Blog
/
/
March 12, 2023

Compliance Breach Mitigation

Uncover the significance of compliance in preventing cyber threats and learn strategies for effective breach mitigation in your organization.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rachel Resnekov
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Mar 2023

Compliance is often an afterthought for security teams responding to cyber security incidents, with many organizations seeing compliance issues as “rule breaking employees” rather than legitimate threats to their network. However, even seemingly innocuous compliance breaches can significantly damage a company’s finances and reputation if not properly addressed.

Adhering to cyber security standards and regulatory requirements is essential, but can often result in “tick box compliance” wherein meeting standards does not result in a reduction of non-compliant activity, lacking tangible impact for many organizations. Protecting data is of paramount importance, especially given the implementation of numerous data protection laws concerned with protecting sensitive data, such as Personally Identifiable Information (PII), financial information, and Protected Health Information (PHI). However, many compliance breaches which do not result in data loss go unadressed, inevitably leading to vulnerabilities within the network that are advantageous to threat actors. Darktrace detects compliance issues in real time and escalates them accordingly, using a dedicated compliance model stack. It highlights incidents of concern, from insecure password storage to device updates, ensuring that users adhere to company standards.

Finding ways to prioritize and quickly triage through these compliance issues, rather than focusing on log auditing or more manually intensive processes, can result in immense gains for security teams.  

Darktrace Coverage of Compliance Breaches   

Incident: Outgoing Operational Technology Connection 

Compliance issues in Operational Technology (OT) are difficult to detect using traditional security measures. The OT space faces unique challenges, such as legacy systems, limited visibility, and convergence between OT and Information Technology (IT). Darktrace’s compliance stack includes an OT-specific subset, allowing users to quickly identify and remediate issues as they arise.

In early 2022, Darktrace observed a compliance incident on the network of a customer based in the energy sector when an individual inserted a mobile phone SIM card into the Human-Machine Interface (HMI) of an Industrial Control System (ICS). The HMI proceeded to access several non-compliant external endpoints, including Facebook. Typically IT and OT networks should be air-gapped to keep critical industrial infrastructure protected and operational.

In this case, Darktrace DETECT triggered a compliance model breach (ICS:: OT Compliance External Connection) and the customer was quickly able mitigate the issue before any meaningful harm could be done to the network.

Incident: Personal Email Use in Corporate Setting

The email space contains a litany of compliance standards and is one of the most common places where security standards are breached, with research demonstrating that “91% of all cyber attacks start with a phishing email.”[1]

In late October 2022, Darktrace/Email identified an email from the recipient’s personal address containing a suspicious link. As the user regularly sent emails between their corporate and personal addresses, this freemail address was a known correspondent. However, this personal email address had been compromised and sent a phishing email to the user’s corporate address. Darktrace/Email immediately identified the suspicious link and alerted the customer, recommending that their security team lock the link. Unfortunately, the customer did not have autonomous response actions for Email enabled, so the recipient was able to open the link and input their corporate credentials on the phishing page. 

Not only is Darktrace/Email able to assess and mitigate threats from personal email addresses, it can also identify suspicious links inside these emails that may have evaded traditional security measures by using a known correspondence. By enabling autonomous response actions, Darktrace/Email is able to follow this up by instantaneously locking such links, ensuring they cannot be opened and preventing the account from being compromised.

Incident: Multi-Factor Authentication for SaaS Accounts

A desire for increased efficiency and cost-effectiveness are two of the reasons underpinning the widespread adoption of cloud-based Software-as-a-Service (SaaS) solutions. However, third-party SaaS environments are not always held to the same compliance standards as traditional on-premisis network infrastructure.

Multi-factor Authentication (MFA) in SaaS environments requires users to prove their identity in at least two ways before granting them access to applications. This significantly reduces the risk of compromise,  but it is not a silver-bullet to prevent account compromise and is still not universally adopted as a baseline security practice.

In October 2022, Darktrace observed an unusual login from a rare IP address on the SaaS account of a customer that did not have MFA employed. Following this initial access, the actor created a new rule and sent emails containing suspicious links to several internal recipients. Further investigation revealed that the link directed to a fake Office365 login portal intended to harvest user credentials. Darktrace/Email and RESPOND for Apps worked in tandem to instantaneously detect this suspicious activity and force the user to log out, while alerting the customer’s security team to the incident.  As a security practice, MFA provides an additional but not guaranteed means of protecting companies from internal theft, data loss, and external access from malicious actors, but its effectiveness is contingent on its roll out across a company. Darktrace DETECT and RESPOND provide an autonomous early warning system and additional layer of security to quickly isolate and contain compromised accounts even in the absence of MFA.

Conclusion

Compliance standards are the building blocks for the cyber hygiene of any organization, but in the current cyber security landscape simply adhering to standards is not enough to close gaps from non-compliant behavior. Following up compliance standard obedience supported by additional measures and technology to tackle compliance breaches significantly reduces the risk of compromise and data breaches, in addition to financial and reputational damage. Ensuring compliance issues are not disregarded as background noise by security teams will help to ensure that minor breaches do not escalate and become legitimate threats.

Darktrace’s suite of products provides an additional layer of detection and autonomous response, alerting customers to ongoing compliance issues and preventing them from causing genuine harm or compromise to the network.

Credit to: Rachel Resznekov, Cyber Security Analyst, Roberto Romeu, Senior SOC Analyst 

Appendices

External Sources: 

hxxps[:]//www[.]comptia[.]org/content/articles/what-is-cybersecurity-compliance#\

hxxps[:]//darkcubed[.]com/compliance

hxxps[:]//www[.]zeguro[.]com/blog/cybersecurity-compliance-101

hxxps[:]//www[.]itgovernanceusa[.]com/cybersecurity-standards

hxxps[:]//www[.]linkedin[.]com/pulse/dangers-using-personal-email-work-partners-plus

hxxps[:]//www[.]metacompliance[.]com/lp/ultimate-guide-phishing

[1] hxxps[:]//www[.]metacompliance[.]com/lp/ultimate-guide-phishing

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rachel Resnekov
Cyber Analyst

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI