Blog
/
/
March 4, 2019

The VR Goldilocks Problem and Value of Continued Recognition

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Mar 2019
Security and Operations Teams face challenges when it comes to visibility and recognition. Learn more about how we find a solution to the problems!

First, some context about VR

Security Operations teams face two fundamental challenges when it comes to 'finding bad'.

The first is gaining and maintaining appropriate visibility into what is happening in our environments. Visibility is provided through data (e.g. telemetry, logs). The trinity of data sources for visibility concern accounts/credentials, devices, and network traffic.

The second challenge is getting good recognition within the scope of what is visible. Recognition is fundamentally about what alerting and workflows you can implement and automate in response to activity that is suspicious or malicious.

Visibility and Recognition each have their own different associated issues.

Visibility is a problem about what is and can be generated and either read as telemetry, or logged and stored locally, or shipped to a central platform. The timelines and completeness of what visibility you have can depend on factors such as how much data you can or can't store locally on devices that generate data - and for how long; what your data pipeline and data platform look like (e.g. if you are trying to centralise data for analysis); or the capability of host software agents you have to process certain information locally.

The constraints on visibility sets the bar for factors like coverage, timelines and completeness of what recognition you can achieve. Without visibility, we cannot recognize at all. With limited visibility, what we can recognize may not have much value. With the right visibility, we can still fail to recognise the right things. And with too much recognition, we can quickly overload our senses.

A good example of a technology that offers the opportunity to solve these challenges at the network layer is Darktrace. Their technology provides visibility, from a network traffic perspective, into data that concerns devices and the accounts/credentials associated with them. They then provide recognition on top of this by using Machine Learning (ML) models for anomaly detection. Their models alert on a wide range of activities that may be indicative of threat activity, (e.g. malware execution and command and control, a technical exploit, data exfiltration and so on).

The major advantage they provide, compared to traditional Intrusion Detection Systems (IDS) and other vendors who also use ML for network anomaly detection, is that you can a) adjust the sensitivity of their algorithms and b) build your own recognition for particular patterns of interest. For example, if you want to monitor what connections are made to one or two servers, you can set up alerts for any change to expected patterns. This means you can create and adjust custom recognition based on your enterprise context and tune it easily in response to how context changes over time.

The Goldilocks VR Matrix

Below is what we call the VR Goldilocks Matrix at PBX Group Security. We use it to assess technology, measure our own capability and processes, and ask ourselves hard questions about where we need to focus to get the most value from our budget, (or make cuts / shift investment) if we need to.

In the squares are some examples of what you (maybe) should think about doing if you find yourself there.

Important questions to ask about VR

One of the things about Visibility and Recognition is that it’s not a given they are ‘always on’. Sometimes there are failure modes for visibility (causing a downstream issue with recognition). And sometimes there are failure modes or conditions under which you WANT to pause recognition.

The key questions you must have answers to about this include:

  • Under what conditions might I lose visibility?
  • How would I know if I have?
  • Is that loss a blind spot (i.e. data is lost for a given time period)…
  • …or is it 'a temporal delay’ (e.g. a connection fails and data is batched for moving from A to B but that doesn’t happen for a few hours)?
  • What are the recognitions that might be impacted by either of the above?
  • What is my expectation for the SLA on those recognitions from ‘cause of alert’ to ‘response workflow’?
  • Under what conditions would I be willing to pause recognition, change the workflow for what happens upon recognition, or stop it all together?
  • What is the stacked ranked list of ‘must, should, could’ for all recognition and why?

Alerts. Alerts everywhere.

More often than not, Security Operations teams suffer the costs of wasted time due to noisy alerts from certain data sources. As a consequence, it's more difficult for them to single out malicious behavior as suspicious or benign. The number of alerts that are generated due to out of the box SIEM platform configurations for sources like Web Proxies and Domain Controllers are often excessive, and the cost to tune those rules can also be unpalatable. Therefore, rather than trying to tune alerts, teams might make a call to switch them off until someone can get around to figuring out a better way. There’s no use having hypothetical recognition, but no workflow to act on what is generate (other than compliance).

This is where technologies that use ML can help. There are two basic approaches...

One is to avoid alerting until multiple conditions are met that indicate a high probability of threat activity. In this scenario, rather than alerting on the 1st, 2nd, 3rd and 4th ‘suspicious activities’, you wait until you have a critical mass of indicators, and then you generate one high fidelity alert that has a much greater weighting to be malicious. This requires both a high level of precision and accuracy in alerting, and naturally some trade off in the time that can pass before an alert for malicious activity is generated.

The other is to alert on ‘suspicious actives 1-4' and let an analyst or automated process decide if this merits further investigation. This approach sacrifices accuracy for precision, but provides rapid context on whether one, or multiple, conditions are met that push the machine(s) up the priority list in the triage queue. To solve for the lower level of accuracy, this approach can make decisions about how long to sustain alerting. For example, if a host triggers multiple anomaly detection models, rather than continue to send alerts (and risk the SOC deciding to turn them off), the technology can pause alerts after a certain threshold. If a machine has not been quarantined or taken off the network after 10 highly suspicious behaviors are flagged, there is a reasonable assumption that the analyst will have dug into these and found the activity is legitimate.

Punchline 1: the value of Continued Recognition even when 'not malicious'

The topic of paused detections was raised after a recent joint exercise between PBX Group Security and Darktrace in testing Darktrace’s recognition. After a machine being used by the PBX Red Team breached multiple high priority models on Darktrace, the technology stopped alerting on further activity. This was because the initial alerts would have been severe enough to trigger a SOC workflow. This approach is designed to solve the problem of alert overload on a machine that is behaving anomalously but is not in fact malicious. Rather than having the SOC turn off alerts for that machine (which could later be used maliciously), the alerts are paused.

One of the outcomes of the test was that the PBX Detect team advised they would still want those alerts to exist for context to see what else the machine does (i.e. to understand its pattern of life). Now, rather than pausing alerts, Darktrace is surfacing this to customers to show where a rule is being paused and create an option to continue seeing alerts for a machine that has breached multiple models.

Which leads us on to our next point…

Punchline 2: the need for Atomic Tests for detection

Both Darktrace and Photobox Security are big believers in Atomic Red Team testing, which involves ‘unit tests’ that repeatedly (or at a certain frequency) test a detection using code. Unit tests automate the work of Red Teams when they discovery control strengths (which you want to monitor continuously for uptime) or control gaps (which you want to monitor for when they are closed). You could design atomic tests to launch a series of particular attacks / threat actor actions from one machine in a chained event. Or you could launch different discreet actions from different machines, each of which has no prior context for doing bad stuff. This allows you to scale the sample size for testing what recognition you have (either through ML or more traditional SIEM alerting). Doing this also means you don't have to ask Red Teams to repeat the same tests again, allowing them to focus on different threat paths to achieve objectives.

Mitre Att&ck is an invaluable framework for this. Many vendors are now aligning to Att&ck to show what they can recognize relating to attack TTPs (Tools, Tactics and Procedures). This enables security teams to map what TTPs are relevant to them (e.g. by using threat intel about the campaigns of threat actor groups that are targeting them). Atomic Red Team tests can then be used to assure that expected detections are operational or find gaps that need closing.

If you miss detections, then you know you need to optimise the recognition you have. If you get too many recognitions outside of the atomic test conditions, you either have to accept a high false positive rate because of the nature of the network, or you can tune your detection sensitivity. The opportunities to do this with technology based on ML and anomaly detection are significant, because you can quickly see for new attack types what a unit test tells you about your current detections and that coverage you think you have is 'as expected'.

Punchline 3: collaboration for the win

Using well-structured Red Team exercises can help your organisation and your technology partners learn new things about how we can collectively find and halt evil. They can also help defenders learn more about good assumptions to build into ML models, as well as covering edge cases where alerts have 'business intelligence' value vs ‘finding bad’.

If you want to understand the categorisations of ways that your populations of machines act over time, there is no better way to do it than through anomaly detection and feeding alerts into a system that supports SOC operations as well as knowledge management (e.g. a graph database).

Working like this means that we also help get the most out of the visibility and recognition we have. Security solutions can be of huge help to Network and Operations teams for troubleshooting or answering questions about network architecture. Often, it’s just a shift in perspective that unlocks cross-functional value from investments in security tech and process. Understanding that recognition doesn’t stop with security is another great example of where technologies that let you build your own logic into recognition can make a huge difference above protecting the bottom line, to adding top line value.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Max Heinemeyer
Global Field CISO

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

OT

/

April 4, 2025

Darktrace Named as Market Leader in the 2025 Omdia Market Radar for OT Cybersecurity Platforms

Default blog imageDefault blog image

We are pleased to announce that Darktrace / OT has been named a Market Leader in Omdia’s  2025 Market Radar for OT Cybersecurity Platforms. We believe this highlights our unique capabilities in the OT security market and follows similar recognition from Gartner who recently named Darktrace / OT as the sole Visionary in in the Magic Quadrant for Cyber Physical Systems (CPS) Protection Platforms market.

Historically, IT and OT systems have been managed separately, creating challenges due to the differences of priorities between the two domains. While both value availability, IT emphasizes confidentiality and integrity whereas OT focuses on safety and reliability. Organizations are increasingly converging these systems to reap the benefits of automation, efficiency, and productivity (1).

Omdia’s research highlights that decision makers are increasingly prioritizing comprehensive security coverage, centralized management, and advanced cybersecurity capabilities when selecting OT security solutions (1).

Rising productivity demands have driven the convergence of OT, IT, and cloud-connected systems, expanding attack surfaces and exposing vulnerabilities. Darktrace / OT provides a comprehensive OT security solution, purpose-built for critical infrastructure, offering visibility across OT, IoT, and IT assets, bespoke risk management, and industry-leading threat detection and response powered by Self-Learning AITM.

Figure 1: Omdia vendor overview for OT cybersecurity platforms
Figure 1: Omdia vendor overview for OT cybersecurity platforms

An AI-first approach to OT security  

Many OT security vendors have integrated AI into their offerings, often leveraging machine learning for anomaly detection and threat response. However, only a few have a deep-rooted history in AI, with longstanding expertise shaping their approach beyond surface-level adoption.

The Omdia Market Radar recognizes that Darktrace has extensive background in the AI space:

“Darktrace has invested extensively in AI research to fuel its capabilities since 2013 with 200-plus patent applications, providing anomaly detection with a significant level of customization, helping with SOC productivity and efficiency, streamlining to show what matters for OT.” (1)

Unlike other security approaches that rely on existing threat data, Darktrace / OT achieves this through Self-Learning AI that understands normal business operations, detecting and containing known and unknown threats autonomously, thereby reducing Sec Ops workload and ensuring minimal downtime

This approach extends to incident investigations where an industry-first Cyber AI AnalystTM automatically investigates all relevant threats across IT and OT, prioritizes critical incidents, and then summarizes findings in an easily understandable view—bringing production engineers and security analysts together to communicate and quickly take appropriate action.

Balancing autonomous response with human oversight

In OT environments where uptime is essential, autonomous response technology can be approached with apprehension. However, Darktrace offers customizable response actions that can be set to “human confirmation mode.”

Omdia recognizes that our approach provides customizable options for autonomous response:

“Darktrace’s autonomous response functionality enforces normal, expected behavior. This can be automated but does not need to be from the beginning, and it can be fine-tuned. Alternative step-by-step mitigations are clearly laid out step-by-step and updated based on organizational risk posture and current level of progress.” (1)

This approach allows security and production to keep humans-in-the-loop with pre-defined actions for potential attacks, enforcing normal to contain a threat, and allowing production to continue without disruption.  

Bespoke vulnerability and risk management

In the realm of OT security, asset management takes precedent as one of the key focus points for organizations. With a large quantity of assets to manage, practitioners are overwhelmed with information with no real way to prioritize or apply them to their unique environment.

Darktrace / OT is recognized by Omdia as having:

“Advanced risk management capabilities that showcase metrics on impact, exploit difficulty, and estimated cost of an attack […] Given the nascency of this capability (April 2024), it is remarkably granular in depth and insight.” (1)

Enabling this is Darktrace’s unique approach to AI extends to risk management capabilities for OT. Darktrace / OT understands customers’ unique risks by building a comprehensive and contextualized picture that goes beyond isolated CVE scoring. It combines attack path modeling with MITRE ATT&CK  techniques to provide hardening recommendations regardless of patching availability and gives you a clearer view of the potential impact of an attack from APT groups.

Modular, scalable security for industrial environments

Organizations need flexibility when it comes to OT security, some want a fully integrated IT-OT security stack, while others prefer a segregated approach due to compliance or operational concerns. The Darktrace ActiveAI Security Platform offers integrated security across multiple domains, allowing flexibility and unification across IT and OT security. The platform combines telemetry from all areas of your digital estate to detect and respond to threats, including OT, network, cloud, email, and user identities.

Omdia recognizes Darktrace’s expansive coverage across multiple domains as a key reason why organizations should consider Darktrace / OT:

“Darktrace’s modular and platform, approach offer’s integrated security across multiple domains. It offers the option of Darktrace / OT as a separate platform product for those that want to segregate IT and OT cybersecurity or are not yet in a position to secure both domains in tandem. The deployment of Darktrace’s platform is flexible—with nine different deployment options, including physical on-premises, virtual, cloud, and hybrid.” (1)

With flexible deployment options, Darktrace offers security teams the ability to choose a model that works best for their organization, ensuring that security doesn’t have to be a “one-size-fits-all” approach.

Conclusion: Why Darktrace / OT stands out in Omdia’s evaluation

Omdia’s 2025 Market Radar for OT Cybersecurity Platforms provides a technical-first, vendor-agnostic evaluation, offering critical insights for organizations looking to strengthen their OT security posture. Darktrace’s recognition as a Market Leader reinforces its unique AI-driven approach, flexible deployment options, and advanced risk management capabilities as key differentiators in an evolving threat landscape.

By leveraging Self-Learning AI, autonomous response, and real-world risk analysis, Darktrace / OT enables organizations to detect, investigate, and mitigate threats before they escalate, without compromising operational uptime.

Read the full report here!

References

  1. www.darktrace.com/resources/darktrace-named-a-market-leader-in-the-2025-omdia-market-radar-for-ot-cybersecurity-platforms
Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Cloud

/

April 2, 2025

Fusing Vulnerability and Threat Data: Enhancing the Depth of Attack Analysis

Default blog imageDefault blog image

Cado Security, recently acquired by Darktrace, is excited to announce a significant enhancement to its data collection capabilities, with the addition of a vulnerability discovery feature for Linux-based cloud resources. According to Darktrace’s Annual Threat Report 2024, the most significant campaigns observed in 2024 involved the ongoing exploitation of significant vulnerabilities in internet-facing systems. Cado’s new vulnerability discovery capability further deepens its ability to provide extensive context to security teams, enabling them to make informed decisions about threats, faster than ever.

Deep context to accelerate understanding and remediation

Context is critical when understanding the circumstances surrounding a threat. It can also take many forms – alert data, telemetry, file content, business context (for example asset criticality, core function of the resource), and risk context, such as open vulnerabilities.

When performing an investigation, it is common practice to understand the risk profile of the resource impacted, specifically determining open vulnerabilities and how they may relate to the threat. For example, if an analyst is triaging an alert related to an internet-facing Webserver running Apache, it would greatly benefit the analyst to understand open vulnerabilities in the Apache version that is running, if any of them are exploitable, whether a fix is available, etc. This dataset also serves as an invaluable source when developing a remediation plan, identifying specific vulnerabilities to be prioritised for patching.

Data acquisition in Cado

Cado is the only platform with the ability to perform full forensic captures as well as utilize instant triage collection methods, which is why fusing host-based artifact data with vulnerability data is such an exciting and compelling development.

The vulnerability discovery feature can be run as part of an acquisition – full or triage – as well as independently using a fast ‘Scan only’ mode.

Figure 1: A fast vulnerability scan being performed on the acquired evidence

Once the acquisition has completed, the user will have access to a ‘Vulnerabilities’ table within their investigation, where they are able to view and filter open vulnerabilities (by Severity, CVE ID, Resource, and other properties), as well as pivot to the full Event Timeline. In the Event Timeline, the user will be able to identify whether there is any malicious, suspicious or other interesting activity surrounding the vulnerable package, given the unified timeline presents a complete chronological dataset of all evidence and context collected.

Figure 2: Vulnerabilities discovered on the acquired evidence
Figure 3: Pivot from the Vulnerabilities table to the Event Timeline provides an in-depth view of file and process data associated with the vulnerable package selected. In this example, Apache2.

Future work

In the coming months, we’ll be releasing initial versions of highly anticipated integrations between Cado and Darktrace, including the ability to ingest Darktrace / CLOUD alerts which will automatically trigger a forensic capture (as well as a vulnerability discovery) of the impacted assets.

To learn more about how Cado and Darktrace will combine forces, request a demo today.

Continue reading
About the author
Paul Bottomley
Director of Product Management, Cado
Your data. Our AI.
Elevate your network security with Darktrace AI