Blog
/
/
March 4, 2019

The VR Goldilocks Problem and Value of Continued Recognition

Security and Operations Teams face challenges when it comes to visibility and recognition. Learn more about how we find a solution to the problems!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Mar 2019

First, some context about VR

Security Operations teams face two fundamental challenges when it comes to 'finding bad'.

The first is gaining and maintaining appropriate visibility into what is happening in our environments. Visibility is provided through data (e.g. telemetry, logs). The trinity of data sources for visibility concern accounts/credentials, devices, and network traffic.

The second challenge is getting good recognition within the scope of what is visible. Recognition is fundamentally about what alerting and workflows you can implement and automate in response to activity that is suspicious or malicious.

Visibility and Recognition each have their own different associated issues.

Visibility is a problem about what is and can be generated and either read as telemetry, or logged and stored locally, or shipped to a central platform. The timelines and completeness of what visibility you have can depend on factors such as how much data you can or can't store locally on devices that generate data - and for how long; what your data pipeline and data platform look like (e.g. if you are trying to centralise data for analysis); or the capability of host software agents you have to process certain information locally.

The constraints on visibility sets the bar for factors like coverage, timelines and completeness of what recognition you can achieve. Without visibility, we cannot recognize at all. With limited visibility, what we can recognize may not have much value. With the right visibility, we can still fail to recognise the right things. And with too much recognition, we can quickly overload our senses.

A good example of a technology that offers the opportunity to solve these challenges at the network layer is Darktrace. Their technology provides visibility, from a network traffic perspective, into data that concerns devices and the accounts/credentials associated with them. They then provide recognition on top of this by using Machine Learning (ML) models for anomaly detection. Their models alert on a wide range of activities that may be indicative of threat activity, (e.g. malware execution and command and control, a technical exploit, data exfiltration and so on).

The major advantage they provide, compared to traditional Intrusion Detection Systems (IDS) and other vendors who also use ML for network anomaly detection, is that you can a) adjust the sensitivity of their algorithms and b) build your own recognition for particular patterns of interest. For example, if you want to monitor what connections are made to one or two servers, you can set up alerts for any change to expected patterns. This means you can create and adjust custom recognition based on your enterprise context and tune it easily in response to how context changes over time.

The Goldilocks VR Matrix

Below is what we call the VR Goldilocks Matrix at PBX Group Security. We use it to assess technology, measure our own capability and processes, and ask ourselves hard questions about where we need to focus to get the most value from our budget, (or make cuts / shift investment) if we need to.

In the squares are some examples of what you (maybe) should think about doing if you find yourself there.

Important questions to ask about VR

One of the things about Visibility and Recognition is that it’s not a given they are ‘always on’. Sometimes there are failure modes for visibility (causing a downstream issue with recognition). And sometimes there are failure modes or conditions under which you WANT to pause recognition.

The key questions you must have answers to about this include:

  • Under what conditions might I lose visibility?
  • How would I know if I have?
  • Is that loss a blind spot (i.e. data is lost for a given time period)…
  • …or is it 'a temporal delay’ (e.g. a connection fails and data is batched for moving from A to B but that doesn’t happen for a few hours)?
  • What are the recognitions that might be impacted by either of the above?
  • What is my expectation for the SLA on those recognitions from ‘cause of alert’ to ‘response workflow’?
  • Under what conditions would I be willing to pause recognition, change the workflow for what happens upon recognition, or stop it all together?
  • What is the stacked ranked list of ‘must, should, could’ for all recognition and why?

Alerts. Alerts everywhere.

More often than not, Security Operations teams suffer the costs of wasted time due to noisy alerts from certain data sources. As a consequence, it's more difficult for them to single out malicious behavior as suspicious or benign. The number of alerts that are generated due to out of the box SIEM platform configurations for sources like Web Proxies and Domain Controllers are often excessive, and the cost to tune those rules can also be unpalatable. Therefore, rather than trying to tune alerts, teams might make a call to switch them off until someone can get around to figuring out a better way. There’s no use having hypothetical recognition, but no workflow to act on what is generate (other than compliance).

This is where technologies that use ML can help. There are two basic approaches...

One is to avoid alerting until multiple conditions are met that indicate a high probability of threat activity. In this scenario, rather than alerting on the 1st, 2nd, 3rd and 4th ‘suspicious activities’, you wait until you have a critical mass of indicators, and then you generate one high fidelity alert that has a much greater weighting to be malicious. This requires both a high level of precision and accuracy in alerting, and naturally some trade off in the time that can pass before an alert for malicious activity is generated.

The other is to alert on ‘suspicious actives 1-4' and let an analyst or automated process decide if this merits further investigation. This approach sacrifices accuracy for precision, but provides rapid context on whether one, or multiple, conditions are met that push the machine(s) up the priority list in the triage queue. To solve for the lower level of accuracy, this approach can make decisions about how long to sustain alerting. For example, if a host triggers multiple anomaly detection models, rather than continue to send alerts (and risk the SOC deciding to turn them off), the technology can pause alerts after a certain threshold. If a machine has not been quarantined or taken off the network after 10 highly suspicious behaviors are flagged, there is a reasonable assumption that the analyst will have dug into these and found the activity is legitimate.

Punchline 1: the value of Continued Recognition even when 'not malicious'

The topic of paused detections was raised after a recent joint exercise between PBX Group Security and Darktrace in testing Darktrace’s recognition. After a machine being used by the PBX Red Team breached multiple high priority models on Darktrace, the technology stopped alerting on further activity. This was because the initial alerts would have been severe enough to trigger a SOC workflow. This approach is designed to solve the problem of alert overload on a machine that is behaving anomalously but is not in fact malicious. Rather than having the SOC turn off alerts for that machine (which could later be used maliciously), the alerts are paused.

One of the outcomes of the test was that the PBX Detect team advised they would still want those alerts to exist for context to see what else the machine does (i.e. to understand its pattern of life). Now, rather than pausing alerts, Darktrace is surfacing this to customers to show where a rule is being paused and create an option to continue seeing alerts for a machine that has breached multiple models.

Which leads us on to our next point…

Punchline 2: the need for Atomic Tests for detection

Both Darktrace and Photobox Security are big believers in Atomic Red Team testing, which involves ‘unit tests’ that repeatedly (or at a certain frequency) test a detection using code. Unit tests automate the work of Red Teams when they discovery control strengths (which you want to monitor continuously for uptime) or control gaps (which you want to monitor for when they are closed). You could design atomic tests to launch a series of particular attacks / threat actor actions from one machine in a chained event. Or you could launch different discreet actions from different machines, each of which has no prior context for doing bad stuff. This allows you to scale the sample size for testing what recognition you have (either through ML or more traditional SIEM alerting). Doing this also means you don't have to ask Red Teams to repeat the same tests again, allowing them to focus on different threat paths to achieve objectives.

Mitre Att&ck is an invaluable framework for this. Many vendors are now aligning to Att&ck to show what they can recognize relating to attack TTPs (Tools, Tactics and Procedures). This enables security teams to map what TTPs are relevant to them (e.g. by using threat intel about the campaigns of threat actor groups that are targeting them). Atomic Red Team tests can then be used to assure that expected detections are operational or find gaps that need closing.

If you miss detections, then you know you need to optimise the recognition you have. If you get too many recognitions outside of the atomic test conditions, you either have to accept a high false positive rate because of the nature of the network, or you can tune your detection sensitivity. The opportunities to do this with technology based on ML and anomaly detection are significant, because you can quickly see for new attack types what a unit test tells you about your current detections and that coverage you think you have is 'as expected'.

Punchline 3: collaboration for the win

Using well-structured Red Team exercises can help your organisation and your technology partners learn new things about how we can collectively find and halt evil. They can also help defenders learn more about good assumptions to build into ML models, as well as covering edge cases where alerts have 'business intelligence' value vs ‘finding bad’.

If you want to understand the categorisations of ways that your populations of machines act over time, there is no better way to do it than through anomaly detection and feeding alerts into a system that supports SOC operations as well as knowledge management (e.g. a graph database).

Working like this means that we also help get the most out of the visibility and recognition we have. Security solutions can be of huge help to Network and Operations teams for troubleshooting or answering questions about network architecture. Often, it’s just a shift in perspective that unlocks cross-functional value from investments in security tech and process. Understanding that recognition doesn’t stop with security is another great example of where technologies that let you build your own logic into recognition can make a huge difference above protecting the bottom line, to adding top line value.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author

Blog

/

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

people working and walking in officeDefault blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI