Blog
/
No items found.
/
September 4, 2024

What you need to know about FAA Security Protection Regulations 2024

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Sep 2024
This blog gives an overview of the proposed FAA regulations for safeguarding aviation systems and their cyber-physical networks. Read more to discover key points, challenges, and potential solutions for each use case.

Overview of FAA Rules 2024

Objective

The goal of the Federal Aviation Administration amended rules is to create new design standards that protect airplane systems from intentional unauthorized electronic interactions (IUEI), which can pose safety risks. The timely motivation for this goal is due to the ongoing trend in aircraft design, which features a growing integration of airplane, engine, and propeller systems, along with expanded connectivity to both internal and external data networks and services.

“This proposed rulemaking would impose new design standards to address cybersecurity threats for transport category airplanes, engines, and propellers. The intended effect of this proposed action is to standardize the FAA’s criteria for addressing cybersecurity threats, reducing certification costs and time while maintaining the same level of safety provided by current special conditions.” (1)

Background

Increasing integration of aircraft systems with internal and external networks raises cybersecurity vulnerability concerns.

Key vulnerabilities include:  

  • Field Loadable Software
  • Maintenance laptops
  • Public networks (e.g., Internet)
  • Wireless sensors
  • USB devices
  • Satellite communications
  • Portable devices and flight bags  

Requirements for Applicants

Applicants seeking design approval must:

  • Provide isolation or protection from unauthorized access
  • Prevent inadvertent or malicious changes to aircraft systems
  • Establish procedures to maintain cybersecurity protections

Purpose

“These changes would introduce type certification and continued airworthiness requirements to protect the equipment, systems, and networks of transport category airplanes, engines, and propellers against intentional unauthorized electronic interactions (IUEI)1 that could create safety hazards. Design approval applicants would be required to identify, assess, and mitigate such hazards, and develop Instructions for Continued Airworthiness (ICA) that would ensure such protections continue in service.” (1)

Key points:

  • Introduce new design standards to address cybersecurity threats for transport category airplanes, engines, and propellers.
  • Aim to reduce certification costs and time while maintaining safety levels similar to current special conditions

Applicant Responsibilities for Identifying, Assessing, and Mitigating IUEI Risks

The proposed rule requires applicants to safeguard airplanes, engines, and propellers from intentional unauthorized electronic interactions (IUEI). To do this, they must:

  1. Identify and assess risks: Find and evaluate any potential electronic threats that could harm safety.
  2. Mitigate risks: Take steps to prevent these threats from causing problems, ensuring the aircraft remain safe and functional.

Let’s break down each of the requirements:

Performing risk analysis

“For such identification and assessment of security risk, the applicant would be required to perform a security risk analysis to identify all threat conditions associated with the system, architecture, and external or internal interfaces.”(3)

Challenge

The complexity and variety of OT devices make it difficult and time-consuming to identify and associate CVEs with assets. Security teams face several challenges:

  • Prioritization Issues: Sifting through extensive CVE lists to prioritize efforts is a struggle.
  • Patch Complications: Finding corresponding patches is complicated by manufacturer delays and design flaws.
  • Operational Constraints: Limited maintenance windows and the need for continuous operations make it hard to address vulnerabilities, often leaving them unresolved for years.
  • Inadequate Assessments: Standard CVE assessments may not fully capture the risks associated with increased connectivity, underscoring the need for a contextualized risk assessment approach.

This highlights the need for a more effective and tailored approach to managing vulnerabilities in OT environments.

Assessing severity of risks

“The FAA would expect such risk analysis to assess the severity of the effect of threat conditions on associated assets (system, architecture, etc.), consistent with the means of compliance the applicant has been using to meet the FAA’s special conditions on this topic.” (3)

Challenge

As shown by the MITRE ATT&CK® Techniques for ICS matrices, threat actors can exploit many avenues beyond just CVEs. To effectively defend against these threats, security teams need a broader perspective, considering lateral movement and multi-stage attacks.

Challenges in Vulnerability Management (VM) cycles include:

  • Initiation: VM cycles often start with email updates from the Cybersecurity and Infrastructure Security Agency (CISA), listing new CVEs from the NIST database.
  • Communication: Security practitioners must survey and forward CVE lists to networking teams at facilities that might be running the affected assets. Responses from these teams are inconsistent, leading vulnerability managers to push patches that may not fit within limited maintenance windows.
  • Asset Tracking: At many OT locations, determining if a company is running a specific firmware version can be extremely time-consuming. Teams often rely on spreadsheets and must perform manual checks by physically visiting production floors ("sneaker-netting").
  • Coordination: Plant engineers and centralized security teams must exchange information to validate asset details and manually score vulnerabilities, further complicating and delaying remediation efforts.

Determine likelihood of exploitation

“Such assessment would also need to analyze these vulnerabilities for the likelihood of exploitation.” (3)

Challenge

Even when a vulnerability is identified, its actual impact can vary significantly based on the specific configurations, processes, and technologies in use within the organization. This creates challenges for OT security practitioners:

  • Risk Assessment: Accurately assessing and prioritizing the risk becomes difficult without a clear understanding of how the vulnerability affects their unique systems.
  • Decision-Making: Practitioners may struggle to determine whether immediate action is necessary, balancing the risk of operational downtime against the need for security.
  • Potential Consequences: This uncertainty can lead to either leaving critical systems exposed or causing unnecessary disruptions by applying measures that aren't truly needed.

This complexity underscores the challenge of making informed, timely decisions in OT security environments.

Vulnerability mitigation

“The proposed regulation would then require each applicant to 'mitigate' the vulnerabilities, and the FAA expects such mitigation would occur through the applicant’s installation of single or multilayered protection mechanisms or process controls to ensure functional integrity, i.e., protection.” (3)

Challenge

OT security practitioners face a constant challenge in balancing security needs with the requirement to maintain operational uptime. In many OT environments, especially in critical infrastructure, applying security patches can be risky:

  • Risk of Downtime: Patching can disrupt essential processes, leading to significant financial losses or even safety hazards.
  • Operational Continuity vs. Security: Practitioners often prioritize operational continuity, sometimes delaying timely security updates.
  • Alternative Strategies: To protect systems without direct patching, they must implement compensating controls, further complicating security efforts.

This delicate balance between security and uptime adds complexity to the already challenging task of securing OT environments.

Establishing procedures/playbooks

“Finally, each applicant would be required to include the procedures within their instructions for continued airworthiness necessary to maintain such protections.” (3)

Challenge

SOC teams typically have a lag before their response, leading to a higher dwell time and bigger overall costs. On average, only 15% of the total cost of ransomware is affiliated with the ransom itself (2). The rest is cost from business interruption. This means it's crucial that organizations can respond and recover earlier. 

Darktrace / OT enabling compliance and enhanced cybersecurity

Darktrace's OT solution addresses the complex challenges of cybersecurity compliance in Operational Technology (OT) environments by offering a comprehensive approach to risk management and mitigation.

Key risk management features include:

  • Contextualized Risk Analysis: Darktrace goes beyond traditional vulnerability scoring, integrating IT, OT, and CVE data with MITRE techniques to map critical attack paths. This helps in identifying and prioritizing vulnerabilities based on their exposure, difficulty of exploitation, and network impact.
  • Guidance on Remediation: When patches are unavailable, Darktrace provides alternative strategies to bolster defenses around vulnerable assets, ensuring unpatched systems are not left exposed—a critical need in OT environments where operational continuity is essential.
  • AI-Driven Adaptability: Darktrace's AI continuously adapts to your organization as it grows; refining incident response playbooks bespoke to your environment in real-time. This ensures that security teams have the most up-to-date, tailored strategies, reducing response times and minimizing the impact of security incidents.

Ready to learn more?  

Darktrace / OT doesn’t just offer risk management capabilities. It is the only solution  
that leverages Self-Learning AI to understand your normal business operations, allowing you to detect and stop insider, known, unknown, and zero-day threats at scale.  

Dive deeper into how Darktrace / OT secures critical infrastructure organizations with in-depth insights on its advanced capabilities. Download the Darktrace / OT Solution Brief to explore the technology behind its AI-driven protection and see how it can transform your OT security strategy.

Curious about how Darktrace / OT enhances aviation security? Explore our customer story on Brisbane Airport to see how our solution is transforming security operations in the aviation sector.  

References

  1. https://research-information.bris.ac.uk/ws/portalfiles/portal/313646831/Catch_Me_if_You_Can.pdf
  1. https://www.bleepingcomputer.com/news/security/ransom-payment-is-roughly-15-percent-of-the-total-cost-of-ransomware-attacks/
  1. https://public-inspection.federalregister.gov/2024-17916.pdf?mod=djemCybersecruityPro&tpl=cs
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Daniel Simonds
Director of Operational Technology
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 28, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI