Blog
/
Network
/
August 2, 2023

Darktrace's Detection of Ransomware & Syssphinx

Read how Darktrace identified an attack technique by the threat group, Syssphinx. Learn how Darktrace's quick identification process can spot a threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Aug 2023

Introduction

As the threat of costly cyber-attacks continues represent a real concern to security teams across the threat landscape, more and more organizations are strengthening their defenses with additional security tools to identify attacks and protect their networks. As a result, malicious actors are being forced to adapt their tactics, modify existing variants of malicious software, or utilize entirely new variants.  

Symantec recently released an article about Syssphinx, the financially motivated cyber threat group previously known for their point-of-sale attacks. Syssphinx attempts to deploy ransomware on customer networks via a modified version of their ‘Sardonic’ backdoor. Such activity highlights the ability of threat actors to alter the composition and presentation of payloads, tools, and tactics.

Darktrace recently detected some of the same indicators suggesting a likely Syssphinx compromise within the network of a customer trialing the Darktrace DETECT™ and RESPOND™ products. Despite the potential for variations in the construction of backdoors and payloads used by the group, Darktrace’s anomaly-based approach to threat detection allowed it to stitch together a detailed account of compromise activity and identify the malicious activity prior to disruptive events on the customer’s network.

What is Syssphinx?

Syssphinx is a notorious cyber threat entity known for its financially motivated compromises.  Also referred to as FIN8, Syssphinx has been observed as early as 2016 and is largely known to target private sector entities in the retail, hospitality, insurance, IT, and financial sectors.[1]

Although Syssphinx primarily began focusing on point-of-sale style attacks, the activity associated with the group has more recently incorporated ransomware variants into their intrusions in a potential bid to further extract funds from target organizations.[2]

Syssphinx Sardonic Backdoor

Given this gradual opportunistic incorporation of ransomware, it should not be surprising that Syssphinx has slowly expanded its repertoire of tools.  When primarily performing point-of-sale compromises, the group was known for its use of point-of-sale specific malwares including BadHatch, PoSlurp/PunchTrack, and PowerSniff/PunchBuggy/ShellTea.[3]

However, in a seeming response to updates in detection systems while using previous indicators of compromise (IoCs), Syssphinx began to modify its BadHatch malware.  This resulted in the use of a C++ derived backdoor known as “Sardonic”, which has the ability to aggregate host credentials, spawn additional command sessions, and deliver payloads to compromised devices via dynamic-link library (DLL).[4],[5]

Analysis of the latest version of Sardonic reveals further changes to the malware to elude detection. These shifts include the implementation of the backdoor in the C programming language, and additional over-the-network communication obfuscation techniques. [6]

During the post-exploitation phase, the group tends to rely on “living-off-the-land” tactics, whereby an attacker utilizes tools already present within the organization’s digital environment to avoid detection. Syssphinx seems to utilize system-native tools such as PowerShell and the Windows Management Instrumentation (WMI) interface.[7] It is also not uncommon to see Windows-based vulnerability exploits employed on compromised devices. This has been observed by researchers who have examined previous iterations of Syssphinx backdoors.[8] Syssphinx also appears to exhibit elements of strategic patience and discipline in its operations, with significant time gaps in operations noted by researchers. During this time, it appears likely that updates and tweaks were applied to Syssphinx payloads.

Compromise Details

In late April 2023, Darktrace identified an active compromise on the network of a prospective customer who was trialing Darktrace DETECT+RESPOND. The customer, a retailer in EMEA with hundreds of tracked devices, reached out to the Darktrace Analyst team via the Ask the Expert (ATE) service for support and further investigation, following the encryption of their server and backup data storage in an apparent ransomware attack. Although the encryption events fell outside Darktrace’s purview due to a limited set up of trial appliances, Darktrace was able to directly track early stages of the compromise before exfiltration and encryption events began. If a full deployment had been set up and RESPOND functionality had been configured in autonomous response mode, Darktrace may have helped mitigate such encryption events and would have aided in the early identification of this ransomware attack.

Initial Intrusion and Establishment of Command and Control (C2) Infrastructure

As noted by security researchers, Syssphinx largely relies on social engineering and phishing emails to deliver its backdoor payloads. As there were no Darktrace/Email™ products deployed for this customer, it would be difficult to directly observe the exact time and manner of initial payload delivery related to this compromise. This is compounded by the fact that the customer had only recently began using Darktrace’s products during their trial period. Given the penchant for patience and delay by Syssphinx, it is possible that the intrusion began well before Darktrace had visibility of the organization’s network.

However, beginning on April 30, 2023, at 07:17:31 UTC, Darktrace observed the domain controller dc01.corp.XXXX  making repeated SSL connections to the endpoint 173-44-141-47[.]nip[.]io. In addition to the multiple open-source intelligence (OSINT) flags for this endpoint, the construction of the domain parallels that of the initial domain used to deliver a backdoor, as noted by Symantec in their analysis (37-10-71-215[.]nip[.]io). This activity likely represented the initial beaconing being performed by the compromised device. Additionally, an elevated level of incoming external data over port 443 was observed during this time, which may be associated with the delivery of the Sardonic backdoor payload. Given the unusual use of port 443 to perform SSH connections later seen in the kill chain of this attack, this activity could also parallel the employment of embedded backdoor payloads seen in the latest iteration of the Sardonic backdoor noted by Symantec.

Figure 1: Graph of the incoming external data surrounding the time of the initial establishment of command and control communication for the domain controller. As seen in the graph, the spike in incoming external data during this time may parallel the delivery of Syssphinx Sardonic backdoor.

Regardless, the domain controller proceeded to make repeated connections over port 443 to the noted domain.

Figure 2: Breach event log for the domain controller making repeated connections over port 443 to the rare external destination endpoint in constitute the establishment of C2 communication.

Internal Reconnaissance/Privilege Escalation

Following the establishment of C2 communication, Darktrace detected numerous elements of internal reconnaissance. On Apr 30, 2023, at 22:06:26 UTC, the desktop device desktop_02.corp.XXXX proceeded to perform more than 100 DRSGetNCChanges requests to the aforementioned domain controller. These commands, which are typically implemented over the RPC protocol on the DRSUAPI interface, are frequently utilized in Active Directory sync attacks to copy Active Directory information from domain controllers. Such activity, when not performed by new domain controllers to sync Active Directory contents, can indicate malicious domain or user enumeration, credential compromise or Active Directory enumeration.

Although the affected device made these requests to the previously noted domain controller, which was already compromised, such activity may have further enabled the compromise by allowing the threat actor to transfer these details to a more easily manageable device.

The device performing these DRSGetNCChanges requests would later be seen performing lateral movement activity and making connections to malicious endpoints.

Figure 3: Breach log highlighting the DRS operations performed by the corporate device to the destination domain controller. Such activity is rarely authorized for devices not tagged as administrative or as domain controllers.

Execution and Lateral Movement

At 23:09:53 UTC on April 30, 2023, the original domain server proceeded to make multiple uncommon WMI calls to a destination server on the same subnet (server01.corp.XXXX). Specifically, the device was observed making multiple RPC calls to IWbem endpoints on the server, which included login and ExecMethod (method execution) commands on the destination device. This destination device later proceeded to conduct additional beaconing activity to C2 endpoints and exfiltrate data.

Figure 4: Breach log for the domain controller performing WMI commands to the destination server during the lateral movement phase of the breach.

Similarly, beginning on May 1, 2023, at 00:11:09 UTC, the device desktop_02.corp.XXXX made multiple WMI requests to two additional devices, one server and one desktop, within the same subnet as the original domain controller. During this time, desktop_02.corp.XXXX  also utilized SMBv1, an outdated and typically non-compliant version communication protocol, to write the file rclone.exe to the same two destination devices. Rclone.exe, and its accompanying bat file, is a command-line tool developed by IT provider Rclone, to perform file management tasks. During this time, Darktrace also observed the device reading and deleting an unexpected numeric file on the ADMIN$ of the destination server, which may represent additional defense evasion techniques and tool staging.

Figure 5: Event log highlighting the writing of rclone.exe using the outdated SMBv1 communication protocol.
Figure 6: SMB logs indicating the reading and deletion of numeric string files on ADMIN$ shares of the destination devices during the time of the rclone.exe SMB writes. Such activity may be associated with tool staging and could indicate potential defense evasion techniques.

Given that the net loader sample analyzed by Symantec injects the backdoor into a WmiPrvSE.exe process, the use of WMI operations is not unexpected. Employment of WMI also correlates with the previously mentioned “living-off-the-land” tactics, as WMI services are commonly used for regular network and system administration purposes. Moreover, the staging of rclone.exe, a legitimate file management tool, for data exfiltration underscores attempts to blend into existing and expected network traffic and remain undetected on the customer’s network.

Data Exfiltration and Impact

Initial stages of data exfiltration actually began prior to some of the lateral movement events described above. On April 30, 2023, 23:09:47 the device server01.corp.XXXX, transferred nearly 11 GB of data to 173.44[.]141[.]47, as well as to the rare external IP address 170.130[.]55[.]77, which appears to have served as the main exfiltration destination during this compromise. Furthermore, the host made repeated connections to the same external IP associated with the initial suspicious beaconing activity (173.44[.]141[.]47) over SSL.

While the data exfiltration event unfolded, the device, server01.corp.XXXX, made multiple HTTP requests to 37.10[.]71[.]215, which featured URIs requesting the rclone.exe and rclone.bat files. This IP address was directly involved in the sample analyzed by Symantec. Furthermore, one of the devices that received the SMB file writes of rclone.exe and the WMI commands from desktop_02.corp.XXXX also performed SSL beaconing to endpoints associated with the compromise.

Between 01:20:45 - 03:31:41 UTC on May 1, 2023, a Darktrace detected a series of devices on the network performing a repeated pattern of activity, namely external connectivity followed by suspicious file downloads and external data transfer operations. Specifically, each affected device made multiple HTTP requests to 37.10[.]71[.]215 for rclone files. The devices proceeded to download the executable and/or binary files, and then transfer large amounts of data to the aforementioned endpoints, 170.130[.]55[.]77 and or 173-44-141-47[.]nip[.]io. Although the devices involved in data exfiltration utilized port 443 as a destination port, the connections actually used the SSH protocol. Darktrace recognized this behavior as unusual as port 443 is typically associated with the SSL protocol, while port 22 is reserved for SSH. Therefore, this activity may represent the threat actor’s attempts to remain undetected by security tools.

This unexpected use of SSH over port 443 also correlates with the descriptions of the new Sardonic backdoor according to threat researchers. Further beaconing and exfiltration activity was performed by an additional host one day later whereby the device made suspicious repeated connections to the aforementioned external hosts.

Figure 7: Connection details highlighting the use of port 443 for SSH connections during the exfiltration events.

In total, nine separate devices were involved in this pattern of activity. Five of these devices were labeled as ‘administrative’ devices according to their hostnames. Over the course of the entire exfiltration event, the attackers exfiltrated almost 61 GB of data from the organization’s environment.

Figure 8: Graph showing the levels of external data transfer from a breach device for one day on either side of the breach time. There is a large spike in such activity during the time of the breach that underscores the exfiltration events.

In addition to the individual anomaly detections by DETECT, Darktrace’s Cyber AI Analyst™ launched an autonomous investigation into the unusual behavior carried out by affected devices, connecting and collating multiple security events into one AI Analyst Incident. AI Analyst ensures that Darktrace can recognize and link the individual steps of a wider attack, rather than just identifying isolated incidents. While traditional security tools may mistake individual breaches as standalone activity, Darktrace’s AI allows it to provide unparalleled visibility over emerging attacks and their kill chains. Furthermore, Cyber AI Analyst’s instant autonomous investigations help to save customer security teams invaluable time in triaging incidents in comparison with human teams who would have to commit precious time and resources to conduct similar pattern analysis.

In this specific case, AI Analyst identified 44 separate security events from 18 different devices and was able to tie them together into one incident. The events that made up this AI Analyst Incident included:

  • Possible SSL Command and Control
  • Possible HTTP Command and Control
  • Unusual Repeated Connections
  • Suspicious Directory Replication ServiceActivity
  • Device / New or Uncommon WMI Activity
  • SMB Write of Suspicious File
  • Suspicious File Download
  • Unusual External Data Transfer
  • Unusual External Data Transfer to MultipleRelated Endpoints
Figure 9: Cyber AI Incident log highlighting multiple unusual anomalies and connecting them into one incident.

Had Darktrace RESPOND been enabled in autonomous response mode on the network of this prospective customer, it would have been able to take rapid mitigative action to block the malicious external connections used for C2 communication and subsequent data exfiltration, ideally halting the attack at this stage. As previously discussed, the limited network configuration of this trial customer meant that the encryption events unfortunately took place outside of Darktrace’s scope. When fully configured on a customer environment, Darktrace DETECT can identify such encryption attempts as soon as they occur. Darktrace RESPOND, in turn, would be able to immediately intervene by applying preventative actions like blocking internal connections that may represent file encryption, or limiting potentially compromised devices to a previously established pattern of life, ensuring they cannot carry out any suspicious activity.

Conclusion

Despite the limitations posed by the customer’s trial configuration, Darktrace demonstrated its ability to detect malicious activity associated with Syssphinx and track it across multiple stages of the kill chain.

Darktrace’s ability to identify the early stages of a compromise and various steps of the kill chain, highlights the necessity for machine learning-enabled, anomaly-based detection. In the face of threats such as Syssphinx, that exhibit the propensity to recast backdoor payloads and incorporate on “living-off-the-land” tactics, signatures and rules-based detection may not prove as effective. While Syssphinx and other threat groups will continue to adopt new tools, methods, and techniques, Darktrace’s Self-Learning AI is uniquely positioned to meet the challenge of such threats.

Appendix

DETECT Model Breaches Observed

•      Anomalous Server Activity / Anomalous External Activity from Critical Network Device

•      Anomalous Connection / Anomalous DRSGetNCChanges Operation

•      Device / New or Uncommon WMI Activity

•      Compliance / SMB Drive Write

•      Anomalous Connection / Data Sent to Rare Domain

•      Anomalous Connection / Uncommon 1 GiB Outbound

•      Unusual Activity / Unusual External Data Transfer

•      Unusual Activity / Unusual External Data to New Endpoints

•      Compliance / SSH to Rare External Destination

•      Anomalous Connection / Unusual SMB Version 1 Connectivity

•      Anomalous File / EXE from Rare External Location

•      Anomalous File / Script from Rare External Location

•      Compromise / Suspicious File and C2

•      Device / Initial Breach Chain Compromise

AI Analyst Incidents Observed

•      Possible SSL Command and Control

•      Possible HTTP Command and Control

•      Unusual Repeated Connections

•      Suspicious Directory Replication Service Activity

•      Device / New or Uncommon WMI Activity

•      SMB Write of Suspicious File

•      Suspicious File Download

•      Unusual External Data Transfer

•      Unusual External Data Transfer to Multiple Related Endpoints

IoCs

IoC - Type - Description

37.10[.]71[.]215 – IP – C2 + payload endpoint

173-44-141-47[.]nip[.]io – Hostname – C2 – payload

173.44[.]141[.]47 – IP – C2 + potential payload

170.130[.]55[.]77 – IP – Data exfiltration endpoint

Rclone.exe – Exe File – Common data tool

Rclone.bat – Script file – Common data tool

MITRE ATT&CK Mapping

Command and Control

T1071 - Application Layer Protocol

T1071.001 – Web protocols

T1573 – Encrypted channels

T1573.001 – Symmetric encryption

T1573.002 – Asymmetric encryption

T1571 – Non-standard port

T1105 – Ingress tool transfer

Execution

T1047 – Windows Management Instrumentation

Credential Access

T1003 – OS Credential Dumping

T1003.006 – DCSync

Lateral Movement

T1570 – Lateral Tool Transfer

T1021 - Remote Services

T1021.002 - SMB/Windows Admin Shares

T1021.006 – Windows Remote Management

Exfiltration

T1048 - Exfiltration Over Alternative Protocol

T1048.001 - Exfiltration Over Symmetric Encrypted Non-C2 Protocol

T1048.002 - Exfiltration Over Symmetric Encrypted Non-C2 Protocol

T1041 - Exfiltration Over C2 Channel

References

[1] https://cyberscoop.com/syssphinx-cybercrime-ransomware/

[2] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/Syssphinx-FIN8-backdoor

[3] https://www.bleepingcomputer.com/news/security/fin8-deploys-alphv-ransomware-using-sardonic-malware-variant/

[4] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/Syssphinx-FIN8-backdoor

[5] https://thehackernews.com/2023/07/fin8-group-using-modified-sardonic.html

[6] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/Syssphinx-FIN8-backdoor

[7] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/Syssphinx-FIN8-backdoor

[8] https://www.mandiant.com/resources/blog/windows-zero-day-payment-cards

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI