can pose safety risks. The timely motivation for this goal is due to the ongoing trend in aircraft design, which features a growing integration of airplane, engine, and propeller systems, along with expanded connectivity to both internal and external data networks and services.
“This proposed rulemaking would impose new design standards to address cybersecurity threats for transport category airplanes, engines, and propellers. The intended effect of this proposed action is to standardize the FAA’s criteria for addressing cybersecurity threats, reducing certification costs and time while maintaining the same level of safety provided by current special conditions.” (1)
Background
Increasing integration of aircraft systems with internal and external networks raises cybersecurity vulnerability concerns.
Key vulnerabilities include:
Field Loadable Software
Maintenance laptops
Public networks (e.g., Internet)
Wireless sensors
USB devices
Satellite communications
Portable devices and flight bags
Requirements for Applicants
Applicants seeking design approval must:
Provide isolation or protection from unauthorized access
Prevent inadvertent or malicious changes to aircraft systems
Establish procedures to maintain cybersecurity protections
Purpose
“These changes would introduce type certification and continued airworthiness requirements to protect the equipment, systems, and networks of transport category airplanes, engines, and propellers against intentional unauthorized electronic interactions (IUEI)1 that could create safety hazards. Design approval applicants would be required to identify, assess, and mitigate such hazards, and develop Instructions for Continued Airworthiness (ICA) that would ensure such protections continue in service.” (1)
Key points:
Introduce new design standards to address cybersecurity threats for transport category airplanes, engines, and propellers.
Aim to reduce certification costs and time while maintaining safety levels similar to current special conditions
Applicant Responsibilities for Identifying, Assessing, and Mitigating IUEI Risks
The proposed rule requires applicants to safeguard airplanes, engines, and propellers from intentional unauthorized electronic interactions (IUEI). To do this, they must:
Identify and assess risks: Find and evaluate any potential electronic threats that could harm safety.
Mitigate risks: Take steps to prevent these threats from causing problems, ensuring the aircraft remain safe and functional.
Let’s break down each of the requirements:
Performing risk analysis
“For such identification and assessment of security risk, the applicant would be required to perform a security risk analysis to identify all threat conditions associated with the system, architecture, and external or internal interfaces.”(3)
Challenge
The complexity and variety of OT devices make it difficult and time-consuming to identify and associate CVEs with assets. Security teams face several challenges:
Prioritization Issues: Sifting through extensive CVE lists to prioritize efforts is a struggle.
Patch Complications: Finding corresponding patches is complicated by manufacturer delays and design flaws.
Operational Constraints: Limited maintenance windows and the need for continuous operations make it hard to address vulnerabilities, often leaving them unresolved for years.
Inadequate Assessments: Standard CVE assessments may not fully capture the risks associated with increased connectivity, underscoring the need for a contextualized risk assessment approach.
This highlights the need for a more effective and tailored approach to managing vulnerabilities in OT environments.
Assessing severity of risks
“The FAA would expect such risk analysis to assess the severity of the effect of threat conditions on associated assets (system, architecture, etc.), consistent with the means of compliance the applicant has been using to meet the FAA’s special conditions on this topic.” (3)
Challenge
As shown by the MITRE ATT&CK® Techniques for ICS matrices, threat actors can exploit many avenues beyond just CVEs. To effectively defend against these threats, security teams need a broader perspective, considering lateral movement and multi-stage attacks.
Challenges in Vulnerability Management (VM) cycles include:
Initiation: VM cycles often start with email updates from the Cybersecurity and Infrastructure Security Agency (CISA), listing new CVEs from the NIST database.
Communication: Security practitioners must survey and forward CVE lists to networking teams at facilities that might be running the affected assets. Responses from these teams are inconsistent, leading vulnerability managers to push patches that may not fit within limited maintenance windows.
Asset Tracking: At many OT locations, determining if a company is running a specific firmware version can be extremely time-consuming. Teams often rely on spreadsheets and must perform manual checks by physically visiting production floors ("sneaker-netting").
Coordination: Plant engineers and centralized security teams must exchange information to validate asset details and manually score vulnerabilities, further complicating and delaying remediation efforts.
Determine likelihood of exploitation
“Such assessment would also need to analyze these vulnerabilities for the likelihood of exploitation.” (3)
Challenge
Even when a vulnerability is identified, its actual impact can vary significantly based on the specific configurations, processes, and technologies in use within the organization. This creates challenges for OT security practitioners:
Risk Assessment: Accurately assessing and prioritizing the risk becomes difficult without a clear understanding of how the vulnerability affects their unique systems.
Decision-Making: Practitioners may struggle to determine whether immediate action is necessary, balancing the risk of operational downtime against the need for security.
Potential Consequences: This uncertainty can lead to either leaving critical systems exposed or causing unnecessary disruptions by applying measures that aren't truly needed.
This complexity underscores the challenge of making informed, timely decisions in OT security environments.
Vulnerability mitigation
“The proposed regulation would then require each applicant to 'mitigate' the vulnerabilities, and the FAA expects such mitigation would occur through the applicant’s installation of single or multilayered protection mechanisms or process controls to ensure functional integrity, i.e., protection.” (3)
Challenge
OT security practitioners face a constant challenge in balancing security needs with the requirement to maintain operational uptime. In many OT environments, especially in critical infrastructure, applying security patches can be risky:
Risk of Downtime: Patching can disrupt essential processes, leading to significant financial losses or even safety hazards.
Operational Continuity vs. Security: Practitioners often prioritize operational continuity, sometimes delaying timely security updates.
Alternative Strategies: To protect systems without direct patching, they must implement compensating controls, further complicating security efforts.
This delicate balance between security and uptime adds complexity to the already challenging task of securing OT environments.
Establishing procedures/playbooks
“Finally, each applicant would be required to include the procedures within their instructions for continued airworthiness necessary to maintain such protections.” (3)
Challenge
SOC teams typically have a lag before their response, leading to a higher dwell time and bigger overall costs. On average, only 15% of the total cost of ransomware is affiliated with the ransom itself (2). The rest is cost from business interruption. This means it's crucial that organizations can respond and recover earlier.
Darktrace / OT enabling compliance and enhanced cybersecurity
Darktrace's OT solution addresses the complex challenges of cybersecurity compliance in Operational Technology (OT) environments by offering a comprehensive approach to risk management and mitigation.
Key risk management features include:
Contextualized Risk Analysis: Darktrace goes beyond traditional vulnerability scoring, integrating IT, OT, and CVE data with MITRE techniques to map critical attack paths. This helps in identifying and prioritizing vulnerabilities based on their exposure, difficulty of exploitation, and network impact.
Guidance on Remediation: When patches are unavailable, Darktrace provides alternative strategies to bolster defenses around vulnerable assets, ensuring unpatched systems are not left exposed—a critical need in OT environments where operational continuity is essential.
AI-Driven Adaptability: Darktrace's AI continuously adapts to your organization as it grows; refining incident response playbooks bespoke to your environment in real-time. This ensures that security teams have the most up-to-date, tailored strategies, reducing response times and minimizing the impact of security incidents.
Ready to learn more?
Darktrace / OT doesn’t just offer risk management capabilities. It is the only solution that leverages Self-Learning AI to understand your normal business operations, allowing you to detect and stop insider, known, unknown, and zero-day threats at scale.
Dive deeper into how Darktrace / OT secures critical infrastructure organizations with in-depth insights on its advanced capabilities. Download the Darktrace / OT Solution Brief to explore the technology behind its AI-driven protection and see how it can transform your OT security strategy.
Oops! Something went wrong while submitting the form.
Newsletter
Stay ahead of threats with the Darktrace blog newsletter
Get the latest insights from the cybersecurity landscape, including threat trends, incident analysis, and the latest Darktrace product developments – delivered directly to your inbox, monthly.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
From Royal to BlackSuit: Understanding the Tactics and Impact of a Sophisticated Ransomware Strain
What is BlackSuit Ransomware?
Since late 2023, Darktrace has detected BlackSuit ransomware infiltrating multiple customer networks in the US. This ransomware has targeted a wide range of industries, including arts, entertainment, real estate, public administration, defense, and social security.
Emerging in May 2023, BlackSuit is believed to be a spinoff of Royal ransomware due to similarities in code and Conti, and most likely consists of Russian and Eastern European hackers [1]. Recorded Future reported that the ransomware had affected 95 organizations worldwide, though the actual number is likely much higher [2]. While BlackSuit does not appear to focus on any particular sector, it has targeted multiple organizations in the healthcare, eduction, IT, government, retail and manufacturing industries [3]. Employing double extortion tactics, BlackSuit not only encrypts files but also steals sensitive data to leverage ransom payments.
BlackSuit has demanded over USD 500 million in ransoms, with the highest individual demand reaching USD 60 million [4]. Notable targets include CDK Global, Japanese media conglomerate Kadokawa, multiple educational institutions, Octapharma Plasma, and the government of Brazil [5][6][7][8].
Darktrace’s Coverage of BlackSuit Ransomware Attack
Case 1, November 2023
The earliest attack on a Darktrace customer by BlackSuit was detected at the start of November 2023. The unusual network activity began on a weekend—a time commonly chosen by ransomware groups to increase their chances of success, as many security teams operate with reduced staff. Darktrace identified indicators of the attackers’ presence on the network for almost two weeks, during which a total of 15 devices exhibited suspicious behavior.
The attack commenced with unusual internal SMB (Server Message Block) connections using a compromised service account. An internal device uploaded an executable (zzza.exe) to a domain controller (DC) and shortly after, wrote a script (socks5.ps1) to another device. According to a Cybersecurity Advisory from the CISA (Cybersecurity and Infrastructure Security Agency, US), the script file was a PowerShell reverse proxy [9].
Approximately an hour and a half later, the device to which the script was written exhibited uncommon WMI (Windows Management Instrumentation) activity. Two hours after receiving the executable file, the DC was observed making an outgoing NTLM request, using PowerShell to remotely execute commands, distributing differently named executable files (<PART OF THE CUSTOMER’S NAME>.exe), and controlling services on other devices.
Eighteen hours after the start of the unusual activity, Darktrace detected another device making repeated connections to “mystuff.bublup[.]com”, which the aforementioned CISA Advisory identifies as a domain used by BlackSuit for data exfiltration [9].
About ten minutes after the suspicious executables were distributed across the network, and less than 24 hours after the start of the unusual activity, file encryption began. A total of ten devices were seen appending the “.blacksuit” extension to files saved on other devices using SMB, as well as writing ransom notes (readme.blacksuit.txt). The file encryption lasted less than 20 minutes.
During this compromise, external connections to endpoints related to ConnectWise’s ScreenConnect remote management tool were also seen from multiple servers, suggesting that the tool was likely being abused for command-and-control (C2) activity. Darktrace identified anomalous connectivity associated with ScreenConnect was seen up to 11 days after the start of the attack.
10 days after the start of the compromise, an account belonging to a manager was detected adding “.blacksuit” extensions to the customer’s Software-a-Service (SaaS) resources while connecting from 173.251.109[.]106. Six minutes after file encryption began, Darktrace flagged the unusual activity and recommended a block. However, since Autonomous Response mode was not enabled, the customer’s security team needed to manually confirm the action. Consequently, suspicious activity continued for about a week after the initial encryption. This included disabling authentication on the account and an unusual Teams session initiated from the suspicious external endpoint 216.151.180[.]147.
Case 2, February 2024
Another BlackSuit compromise occurred at the start of February 2024, when Darktrace identified approximately 50 devices exhibiting ransomware-related activity in another US customer’s environment. Further investigation revealed that a significant number of additional devices had also been compromised. These devices were outside Darktrace’s purview to the customer’s specific deployment configuration. The threat actors managed to exfiltrate around 4 TB of data.
Initial access to the network was gained via a virtual private network (VPN) compromise in January 2024, when suspicious connections from a Romanian IP address were detected. According to CISA, the BlackSuit group often utilizes the services of initial access brokers (IAB)—actors who specialize in infiltrating networks, such as through VPNs, and then selling that unauthorized access to other threat actors [9]. Other initial access vectors include phishing emails, RDP (Remote Desktop Protocol) compromise, and exploitation of vulnerable public-facing applications.
Similar to the first case, the file encryption began at the end of the working week. During this phase of the attack, affected devices were observed encrypting files on other internal devices using two compromised administrator accounts. The encryption activity lasted for approximately six and a half hours. Multiple alerts were sent to the customer from Darktrace’s Security Operations Centre (SOC) team, who began reviewing the activity within four minutes of the start of the file encryption.
In this case, the threat actor utilized SystemBC proxy malware for command and control (C2). A domain controller (DC) was seen connecting to 137.220.61[.]94 on the same day the file encryption took place. The DC was also observed connecting to a ProxyScrape domain around the same time, which is related to the SOCKS5 protocol used by SystemBC. During this compromise, RDP, SSH, and SMB were used for lateral movement within the network.
Signs of threat actors potentially being on the network were observed as early as two days prior to the file encryption. This included unusual internal network scanning via multiple protocols (ICMP, SMB, RDP, etc.), credential brute-forcing, SMB access failures, and anonymous SMBv1 sessions. These activities were traced to IP addresses belonging to two desktop devices in the VPN subnet associated with two regular employee user accounts. Threat actors were seemingly able to exploit at least one of these accounts due to LDAP legacy policies being in place on the customer’s environment.
Case 3, August 2024
The most recently observed BlackSuit compromise occurred in August 2024, when a device was observed attempting to brute-force the credentials of an IT administrator. This activity continued for 11 days.
Once the admin’s account was successfully compromised, network scanning, unusual WMI, and SAMR (Security Account Manager Remote protocol) activity followed. A spike in the use of this account was detected on a Sunday—once again, the attackers seemingly targeting the weekend—when the account was used by nearly 50 different devices.
The compromised admin’s account was exploited for data gathering via SMB, resulting in the movement of 200 GB of data between internal devices in preparation for exfiltration. The files were then archived using the naming convention “*.part<number>.rar”.
Around the same time, Darktrace observed data transfers from 19 internal devices to “bublup-media-production.s3.amazonaws[.]com,” totaling just over 200 GB—the same volume of data gathered internally. Connections to other Bublup domains were also detected. The internal data download and external data transfer activity took approximately 8-9 hours.
Unfortunately, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning any mitigative actions to stop the data gathering or exfiltration required human confirmation.
Once the information was stolen, the threat actor moved on to the final stage of the attack—file encryption. Five internal devices, using either the compromised admin account or connecting via anonymous SMBv1 sessions, were seen encrypting files and writing ransom notes to five other devices on the network. The attempts at file encryption continued for around two hours, but Darktrace’s Autonomous Response capability was able to block the activity and prevent the attack from escalating.
Conclusion
The persistent and evolving threat posed by ransomware like BlackSuit underscores the critical importance of robust cybersecurity measures across all sectors. Since its emergence in 2023, BlackSuit has demonstrated a sophisticated approach to infiltrating networks, leveraging double extortion tactics, and demanding substantial ransoms. The cases highlighted above illustrate the varied methods and persistence of BlackSuit attackers, from exploiting VPN vulnerabilities to abusing remote management tools and targeting off-hours to maximize impact.
Although many similar connection patterns, such as the abuse of Bublup services for data exfiltration or the use of SOCKS5 proxies for C2, were observed during cases investigated by Darktrace, BlackSuit actors are highly sophisticated and tailors their attacks to each target organization. The consequences of a successful attack can be highly disruptive, and remediation efforts can be time-consuming and costly. This includes taking the entire network offline while responding to the incident, restoring encrypted files from backups (if available), dealing with damage to the organization’s reputation, and potential lawsuits.
These BlackSuit ransomware incidents emphasize the need for continuous vigilance, timely updates to security protocols, and the adoption of autonomous response technologies to swiftly counteract such attacks. As ransomware tactics continue to evolve, organizations must remain agile and informed to protect their critical assets and data. By learning from these incidents and enhancing their cybersecurity frameworks, organizations can better defend against the relentless threat of ransomware and ensure the resilience of their operations in an increasingly digital world.
Credit to Signe Zaharka (Principal Cyber Analyst) and Adam Potter (Senior Cyber Analyst)
Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.
Focuses on anomaly detection and behavioral analysis to identify threats
Maps mitigated cases to known, publicly attributed threats for deeper context
Offers guidance on improving security posture to defend against persistent threats
Appendices
Darktrace Model Detections
Anomalous Connection / Data Sent to Rare Domain
Anomalous Connection / High Volume of New or Uncommon Service Control
Anomalous Connection / New or Uncommon Service Control
Anomalous Connection / Rare WinRM Outgoing
Anomalous Connection / SMB Enumeration
Anomalous Connection / Suspicious Activity On High Risk Device
Anomalous Connection / Suspicious Read Write Ratio
Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB
Anomalous Connection / Sustained MIME Type Conversion
.blacksuit - File extension – When encrypting the files, this extension is appended to the filename – High
readme.blacksuit.txt – ransom note - A file demanding cryptocurrency payment in exchange for decrypting the victim's files and not leaking the stolen data – High
mystuff.bublup[.]com, bublup-media-production.s3.amazonaws[.]com – data exfiltration domains related to an organization and project management app that has document sharing functionality – High
137.220.61[.]94:4001 – SystemBC C2 related IP address (this tool is often used by other ransomware groups as well) - Medium
173.251.109[.]106 – IP address seen during a SaaS BlackSuit compromise (during file encryption) – Medium
216.151.180[.]147 – IP address seen during a SaaS BlackSuit compromise (during an unusual Teams session) - Medium
MITRE ATT&CK Mapping
Tactic - Technqiue
Account Manipulation - PERSISTENCE - T1098
Alarm Suppression - INHIBIT RESPONSE FUNCTION - T0878
Application Layer Protocol - COMMAND AND CONTROL - T1071
Automated Collection - COLLECTION - T1119
Block Command Message - INHIBIT RESPONSE FUNCTION - T0803
Block Reporting Message - INHIBIT RESPONSE FUNCTION - T0804
Onomastics Gymnastics: How Darktrace Detects Spoofing and Business Email Compromise in Multi-Name Users
Note: For privacy reasons, actual surnames and email addresses observed in these incidents below have been replaced with fictitious placeholder names, using the common Spanish names “Fulano” and “Mengano”.
Naming conventions
Modeling names and their variants of members of an organization is a critical component to properly detect if those same names and variants are being spoofed by malicious actors. For many predominantly English-speaking organizations, these variants can largely be captured by variants of a person’s given name (e.g. James-Jimmy-Jim) and a consistent, singular surname or family name (e.g. Smith). Naming conventions, however, are far from universal. This piece will review how Darktrace / EMAIL manages the common naming conventions of much of the Spanish-speaking world, and can use its modeling to create high-fidelity detections of multiple types of spoofing attempts.
A brief summary of the common convention across Spain and much of Spanish-speaking America: most people are given one or two given names (e.g. Roberto, Juan, María, Natalia), and their surnames are the first surname of their father, followed by the first surname of their mother. While there are various exceptions to this norm, the below graphic Wikipedia [1][2] highlights the general rule.
Detection of improper name usage
Implicit in the above comment that shortening to one surname follows the convention of using the first surname, shortening to the second surname is often a tell-tale sign of someone unfamiliar with the person or their broader culture. This can be a useful corroborating feature in detecting a spoof attempt – analogous to a spelling error.
In the case of a Spanish customer, this misuse of name shortening contributed to the detection of a spoof attempt trying to solicit a response by impersonating an internal user forwarding information about ‘Data Protection’.
While the limited communication history from the sender and the nature of the text content already marks the mail as suspicious, Darktrace / EMAIL notes the personal name used in the email is similar to a high-value user (‘whale’ to use the terminology of spearphishing). The additional context provided by the detection of the attempted spoof prompted more severe actioning of this email, leading to a ‘Hold’ action instead of a less-severe ‘Unspoof’ action via a banner on the email.
Malicious email properly using both surnames
Misusing the name-shortening convention is not the only way that Darktrace / EMAIL can detect spoofing attempts. In the case of another Spanish customer, Darktrace observed a whale impersonation being sent to 230 users with solicitation content, but no links or attachments. Although the name was modeled internally in the “Surname, Given-name” format, Darktrace identified the spoofing attempt targeting a high-value user and took action, blocking the series of emails from reaching end-user inboxes to prevent unsuspecting users from responding.
In Summary: A case of onomastics gymnastics
The variety in valid usage of human language can be a barrier to evaluating when a given text is benign or malicious. Despite this, Darktrace / EMAIL is designed to manage this variety, as exemplified by the detections of two spoofing attempts seen against organizations using the distinct Spanish-speaking world’s common naming convention. The scope of this design as seen in this onomastic context, extends to a wide range of detections surrounding emails and their behavioral anomalies.
Credit to Roberto Romeu (Principal Cyber Analyst), Justin Torres (Senior Cyber Analyst) and Natalia Sánchez Rocafort (Senior Analyst Consultant).
Discover the most advanced cloud-native AI email security solution to protect your domain and brand while preventing phishing, novel social engineering, business email compromise, account takeover, and data loss.
Gain up to 13 days of earlier threat detection and maximize ROI on your current email security
Experience 20-25% more threat blocking power with Darktrace / EMAIL
Stop the 58% of threats bypassing traditional email security