Explore the key aspects of the NIS2 Directive, the latest EU cyber security legislation coming into effect in 2024. Learn how it impacts AI and security teams.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
John Allen
SVP, Field CISO
Share
The NIS2 Directive requires member states to adopt laws that will improve the cyber resilience of organizations within the EU. It impacts organizations that are “operators of essential services”. Under NIS 1, EU member states could choose what this meant. In an effort to ensure more consistent application, NIS2 has set out its own definition. It eliminates the distinction between operators of essential services and digital service providers from NIS1, instead defining a new list of sectors:
Energy (electricity, district heating and cooling, gas, oil, hydrogen)
Transport (air, rail, water, road)
Banking (credit institutions)
Financial market infrastructures
Health (healthcare providers and pharma companies)
Drinking water (suppliers and distributors)
Digital infrastructure (DNS, TLD registries, telcos, data center providers, etc.)
ICT service providers (B2B): MSSPs and managed service providers
Public administration (central and regional government institutions, as defined per member state)
Space
Postal and courier services
Waste management
Chemicals
Food
Manufacturing of medical devices
Computers and electronics
Machinery and equipment
Motor vehicles, trailers and semi-trailers and other transport equipment
Digital providers (online market places, online search engines, and social networking service platforms) and research organizations.
With these updates, it becomes harder to try and find industry segments not included within the scope. NIS2 represents legally binding cyber security requirements for a significant region and economy. Standout features that have garnered the most attention include the tight timelines associated with notification requirements. Under NIS 2, in-scope entities must submit an initial report or “early warning” to the competent national authority or computer security incident response team (CSIRT) within 24 hours from when the entity became aware of a significant incident. This is a new development from the first iteration of the Directive, which used more vague language of the need to notify authorities “without undue delay”.
Another aspect gaining attention is oversight and regulation – regulators are going to be empowered with significant investigation and supervision powers including on-site inspections.
The stakes are now higher, with the prospect of fines that are capped at €10 million or 2% of an offending organization’s annual worldwide turnover – whichever is greater. Added to that, the NIS2 Directive includes an explicit obligation to hold members of management bodies personally responsible for breaches of their duties to ensure compliance with NIS2 obligations – and members can be held personally liable.
The risk management measures introduced in the Directive are not altogether surprising – they reflect common best practices. Many organizations (especially those that are newly in scope for NIS2) may have to expand their cyber security capabilities, but there’s nothing controversial or alarming in the required measures. For organizations in this situation, there are various tools, best practices, and frameworks they can leverage. Darktrace in particular provides capabilities in the areas of visibility, incident handling, and reporting that can help.
NIS2 and Cyber AI
The use of AI is not an outright requirement within NIS2 – which may be down to lack of knowledge and expertise in the area, and/or the immaturity of the sector. The clue to this might be in the timing: the provisional agreement on the NIS2 text was reached in May 2022 – six months before ChatGPT and other open-source Generative AI tools propelled broader AI technology into the forefront of public consciousness. If the language were drafted today, it's not far-fetched to imagine AI being mentioned much more prominently and perhaps even becoming a requirement.
NIS2 does, however, very clearly recommend that “member states should encourage the use of any innovative technology, including artificial intelligence”[1]. Another section speaks directly to essential and important entities, saying that they should “evaluate their own cyber security capabilities, and where appropriate, pursue the integration of cyber security enhancing technologies, such as artificial intelligence or machine learning systems…”[2]
One of the recitals states that “member states should adopt policies on the promotion of active cyber protection”. Where active cyber protection is defined as “the prevention, detection, monitoring, analysis and mitigation of network security breaches in an active manner.”[3]
From a Darktrace perspective, our self-learning Cyber AI technology is precisely what enables our technology to deliver active cyber protection – protecting organizations and uplifting security teams at every stage of an incident lifecycle – from proactively hardening defenses before an attack is launched, to real-time threat detection and response, through to recovering quickly back to a state of good health.
The visibility provided by Darktrace is vital to understanding the effectiveness of policies and ensuring policy compliance. NIS2 also covers incident handling and business continuity, which Darktrace HEAL addresses through AI-enabled incident response, readiness reports, simulations, and secure collaborations.
Reporting is integral to NIS2 and organizations can leverage Darktrace’s incident reporting features to present the necessary technical details of an incident and provide a jump start to compiling a full report with business context and impact.
What’s next for NIS2
We don’t yet know the details for how EU member states will transpose NIS2 into national law – they have until 17th October 2024 to work this out. The Commission also commits to reviewing the functioning of the Directive every three years. Given how much our overall understanding and appreciation for not only the dangers of AI but also its power (perhaps even necessity in the realm of cyber security) is changing, we may see many member states will leverage the recitals’ references to AI in order to make a strong push if not a requirement that essential and important organizations within their jurisdiction leverage AI.
Organizations are starting to prepare now to meet the forthcoming legislation related to NIS2. Download our CISO’s Guide to NIS2 Preparedness, which includes everything you need to know to get ahead of the directive.
[1] (51) on page 11 [2] (89) on page 17 [3] (57) on page 12
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
UK Cyber Security & Resilience Bill: What Organizations Need to Know
The Government has introduced the UK’s Cyber Security and Resilience Bill (CSRB) to Parliament, which modernises the framework for Critical National Infrastructure first established under the 2018 NIS Regulations. The CSRB broadens the scope of regulated organisations, introduces a faster two-stage incident reporting model, strengthens oversight of supply chain risk and gives the UK government greater agility to make updates through secondary legislation as technology and threats evolve.
Understanding the Canadian Critical Cyber Systems Protection Act
The Canadian federal Government introduced Bill C-8 which would enact the Critical Cyber Systems Protection Act (CCSPA). The CCSPA will formalize baseline cybersecurity duties for operators in federally regulated critical sectors.
Cyber Assessment Framework v4.0 Raises the Bar: 6 Questions every security team should ask about their security posture
A practical guide to the key detection and response updates in CAF v4.0, including anomaly-based detection, machine-led threat hunting, and proactive security posture requirements.
Atomic Stealer: Darktrace’s Investigation of a Growing macOS Threat
The Rise of Infostealers Targeting Apple Users
In a threat landscape historically dominated by Windows-based threats, the growing prevalence of macOS information stealers targeting Apple users is becoming an increasing concern for organizations. Infostealers are a type of malware designed to steal sensitive data from target devices, often enabling attackers to extract credentials and financial data for resale or further exploitation. Recent research identified infostealers as the largest category of new macOS malware, with an alarming 101% increase in the last two quarters of 2024 [1].
What is Atomic Stealer?
Among the most notorious is Atomic macOS Stealer (or AMOS), first observed in 2023. Known for its sophisticated build, Atomic Stealer can exfiltrate a wide range of sensitive information including keychain passwords, cookies, browser data and cryptocurrency wallets.
Originally marketed on Telegram as a Malware-as-a-Service (MaaS), Atomic Stealer has become a popular malware due to its ability to target macOS. Like other MaaS offerings, it includes services like a web panel for managing victims, with reports indicating a monthly subscription cost between $1,000 and $3,000 [2]. Although Atomic Stealer’s original intent was as a standalone MaaS product, its unique capability to target macOS has led to new variants emerging at an unprecedented rate
Even more concerning, the most recent variant has now added a backdoor for persistent access [3]. This backdoor presents a significant threat, as Atomic Stealer campaigns are believed to have reached an around 120 countries. The addition of a backdoor elevates Atomic Stealer to the rare category of backdoor deployments potentially at a global scale, something only previously attributed to nation-state threat actors [4].
This level of sophistication is also evident in the wide range of distribution methods observed since its first appearance; including fake application installers, malvertising and terminal command execution via the ClickFix technique. The ClickFix technique is particularly noteworthy: once the malware is downloaded onto the device, users are presented with what appears to be a legitimate macOS installation prompt. In reality, however, the user unknowingly initiates the execution of the Atomic Stealer malware.
This blog will focus on activity observed across multiple Darktrace customer environments where Atomic Stealer was detected, along with several indicators of compromise (IoCs). These included devices that successfully connected to endpoints associated with Atomic Stealer, those that attempted but failed to establish connections, and instances suggesting potential data exfiltration activity.
Darktrace’s Coverage of Atomic Stealer
As this evolving threat began to spread across the internet in June 2025, Darktrace observed a surge in Atomic Stealer activity, impacting numerous customers in 24 different countries worldwide. Initially, most of the cases detected in 2025 affected Darktrace customers within the Europe, Middle East, and Africa (EMEA) region. However, later in the year, Darktrace began to observe a more even distribution of cases across EMEA, the Americas (AMS), and Asia Pacific (APAC). While multiple sectors were impacted by Atomic Stealer, Darktrace customers in the education sector were the most affected, particularly during September and October, coinciding with the return to school and universities after summer closures. This spike likely reflects increased device usage as students returned and reconnected potentially compromised devices to school and campus environments.
Starting from June, Darktrace detected multiple events of suspicious HTTP activity to external connections to IPs in the range 45.94.47.0/24. Investigation by Darktrace’s Threat Research team revealed several distinct patterns ; HTTP POST requests to the URI “/contact”, identical cURL User Agents and HTTP requests to “/api/tasks/[base64 string]” URIs.
Within one observed customer’s environment in July, Darktrace detected two devices making repeated initiated HTTP connections over port 80 to IPs within the same range. The first, Device A, was observed making GET requests to the IP 45.94.47[.]158 (AS60781 LeaseWeb Netherlands B.V.), targeting the URI “/api/tasks/[base64string]” using the “curl/8.7.2” user agent. This pattern suggested beaconing activity and triggered the ‘Beaconing Activity to External Rare' model alert in Darktrace / NETWORK, with Device A’s Model Event Log showing repeated connections. The IP associated with this endpoint has since been flagged by multiple open-source intelligence (OSINT) vendors as being associated with Atomic Stealer [5].
Figure 1: Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.
Darktrace’s Cyber AI Analyst subsequently launched an investigation into the activity, uncovering that the GET requests resulted in a ‘503 Service Unavailable’ response, likely indicating that the server was temporarily unable to process the requests.
Figure 2: Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.
This unusual activity prompted Darktrace’s Autonomous Response capability to recommend several blocking actions for the device in an attempt to stop the malicious activity. However, as the customer’s Autonomous Response configuration was set to Human Confirmation Mode, Darktrace was unable to automatically apply these actions. Had Autonomous Response been fully enabled, these connections would have been blocked, likely rendering the malware ineffective at reaching its malicious command-and-control (C2) infrastructure.
Figure 3: Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.
In another customer environment in August, Darktrace detected similar IoCs, noting a device establishing a connection to the external endpoint 45.94.47[.]149 (ASN: AS57043 Hostkey B.V.). Shortly after the initial connections, the device was observed making repeated requests to the same destination IP, targeting the URI /api/tasks/[base64string] with the user agent curl/8.7.1, again suggesting beaconing activity. Further analysis of this endpoint after the fact revealed links to Atomic Stealer in OSINT reporting [6].
Figure 4: Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.
As with the customer in the first case, had Darktrace’s Autonomous Response been properly configured on the customer’s network, it would have been able to block connectivity with 45.94.47[.]149. Instead, Darktrace suggested recommended actions that the customer’s security team could manually apply to help contain the attack.
Figure 5: Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.
In the most recent case observed by Darktrace in October, multiple instances of Atomic Stealer activity were seen across one customer’s environment, with two devices communicating with Atomic Stealer C2 infrastructure. During this incident, one device was observed making an HTTP GET request to the IP 45.94.47[.]149 (ASN: AS60781 LeaseWeb Netherlands B.V.). These connections targeted the URI /api/tasks/[base64string, using the user agent curl/8.7.1.
Shortly afterward, the device began making repeated connections over port 80 to the same external IP, 45.94.47[.]149. This activity continued for several days until Darktrace detected the device making an HTTP POST request to a new IP, 45.94.47[.]211 (ASN: AS57043 Hostkey B.V.), this time targeting the URI /contact, again using the curl/8.7.1 user agent. Similar to the other IPs observed in beaconing activity, OSINT reporting later linked this one to information stealer C2 infrastructure [7].
Figure 6: Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.
Further investigation into this customer’s network revealed that similar activity had been occurring as far back as August, when Darktrace detected data exfiltration on a second device. Cyber AI Analyst identified this device making a single HTTP POST connection to the external IP 45.94.47[.]144, another IP with malicious links [8], using the user agent curl/8.7.1 and targeting the URI /contact.
Figure 7: Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.
A deeper investigation into the technical details within the POST request revealed the presence of a file named “out.zip”, suggesting potential data exfiltration.
Figure 8: Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.
Similarly, in another environment, Darktrace was able to collect a packet capture (PCAP) of suspected Atomic Stealer activity, which revealed potential indicators of data exfiltration. This included the presence of the “out.zip” file being exfiltrated via an HTTP POST request, along with data that appeared to contain details of an Electrum cryptocurrency wallet and possible passwords.
Read more about Darktrace’s full deep dive into a similar case where this tactic was leveraged by malware as part of an elaborate cryptocurrency scam.
Figure 9: PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.
Although recent research attributes the “out.zip” file to a new variant named SHAMOS [9], it has also been linked more broadly to Atomic Stealer [10]. Indeed, this is not the first instance where Darktrace has seen the “out.zip” file in cases involving Atomic Stealer either. In a previous blog detailing a social engineering campaign that targeted cryptocurrency users with the Realst Stealer, the macOS version of Realst contained a binary that was found to be Atomic Stealer, and similar IoCs were identified, including artifacts of data exfiltration such as the “out.zip” file.
Conclusion
The rapid rise of Atomic Stealer and its ability to target macOS marks a significant shift in the threat landscape and should serve as a clear warning to Apple users who were traditionally perceived as more secure in a malware ecosystem historically dominated by Windows-based threats.
Atomic Stealer’s growing popularity is now challenging that perception, expanding its reach and accessibility to a broader range of victims. Even more concerning is the emergence of a variant embedded with a backdoor, which is likely to increase its appeal among a diverse range of threat actors. Darktrace’s ability to adapt and detect new tactics and IoCs in real time delivers the proactive defense organizations need to protect themselves against emerging threats before they can gain momentum.
Credit to Isabel Evans (Cyber Analyst), Dylan Hinz (Associate Principal Cyber Analyst) Edited by Ryan Traill (Analyst Content Lead)
How Darktrace is ending email security silos with new capabilities in cross-domain detection, DLP, and native Microsoft integrations
A new era of reputation-aware, unified email security
Darktrace / EMAIL is redefining email defense with new innovations that close email security silos and empower SOC teams to stop multi-stage attacks – without disrupting business operations.
By extending visibility across interconnected domains, Darktrace catches the 17% of threats that leading SEGs miss, including multi-stage attacks like email bombing and cloud platform abuse. Its label-free behavioral DLP protects sensitive data without reliance on manual rules or classification, while DMARC strengthens brand trust and authenticity. With native integrations for Microsoft Defender and Security Copilot, SOC teams can now investigate and respond faster, reducing risk and maintaining operational continuity across the enterprise.
Summary of what’s new:
Cross-domain AI-native detection unifying email, identity, and SaaS
Label-free behavioral DLP for effortless data protection
Microsoft Defender and Security Copilot integrations for streamlined investigation and response
Why email security must evolve
Today’s attacks don’t stop at the inbox. They move across domains – email to identity, SaaS, and network – exploiting the blind spots between disconnected tools. Yet most email security solutions still operate in isolation, unable to see or respond beyond the message itself.
Tool sprawl compounds the issue. The average enterprise manages around 75 security products, and 69% report operational strain as a result. This complexity is counterproductive – and with legacy SEGs failing to adapt to detect threats that exploit human behavior, analysts are left juggling an unwieldy patchwork of fragmented defenses.
The bottom line? Siloed email defenses can’t keep pace with today’s AI-driven, cross domain attacks.
Beyond detection: AI built for modern threats
Darktrace / EMAIL is uniquely designed to catch the threats SEGs miss, powered by Self-Learning AI. It learns the communication patterns of every user – correlating behavioral signals from email, identity, and SaaS – to identify the subtle, context-driven deviations that define advanced social engineering and supply chain attacks.
Unlike tools that rely on static rules or historical attack data, Darktrace’s AI assumes a zero trust posture, treating every interaction as a potential risk. It detects novel threats in real time, including those that exploit trusted relationships or mimic legitimate business processes. And because Darktrace’s technology is natively unified, it delivers precise, coordinated responses that neutralize threats in real time.
Powerful innovations to Darktrace / EMAIL
Improved, multi-domain threat detection and response
With this update, Darktrace reveals multi-domain detection linking behavioral signals across email, identity, and SaaS to uncover advanced attacks. Darktrace leverages its existing agentic platform to understand behavioral deviations in any communication channel and take precise actions regardless of the domain.
This innovation enables customers to:
Correlate behavioral signals across domains to expose cross-channel threats and enable coordinated response
Link email and identity intelligence to neutralize multi-stage attacks, including advanced email bombing campaigns
Detection accuracy is further strengthened through layering with traditional threat intelligence:
Integrated antivirus verdicts improve detection efficacy by adding traditional file scanning
Structured threat intelligence (STIX/TAXII) enriches alerts with global context for faster triage and prioritization
Expanded ecosystem visibility also includes:
Salesforce integration, enabling automatic action on potentially malicious tickets auto-created from emails – accelerating threat response and reducing manual burden
Advancements in label-free DLP
Darktrace is delivering the industry’s first label-free data loss prevention (DLP) solution powered by a proprietary domain specific language model (DSLM).
This update expands DLP to protect against both secrets and personally identifiable information (PII), safeguarding sensitive data without relying on status rules or manual classification. The DSLM is tuned for email/DLP semantics so it understands entities, PII patterns, and message context quickly enough to enforce at send time.
Key enhancements include:
Behaviorally enhanced PII detection that automatically defines over 35+ new categories, including personal, financial, and health data
Added detail to DLP alerts in the UI, showing exactly how and when DLP policies were applied
Enhanced Cyber AI Analyst narratives to explain detection logic, making it easier to investigate and escalate incidents
And for further confidence in outbound mail, discover new updates to DMARC, with support for BIMI logo verification, automatic detection of both MTA-STS and TLS records, and data exports for deeper analysis and reporting. Accessible for all organizations, available now on the Azure marketplace.
Streamlined SOC workflows, with Microsoft-native integrations
This update introduces new integrations that simplify SOC operations, unify visibility, and accelerate response. By embedding directly into the Microsoft ecosystem – with Defender and Security Copilot – analysts gain instant access to correlated insights without switching consoles.
New innovations include:
Unified quarantine management with Microsoft Defender, centralizing containment within the native Microsoft interface and eliminating console hopping
Ability to surface threat insights directly in Copilot via the Darktrace Email Analysis Agent, eliminating data hunting and simplifying investigations
Automatic ticket creation in JIRA when users report suspicious messages
Sandbox analysis integration, enabling payload inspection in isolated environments directly from the Darktrace UI
Committed to innovation
These updates are part of the broader Darktrace release, which also included:
As attackers exploit gaps between tools, the Darktrace ActiveAI Security Platform delivers unified detection, automated investigation, and autonomous response across cloud, endpoint, email, network, and OT. With full-stack visibility and AI-native workflows, Darktrace empowers security teams to detect, understand, and stop novel threats before they escalate.
Join our Live Launch Event
When? December 9, 2025
What will be covered? Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.