Blog
/
/
March 4, 2019

The VR Goldilocks Problem and Value of Continued Recognition

Security and Operations Teams face challenges when it comes to visibility and recognition. Learn more about how we find a solution to the problems!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Mar 2019

First, some context about VR

Security Operations teams face two fundamental challenges when it comes to 'finding bad'.

The first is gaining and maintaining appropriate visibility into what is happening in our environments. Visibility is provided through data (e.g. telemetry, logs). The trinity of data sources for visibility concern accounts/credentials, devices, and network traffic.

The second challenge is getting good recognition within the scope of what is visible. Recognition is fundamentally about what alerting and workflows you can implement and automate in response to activity that is suspicious or malicious.

Visibility and Recognition each have their own different associated issues.

Visibility is a problem about what is and can be generated and either read as telemetry, or logged and stored locally, or shipped to a central platform. The timelines and completeness of what visibility you have can depend on factors such as how much data you can or can't store locally on devices that generate data - and for how long; what your data pipeline and data platform look like (e.g. if you are trying to centralise data for analysis); or the capability of host software agents you have to process certain information locally.

The constraints on visibility sets the bar for factors like coverage, timelines and completeness of what recognition you can achieve. Without visibility, we cannot recognize at all. With limited visibility, what we can recognize may not have much value. With the right visibility, we can still fail to recognise the right things. And with too much recognition, we can quickly overload our senses.

A good example of a technology that offers the opportunity to solve these challenges at the network layer is Darktrace. Their technology provides visibility, from a network traffic perspective, into data that concerns devices and the accounts/credentials associated with them. They then provide recognition on top of this by using Machine Learning (ML) models for anomaly detection. Their models alert on a wide range of activities that may be indicative of threat activity, (e.g. malware execution and command and control, a technical exploit, data exfiltration and so on).

The major advantage they provide, compared to traditional Intrusion Detection Systems (IDS) and other vendors who also use ML for network anomaly detection, is that you can a) adjust the sensitivity of their algorithms and b) build your own recognition for particular patterns of interest. For example, if you want to monitor what connections are made to one or two servers, you can set up alerts for any change to expected patterns. This means you can create and adjust custom recognition based on your enterprise context and tune it easily in response to how context changes over time.

The Goldilocks VR Matrix

Below is what we call the VR Goldilocks Matrix at PBX Group Security. We use it to assess technology, measure our own capability and processes, and ask ourselves hard questions about where we need to focus to get the most value from our budget, (or make cuts / shift investment) if we need to.

In the squares are some examples of what you (maybe) should think about doing if you find yourself there.

Important questions to ask about VR

One of the things about Visibility and Recognition is that it’s not a given they are ‘always on’. Sometimes there are failure modes for visibility (causing a downstream issue with recognition). And sometimes there are failure modes or conditions under which you WANT to pause recognition.

The key questions you must have answers to about this include:

  • Under what conditions might I lose visibility?
  • How would I know if I have?
  • Is that loss a blind spot (i.e. data is lost for a given time period)…
  • …or is it 'a temporal delay’ (e.g. a connection fails and data is batched for moving from A to B but that doesn’t happen for a few hours)?
  • What are the recognitions that might be impacted by either of the above?
  • What is my expectation for the SLA on those recognitions from ‘cause of alert’ to ‘response workflow’?
  • Under what conditions would I be willing to pause recognition, change the workflow for what happens upon recognition, or stop it all together?
  • What is the stacked ranked list of ‘must, should, could’ for all recognition and why?

Alerts. Alerts everywhere.

More often than not, Security Operations teams suffer the costs of wasted time due to noisy alerts from certain data sources. As a consequence, it's more difficult for them to single out malicious behavior as suspicious or benign. The number of alerts that are generated due to out of the box SIEM platform configurations for sources like Web Proxies and Domain Controllers are often excessive, and the cost to tune those rules can also be unpalatable. Therefore, rather than trying to tune alerts, teams might make a call to switch them off until someone can get around to figuring out a better way. There’s no use having hypothetical recognition, but no workflow to act on what is generate (other than compliance).

This is where technologies that use ML can help. There are two basic approaches...

One is to avoid alerting until multiple conditions are met that indicate a high probability of threat activity. In this scenario, rather than alerting on the 1st, 2nd, 3rd and 4th ‘suspicious activities’, you wait until you have a critical mass of indicators, and then you generate one high fidelity alert that has a much greater weighting to be malicious. This requires both a high level of precision and accuracy in alerting, and naturally some trade off in the time that can pass before an alert for malicious activity is generated.

The other is to alert on ‘suspicious actives 1-4' and let an analyst or automated process decide if this merits further investigation. This approach sacrifices accuracy for precision, but provides rapid context on whether one, or multiple, conditions are met that push the machine(s) up the priority list in the triage queue. To solve for the lower level of accuracy, this approach can make decisions about how long to sustain alerting. For example, if a host triggers multiple anomaly detection models, rather than continue to send alerts (and risk the SOC deciding to turn them off), the technology can pause alerts after a certain threshold. If a machine has not been quarantined or taken off the network after 10 highly suspicious behaviors are flagged, there is a reasonable assumption that the analyst will have dug into these and found the activity is legitimate.

Punchline 1: the value of Continued Recognition even when 'not malicious'

The topic of paused detections was raised after a recent joint exercise between PBX Group Security and Darktrace in testing Darktrace’s recognition. After a machine being used by the PBX Red Team breached multiple high priority models on Darktrace, the technology stopped alerting on further activity. This was because the initial alerts would have been severe enough to trigger a SOC workflow. This approach is designed to solve the problem of alert overload on a machine that is behaving anomalously but is not in fact malicious. Rather than having the SOC turn off alerts for that machine (which could later be used maliciously), the alerts are paused.

One of the outcomes of the test was that the PBX Detect team advised they would still want those alerts to exist for context to see what else the machine does (i.e. to understand its pattern of life). Now, rather than pausing alerts, Darktrace is surfacing this to customers to show where a rule is being paused and create an option to continue seeing alerts for a machine that has breached multiple models.

Which leads us on to our next point…

Punchline 2: the need for Atomic Tests for detection

Both Darktrace and Photobox Security are big believers in Atomic Red Team testing, which involves ‘unit tests’ that repeatedly (or at a certain frequency) test a detection using code. Unit tests automate the work of Red Teams when they discovery control strengths (which you want to monitor continuously for uptime) or control gaps (which you want to monitor for when they are closed). You could design atomic tests to launch a series of particular attacks / threat actor actions from one machine in a chained event. Or you could launch different discreet actions from different machines, each of which has no prior context for doing bad stuff. This allows you to scale the sample size for testing what recognition you have (either through ML or more traditional SIEM alerting). Doing this also means you don't have to ask Red Teams to repeat the same tests again, allowing them to focus on different threat paths to achieve objectives.

Mitre Att&ck is an invaluable framework for this. Many vendors are now aligning to Att&ck to show what they can recognize relating to attack TTPs (Tools, Tactics and Procedures). This enables security teams to map what TTPs are relevant to them (e.g. by using threat intel about the campaigns of threat actor groups that are targeting them). Atomic Red Team tests can then be used to assure that expected detections are operational or find gaps that need closing.

If you miss detections, then you know you need to optimise the recognition you have. If you get too many recognitions outside of the atomic test conditions, you either have to accept a high false positive rate because of the nature of the network, or you can tune your detection sensitivity. The opportunities to do this with technology based on ML and anomaly detection are significant, because you can quickly see for new attack types what a unit test tells you about your current detections and that coverage you think you have is 'as expected'.

Punchline 3: collaboration for the win

Using well-structured Red Team exercises can help your organisation and your technology partners learn new things about how we can collectively find and halt evil. They can also help defenders learn more about good assumptions to build into ML models, as well as covering edge cases where alerts have 'business intelligence' value vs ‘finding bad’.

If you want to understand the categorisations of ways that your populations of machines act over time, there is no better way to do it than through anomaly detection and feeding alerts into a system that supports SOC operations as well as knowledge management (e.g. a graph database).

Working like this means that we also help get the most out of the visibility and recognition we have. Security solutions can be of huge help to Network and Operations teams for troubleshooting or answering questions about network architecture. Often, it’s just a shift in perspective that unlocks cross-functional value from investments in security tech and process. Understanding that recognition doesn’t stop with security is another great example of where technologies that let you build your own logic into recognition can make a huge difference above protecting the bottom line, to adding top line value.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Email

/

November 28, 2025

From Amazon to Louis Vuitton: How Darktrace Detects Black Friday Phishing Attacks

Default blog imageDefault blog image

Why Black Friday Drives a Surge in Phishing Attacks

In recent years, Black Friday has shifted from a single day of online retail sales and discounts to an extended ‘Black Friday Week’, often preceded by weeks of online hype. During this period, consumers are inundated with promotional emails and marketing campaigns as legitimate retailers compete for attention.

Unsurprisingly, this surge in legitimate communications creates an ideal environment for threat actors to launch targeted phishing campaigns designed to mimic legitimate retail emails. These campaigns often employ social engineering techniques that exploit urgency, exclusivity, and consumer trust in well-known brands, tactics designed to entice recipients into opening emails and clicking on malicious links.

Additionally, given the seasonal nature of Black Friday and the ever-changing habits of consumers, attackers adopt new tactics and register fresh domains each year, rather than reusing domains previously flagged as spam or phishing endpoints. While this may pose a challenge for traditional email security tools, it presents no such difficulty for Darktrace / EMAIL and its anomaly-based approach.

In the days and weeks leading up to ‘Black Friday’, Darktrace observed a spike in sophisticated phishing campaigns targeting consumers, demonstrating how attackers combine phycological manipulation with technical evasion to bypass basic security checks during this high-traffic period. This blog showcases several notable examples of highly convincing phishing emails detected and contained by Darktrace / EMAIL in mid to late November 2025.

Darktrace’s Black Friday Detections

Brand Impersonation: Deal Watchdogs’ Amazon Deals

The impersonation major online retailers has become a common tactic in retail-focused attacks, none more so than Amazon, which ranked as the fourth most impersonated brand in 2024, only behind Microsoft, Apple, Google, and Facebook [1]. Darktrace’s own research found Amazon to be the most mimicked brand, making up 80% of phishing attacks in its analysis of global consumer brands.

When faced with an email that appears to come from a trusted sender like Amazon, recipients are far more likely to engage, increasing the success rate of these phishing campaigns.

In one case observed on November 16, Darktrace detected an email with the subject line “NOW LIVE: Amazon’s Best Early Black Friday Deals on Gadgets Under $60”. The email was sent to a customer by the sender ‘Deal Watchdogs’, in what appeared to be an attempt to masquerade as a legitimate discount-finding platform. No evidence indicated that the company was legitimate. In fact, the threat actor made no attempt to create a convincing name, and the domain appeared to be generated by a domain generation algorithm (DGA), as shown in Figure 2.

Although the email was sent by ‘Deal Watchdogs’, it attempted to impersonate Amazon by featuring realistic branding, including the Amazon logo and a shade of orange similar to that used by them for the ‘CLICK HERE’ button and headline text.

Figure 1: The contents of the email observed by Darktrace, featuring authentic-looking Amazon branding.

Darktrace identified that the email, marked as urgent by the sender, contained a suspicious link to a Google storage endpoint (storage.googleapis[.]com), which had been hidden by the text “CLICK HERE”. If clicked, the link could have led to a credential harvester or served as a delivery vector for a malicious payload hosted on the Google storage platform.

Fortunately, Darktrace immediately identified the suspicious nature of this email and held it before delivery, preventing recipients from ever receiving or interacting with the malicious content.

Figure 2: Darktrace / EMAIL’s detection of the malicious phishing email sent to a customer.

Around the same time, Darktrace detected a similar email attempting to spoof Amazon on another customer’s network with the subject line “Our 10 Favorite Deals on Amazon That Started Today”, also sent by ‘Deal Watchdogs,’ suggesting a broader campaign.

Analysis revealed that this email originated from the domain petplatz[.]com, a fake marketing domain previously linked to spam activity according to open-source intelligence (OSINT) [2].

Brand Impersonation: Louis Vuitton

A few days later, on November 20, Darktrace / EMAIL detected a phishing email attempting to impersonate the luxury fashion brand Louis Vuitton. At first glance, the email, sent under the name ‘Louis Vuitton’ and titled “[Black Friday 2025] Discover Your New Favorite Louis Vuitton Bag – Elegance Starts Here”, appeared to be a legitimate Black Friday promotion. However, Darktrace’s analysis uncovered several red flags indicating a elaborate brand impersonation attempt.

The email was not sent by Louis Vuitton but by rskkqxyu@bookaaatop[.]ru, a Russia-based domain never before observed on the customer’s network. Darktrace flagged this as suspicious, noting that .ru domains were highly unusual for this recipient’s environment, further reinforcing the likelihood of malicious intent. Subsequent analysis revealed that the domain had only recently registered and was flagged as malicious by multiple OSINT sources [3].

Figure 3: Darktrace / EMAIL’s detection of the malicious email attempting to spoofLouis Vuitton, originating from a suspicious Russia-based domain.

Darktrace further noted that the email contained a highly suspicious link hidden behind the text “View Collection” and “Unsubscribe,” ensuring that any interaction, whether visiting the supposed ‘handbag store’ or attempting to opt out of marketing emails, would direct recipients to the same endpoint. The link resolved to xn--80aaae9btead2a[.]xn--p1ai (топааабоок[.]рф), a domain confirmed as malicious by multiple OSINT sources [4]. At the time of analysis, the domain was inaccessible, likely due to takedown efforts or the short-lived nature of the campaign.

Darktrace / EMAIL blocked this email before it reached customer inboxes, preventing recipients from interacting with the malicious content and averting any disruption.

Figure 4: The suspicious domain linked in the Louis Vuitton phishing email, now defunct.

Too good to be true?

Aside from spoofing well-known brands, threat actors frequently lure consumers with “too good to be true” luxury offers, a trend Darktrace observed in multiple cases throughout November.

In one instance, Darktrace identified an email with the subject line “[Black Friday 2025] Luxury Watches Starting at $250.” Emails contained a malicious phishing link, hidden behind text like “Rolex Starting from $250”, “Shop Now”, and “Unsubscribe”.

Figure 5: Example of a phishing email detected by Darktrace, containing malicious links concealed behind seemingly innocuous text.

Similarly to the Louis Vuitton email campaign described above, this malicious link led to a .ru domain (hxxps://x.wwwtopsalebooks[.]ru/.../d65fg4er[.]html), which had been flagged as malicious by multiple sources [5].

Figure 6: Darktrace / EMAIL’s detection of a malicious email promoting a fake luxury watch store, which was successfully held from recipient inboxes.

If accessed, this domain would redirect users to luxy-rox[.]com, a recently created domain (15 days old at the time of writing) that has also been flagged as malicious by OSINT sources [6]. When visited, the redirect domain displayed a convincing storefront advertising high-end watches at heavily discounted prices.

Figure 7: The fake storefront presented upon visiting the redirectdomain, luxy-rox[.]com.

Although the true intent of this domain could not be confirmed, it was likely a scam site or a credential-harvesting operation, as users were required to create an account to complete a purchase. As of the time or writing, the domain in no longer accessible .

This email illustrates a layered evasion tactic: attackers employed multiple domains, rapid domain registration, and concealed redirects to bypass detection. By leveraging luxury branding and urgency-driven discounts, the campaign sought to exploit seasonal shopping behaviors and entice victims into clicking.

Staying Protected During Seasonal Retail Scams

The investigation into these Black Friday-themed phishing emails highlights a clear trend: attackers are exploiting seasonal shopping events with highly convincing campaigns. Common tactics observed include brand impersonation (Amazon, Louis Vuitton, luxury watch brands), urgency-driven subject lines, and hidden malicious links often hosted on newly registered domains or cloud services.

These campaigns frequently use redirect chains, short-lived infrastructure, and psychological hooks like exclusivity and luxury appeal to bypass user scepticism and security filters. Organizations should remain vigilant during retail-heavy periods, reinforcing user awareness training, link inspection practices, and anomaly-based detection to mitigate these evolving threats.

Credit to Ryan Traill (Analyst Content Lead) and Owen Finn (Cyber Analyst)

Appendices

References

1.        https://keepnetlabs.com/blog/top-5-most-spoofed-brands-in-2024

2.        https://www.virustotal.com/gui/domain/petplatz.com

3.        https://www.virustotal.com/gui/domain/bookaaatop.ru

4.        https://www.virustotal.com/gui/domain/xn--80aaae9btead2a.xn--p1ai

5.        https://www.virustotal.com/gui/url/e2b868a74531cd779d8f4a0e1e610ec7f4efae7c29d8b8ab32c7a6740d770897?nocache=1

6.        https://www.virustotal.com/gui/domain/luxy-rox.com

Indicators of Compromise (IoCs)

IoC – Type – Description + Confidence

petplatz[.]com – Hostname – Spam domain

bookaaatop[.]ru – Hostname – Malicious Domain

xn--80aaae9btead2a[.]xn--p1ai (топааабоок[.]рф) – Hostname - Malicious Domain

hxxps://x.wwwtopsalebooks[.]ru/.../d65fg4er[.]html) – URL – Malicious Domain

luxy-rox[.]com – Hostname -  Malicious Domain

MITRE ATT&CK Mapping  

Tactic – Technique – Sub-Technique  

Initial Access - Phishing – (T1566)  

Continue reading
About the author
Ryan Traill
Analyst Content Lead

Blog

/

Email

/

November 28, 2025

Phishing attacks surge by 620% in the lead-up to Black Friday

Default blog imageDefault blog image

Black Friday deals are rolling in, and so are the phishing scams

As the world gears up for Black Friday and the festive shopping season, inboxes flood with deals and delivery notifications, creating a perfect storm for phishing attackers to strike.

Contributing to the confusion, legitimate brands often rely on similar urgency cues, limited-time offers, and high-volume email campaigns used by scammers, blurring the lines between real deals and malicious lookalikes. While security teams remain extra vigilant during this period, the risk of phishing emails slipping in unnoticed remains high, as does the risk of individuals clicking to take advantage of holiday shopping offers.

Analysis conducted by Darktrace’s global analyst team revealed that phishing attacks taking advantage of Black Friday jumped by 620% in the weeks leading up to the holiday weekend, with the volume of phishing attacks expected to jump a further 20-30% during Black Friday week itself.

First observation: Brand impersonation

Brand impersonation was one of the techniques that stood out, with threat actors creating convincing emails – likely assisted by generative AI – purporting to be from household brands including special offers and promotions.

The week before Thanksgiving (15-21 November) saw 201% more phishing attempts mimicking US retailers than the same week in October, as attackers sought to profit off the back of the busy holiday shopping season. It’s not just about volume, either – attackers are spoofing brands people love to shop with during the holidays. Fake emails that look like they’re from well-known retailers like Macy’s, Walmart, and Target were up by 54% just across last week1. Even so, Amazon is the most impersonated brand, making up 80% of phishing attempts in Darktrace’s analysis of global consumer brands like Apple, Alibaba and Netflix.  

While major brands invest heavily in protecting their organizations and customers from cyber-attacks, impersonation is a complicated area as it falls outside of a brand’s legitimate infrastructure and security remit. Retail brands have a huge attack surface, creating plenty of vectors for impersonation, while fake domains, social profiles, and promotional messages can be created quickly and at scale.

Second observation: Fake marketing domains

One prominent Black Friday phishing campaign observed landing in many inboxes uses fake domains purporting to be from marketing sites, like “Pal.PetPlatz.com” and “Epicbrandmarketing.com”.

These emails tend to operate in one of two ways. Some contain “deals” for luxury items such as Rolex watches or Louis Vuitton handbags, designed to tempt readers into clicking. However, the majority are tied to a made-up brand called Deal Watchdogs, which promotes “can’t-miss” Amazon Black Friday offers – designed to lure readers into acting fast to secure legitimate time-sensitive deals. Any user who clicks a link is taken to a fake Amazon website where they are tricked into inputting sensitive data and payment details.

Third observation: The impact of generative AI

The biggest shift seen in phishing in recent years is how much more convincing scam emails are thanks to generative AI. 27% of phishing emails observed by Darktrace in 2024 contained over 1,000 characters2, suggesting LLM use in their creation. Tools like ChatGPT and Gemini lower the barrier to entry for cyber-criminals, allowing them to create phishing campaigns that humans find it difficult to spot.  

Let’s take a look at a dummy email created by a member of our team without a technical background to illustrate how easy it is to spin up an email that looks and feels like a genuine Black Friday offer. With two prompts, generative AI created a convincing “sale” email that could easily pass as the real thing without requiring any technical skill.

A fake Black Friday deal email created using generative AI, with only two prompts. The image has been pixelated for marketing purposes.

Anyone can now create convincing brand spoofs, and they can do it at scale. That makes it even more important for email users to pause, check the sender, and think before they click.

Why phishing scams hurt consumers and brands

These spoofs don’t just drain shoppers’ bank accounts and grab their personal data. They erode trust, drive people away from real sites, and ultimately hurt brands’ sales. And the fakes keep getting sharper, more convincing, and harder to spot.

Though brands should implement email controls like DMARC to help reduce spoofing, they can’t stop attackers from registering new look-alike domains or using other channels. At the end of the day, human users remain vulnerable to well-crafted scams, particularly when the element of trust from a well-known brand is involved. And while brands can’t prevent all impersonation scams, the fallout can still erode consumer trust and damage their reputation.

In order to limit the impact of these scams, two things need to work together: better education so consumers know when to slow down and look twice, and email security (plus a DMARC solution and an attack surface management tool) that can adapt faster than the attackers – protecting both shoppers and the brands they love.

Tips to stay safe while Black Friday shopping online

On top of retailers implementing robust email security, there are some simple steps shoppers can take to stay safer while shopping this holiday season.

  • Check every website (twice). Scammers make tiny changes you can barely see. They’ll switch Walmart.com for Waimart.com and most people won’t notice. If something looks even slightly off, check the URL carefully and, if you’re unsure, search for reviews of that exact address.
  • Santa keeps the real gifts in the workshop. Don’t just click through from sales emails. Use them as a prompt to log in directly to the official app or site, where any genuine notifications will appear.
  • Look at the payment options. Real retailers usually offer a handful of recognizable ways to pay; if a site pushes only odd methods or upfront transfers, don’t use it.
  • Be skeptical of Christmas miracles. If a deal on a big-ticket item looks too good to be true, it usually is.
  • Leave the rushing to the elves. Countdown timers and “last chance” banners are designed to make you click before you think. Take a breath, double-check the sender and the site, and then decide whether to buy.

Email security you can trust this holiday season

The heightened holiday shopping season shines a spotlight on an uncomfortable reality: now that phishing emails are harder than ever to distinguish from legitimate brand communication, traditional spam filters and Secure Email Gateways struggle to keep up. In order to protect against communication-based attacks, organizations require email security that can evaluate the full context of an email – not just surface-level indicators – and stop malicious messages before they reach inboxes.

Darktrace / EMAIL uses Self-Learning AI to understand the behavior and patterns of every user, so it can detect the subtle inconsistencies that reveal a message isn’t genuine, from shifts in tone and writing style to unexpected links, unfamiliar senders, or off-brand visual cues. By identifying these anomalies automatically – and either holding them entirely, or neutralizing malicious elements – it removes the burden from employees to catch near-imperceptible errors and reinforces protection for the entire organization, from staff to customers to brand reputation.

Join our live broadcast on 9 December, where Darktrace will reveal new, industry-first innovations in email security keeping organizations safe this Christmas – from DMARC to DLP. Sign up to the live launch event now.

For a deeper dive into some specific Black Friday phishing campaigns surfaced by the Darktrace threat analysis team, read the follow-up blog here.

A note on methodology

Insights derive from anonymous live data across 6,500 customers protected by Darktrace / EMAIL. Darktrace created models tracking verified phishing emails that:

  • Explicitly mentioned Black Friday
  • Impersonated US retailers popular during the holiday season (Walmart, Target, Best Buy, Macy's, Old Navy, 1800-Flowers)
  • Impersonated major global brands (Apple, eBay, Netflix, Alibaba and PayPal)

Tracking ran from October 1 to November 21.

References

[1] Based on live tracking of phishing emails spoofing Walmart, Target, Best Buy, Macy's, Old Navy, 1800-Flowers across email inboxes protected by Darktrace.  November 15 – November 21, 2025

[2] Based on analysis of 30.4 million phishing emails between December 21, 2023, and December 18, 2024. Darktrace Annual Threat Report 2024.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI