Blog
/

Inside the SOC

/
August 2, 2023

Darktrace's Detection of Ransomware & Syssphinx

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Aug 2023
Read how Darktrace identified an attack technique by the threat group, Syssphinx. Learn how Darktrace's quick identification process can spot a threat.

Introduction

As the threat of costly cyber-attacks continues represent a real concern to security teams across the threat landscape, more and more organizations are strengthening their defenses with additional security tools to identify attacks and protect their networks. As a result, malicious actors are being forced to adapt their tactics, modify existing variants of malicious software, or utilize entirely new variants.  

Symantec recently released an article about Syssphinx, the financially motivated cyber threat group previously known for their point-of-sale attacks. Syssphinx attempts to deploy ransomware on customer networks via a modified version of their ‘Sardonic’ backdoor. Such activity highlights the ability of threat actors to alter the composition and presentation of payloads, tools, and tactics.

Darktrace recently detected some of the same indicators suggesting a likely Syssphinx compromise within the network of a customer trialing the Darktrace DETECT™ and RESPOND™ products. Despite the potential for variations in the construction of backdoors and payloads used by the group, Darktrace’s anomaly-based approach to threat detection allowed it to stitch together a detailed account of compromise activity and identify the malicious activity prior to disruptive events on the customer’s network.

What is Syssphinx?

Syssphinx is a notorious cyber threat entity known for its financially motivated compromises.  Also referred to as FIN8, Syssphinx has been observed as early as 2016 and is largely known to target private sector entities in the retail, hospitality, insurance, IT, and financial sectors.[1]

Although Syssphinx primarily began focusing on point-of-sale style attacks, the activity associated with the group has more recently incorporated ransomware variants into their intrusions in a potential bid to further extract funds from target organizations.[2]

Syssphinx Sardonic Backdoor

Given this gradual opportunistic incorporation of ransomware, it should not be surprising that Syssphinx has slowly expanded its repertoire of tools.  When primarily performing point-of-sale compromises, the group was known for its use of point-of-sale specific malwares including BadHatch, PoSlurp/PunchTrack, and PowerSniff/PunchBuggy/ShellTea.[3]

However, in a seeming response to updates in detection systems while using previous indicators of compromise (IoCs), Syssphinx began to modify its BadHatch malware.  This resulted in the use of a C++ derived backdoor known as “Sardonic”, which has the ability to aggregate host credentials, spawn additional command sessions, and deliver payloads to compromised devices via dynamic-link library (DLL).[4],[5]

Analysis of the latest version of Sardonic reveals further changes to the malware to elude detection. These shifts include the implementation of the backdoor in the C programming language, and additional over-the-network communication obfuscation techniques. [6]

During the post-exploitation phase, the group tends to rely on “living-off-the-land” tactics, whereby an attacker utilizes tools already present within the organization’s digital environment to avoid detection. Syssphinx seems to utilize system-native tools such as PowerShell and the Windows Management Instrumentation (WMI) interface.[7] It is also not uncommon to see Windows-based vulnerability exploits employed on compromised devices. This has been observed by researchers who have examined previous iterations of Syssphinx backdoors.[8] Syssphinx also appears to exhibit elements of strategic patience and discipline in its operations, with significant time gaps in operations noted by researchers. During this time, it appears likely that updates and tweaks were applied to Syssphinx payloads.

Compromise Details

In late April 2023, Darktrace identified an active compromise on the network of a prospective customer who was trialing Darktrace DETECT+RESPOND. The customer, a retailer in EMEA with hundreds of tracked devices, reached out to the Darktrace Analyst team via the Ask the Expert (ATE) service for support and further investigation, following the encryption of their server and backup data storage in an apparent ransomware attack. Although the encryption events fell outside Darktrace’s purview due to a limited set up of trial appliances, Darktrace was able to directly track early stages of the compromise before exfiltration and encryption events began. If a full deployment had been set up and RESPOND functionality had been configured in autonomous response mode, Darktrace may have helped mitigate such encryption events and would have aided in the early identification of this ransomware attack.

Initial Intrusion and Establishment of Command and Control (C2) Infrastructure

As noted by security researchers, Syssphinx largely relies on social engineering and phishing emails to deliver its backdoor payloads. As there were no Darktrace/Email™ products deployed for this customer, it would be difficult to directly observe the exact time and manner of initial payload delivery related to this compromise. This is compounded by the fact that the customer had only recently began using Darktrace’s products during their trial period. Given the penchant for patience and delay by Syssphinx, it is possible that the intrusion began well before Darktrace had visibility of the organization’s network.

However, beginning on April 30, 2023, at 07:17:31 UTC, Darktrace observed the domain controller dc01.corp.XXXX  making repeated SSL connections to the endpoint 173-44-141-47[.]nip[.]io. In addition to the multiple open-source intelligence (OSINT) flags for this endpoint, the construction of the domain parallels that of the initial domain used to deliver a backdoor, as noted by Symantec in their analysis (37-10-71-215[.]nip[.]io). This activity likely represented the initial beaconing being performed by the compromised device. Additionally, an elevated level of incoming external data over port 443 was observed during this time, which may be associated with the delivery of the Sardonic backdoor payload. Given the unusual use of port 443 to perform SSH connections later seen in the kill chain of this attack, this activity could also parallel the employment of embedded backdoor payloads seen in the latest iteration of the Sardonic backdoor noted by Symantec.

Figure 1: Graph of the incoming external data surrounding the time of the initial establishment of command and control communication for the domain controller. As seen in the graph, the spike in incoming external data during this time may parallel the delivery of Syssphinx Sardonic backdoor.

Regardless, the domain controller proceeded to make repeated connections over port 443 to the noted domain.

Figure 2: Breach event log for the domain controller making repeated connections over port 443 to the rare external destination endpoint in constitute the establishment of C2 communication.

Internal Reconnaissance/Privilege Escalation

Following the establishment of C2 communication, Darktrace detected numerous elements of internal reconnaissance. On Apr 30, 2023, at 22:06:26 UTC, the desktop device desktop_02.corp.XXXX proceeded to perform more than 100 DRSGetNCChanges requests to the aforementioned domain controller. These commands, which are typically implemented over the RPC protocol on the DRSUAPI interface, are frequently utilized in Active Directory sync attacks to copy Active Directory information from domain controllers. Such activity, when not performed by new domain controllers to sync Active Directory contents, can indicate malicious domain or user enumeration, credential compromise or Active Directory enumeration.

Although the affected device made these requests to the previously noted domain controller, which was already compromised, such activity may have further enabled the compromise by allowing the threat actor to transfer these details to a more easily manageable device.

The device performing these DRSGetNCChanges requests would later be seen performing lateral movement activity and making connections to malicious endpoints.

Figure 3: Breach log highlighting the DRS operations performed by the corporate device to the destination domain controller. Such activity is rarely authorized for devices not tagged as administrative or as domain controllers.

Execution and Lateral Movement

At 23:09:53 UTC on April 30, 2023, the original domain server proceeded to make multiple uncommon WMI calls to a destination server on the same subnet (server01.corp.XXXX). Specifically, the device was observed making multiple RPC calls to IWbem endpoints on the server, which included login and ExecMethod (method execution) commands on the destination device. This destination device later proceeded to conduct additional beaconing activity to C2 endpoints and exfiltrate data.

Figure 4: Breach log for the domain controller performing WMI commands to the destination server during the lateral movement phase of the breach.

Similarly, beginning on May 1, 2023, at 00:11:09 UTC, the device desktop_02.corp.XXXX made multiple WMI requests to two additional devices, one server and one desktop, within the same subnet as the original domain controller. During this time, desktop_02.corp.XXXX  also utilized SMBv1, an outdated and typically non-compliant version communication protocol, to write the file rclone.exe to the same two destination devices. Rclone.exe, and its accompanying bat file, is a command-line tool developed by IT provider Rclone, to perform file management tasks. During this time, Darktrace also observed the device reading and deleting an unexpected numeric file on the ADMIN$ of the destination server, which may represent additional defense evasion techniques and tool staging.

Figure 5: Event log highlighting the writing of rclone.exe using the outdated SMBv1 communication protocol.
Figure 6: SMB logs indicating the reading and deletion of numeric string files on ADMIN$ shares of the destination devices during the time of the rclone.exe SMB writes. Such activity may be associated with tool staging and could indicate potential defense evasion techniques.

Given that the net loader sample analyzed by Symantec injects the backdoor into a WmiPrvSE.exe process, the use of WMI operations is not unexpected. Employment of WMI also correlates with the previously mentioned “living-off-the-land” tactics, as WMI services are commonly used for regular network and system administration purposes. Moreover, the staging of rclone.exe, a legitimate file management tool, for data exfiltration underscores attempts to blend into existing and expected network traffic and remain undetected on the customer’s network.

Data Exfiltration and Impact

Initial stages of data exfiltration actually began prior to some of the lateral movement events described above. On April 30, 2023, 23:09:47 the device server01.corp.XXXX, transferred nearly 11 GB of data to 173.44[.]141[.]47, as well as to the rare external IP address 170.130[.]55[.]77, which appears to have served as the main exfiltration destination during this compromise. Furthermore, the host made repeated connections to the same external IP associated with the initial suspicious beaconing activity (173.44[.]141[.]47) over SSL.

While the data exfiltration event unfolded, the device, server01.corp.XXXX, made multiple HTTP requests to 37.10[.]71[.]215, which featured URIs requesting the rclone.exe and rclone.bat files. This IP address was directly involved in the sample analyzed by Symantec. Furthermore, one of the devices that received the SMB file writes of rclone.exe and the WMI commands from desktop_02.corp.XXXX also performed SSL beaconing to endpoints associated with the compromise.

Between 01:20:45 - 03:31:41 UTC on May 1, 2023, a Darktrace detected a series of devices on the network performing a repeated pattern of activity, namely external connectivity followed by suspicious file downloads and external data transfer operations. Specifically, each affected device made multiple HTTP requests to 37.10[.]71[.]215 for rclone files. The devices proceeded to download the executable and/or binary files, and then transfer large amounts of data to the aforementioned endpoints, 170.130[.]55[.]77 and or 173-44-141-47[.]nip[.]io. Although the devices involved in data exfiltration utilized port 443 as a destination port, the connections actually used the SSH protocol. Darktrace recognized this behavior as unusual as port 443 is typically associated with the SSL protocol, while port 22 is reserved for SSH. Therefore, this activity may represent the threat actor’s attempts to remain undetected by security tools.

This unexpected use of SSH over port 443 also correlates with the descriptions of the new Sardonic backdoor according to threat researchers. Further beaconing and exfiltration activity was performed by an additional host one day later whereby the device made suspicious repeated connections to the aforementioned external hosts.

Figure 7: Connection details highlighting the use of port 443 for SSH connections during the exfiltration events.

In total, nine separate devices were involved in this pattern of activity. Five of these devices were labeled as ‘administrative’ devices according to their hostnames. Over the course of the entire exfiltration event, the attackers exfiltrated almost 61 GB of data from the organization’s environment.

Figure 8: Graph showing the levels of external data transfer from a breach device for one day on either side of the breach time. There is a large spike in such activity during the time of the breach that underscores the exfiltration events.

In addition to the individual anomaly detections by DETECT, Darktrace’s Cyber AI Analyst™ launched an autonomous investigation into the unusual behavior carried out by affected devices, connecting and collating multiple security events into one AI Analyst Incident. AI Analyst ensures that Darktrace can recognize and link the individual steps of a wider attack, rather than just identifying isolated incidents. While traditional security tools may mistake individual breaches as standalone activity, Darktrace’s AI allows it to provide unparalleled visibility over emerging attacks and their kill chains. Furthermore, Cyber AI Analyst’s instant autonomous investigations help to save customer security teams invaluable time in triaging incidents in comparison with human teams who would have to commit precious time and resources to conduct similar pattern analysis.

In this specific case, AI Analyst identified 44 separate security events from 18 different devices and was able to tie them together into one incident. The events that made up this AI Analyst Incident included:

  • Possible SSL Command and Control
  • Possible HTTP Command and Control
  • Unusual Repeated Connections
  • Suspicious Directory Replication ServiceActivity
  • Device / New or Uncommon WMI Activity
  • SMB Write of Suspicious File
  • Suspicious File Download
  • Unusual External Data Transfer
  • Unusual External Data Transfer to MultipleRelated Endpoints
Figure 9: Cyber AI Incident log highlighting multiple unusual anomalies and connecting them into one incident.

Had Darktrace RESPOND been enabled in autonomous response mode on the network of this prospective customer, it would have been able to take rapid mitigative action to block the malicious external connections used for C2 communication and subsequent data exfiltration, ideally halting the attack at this stage. As previously discussed, the limited network configuration of this trial customer meant that the encryption events unfortunately took place outside of Darktrace’s scope. When fully configured on a customer environment, Darktrace DETECT can identify such encryption attempts as soon as they occur. Darktrace RESPOND, in turn, would be able to immediately intervene by applying preventative actions like blocking internal connections that may represent file encryption, or limiting potentially compromised devices to a previously established pattern of life, ensuring they cannot carry out any suspicious activity.

Conclusion

Despite the limitations posed by the customer’s trial configuration, Darktrace demonstrated its ability to detect malicious activity associated with Syssphinx and track it across multiple stages of the kill chain.

Darktrace’s ability to identify the early stages of a compromise and various steps of the kill chain, highlights the necessity for machine learning-enabled, anomaly-based detection. In the face of threats such as Syssphinx, that exhibit the propensity to recast backdoor payloads and incorporate on “living-off-the-land” tactics, signatures and rules-based detection may not prove as effective. While Syssphinx and other threat groups will continue to adopt new tools, methods, and techniques, Darktrace’s Self-Learning AI is uniquely positioned to meet the challenge of such threats.

Appendix

DETECT Model Breaches Observed

•      Anomalous Server Activity / Anomalous External Activity from Critical Network Device

•      Anomalous Connection / Anomalous DRSGetNCChanges Operation

•      Device / New or Uncommon WMI Activity

•      Compliance / SMB Drive Write

•      Anomalous Connection / Data Sent to Rare Domain

•      Anomalous Connection / Uncommon 1 GiB Outbound

•      Unusual Activity / Unusual External Data Transfer

•      Unusual Activity / Unusual External Data to New Endpoints

•      Compliance / SSH to Rare External Destination

•      Anomalous Connection / Unusual SMB Version 1 Connectivity

•      Anomalous File / EXE from Rare External Location

•      Anomalous File / Script from Rare External Location

•      Compromise / Suspicious File and C2

•      Device / Initial Breach Chain Compromise

AI Analyst Incidents Observed

•      Possible SSL Command and Control

•      Possible HTTP Command and Control

•      Unusual Repeated Connections

•      Suspicious Directory Replication Service Activity

•      Device / New or Uncommon WMI Activity

•      SMB Write of Suspicious File

•      Suspicious File Download

•      Unusual External Data Transfer

•      Unusual External Data Transfer to Multiple Related Endpoints

IoCs

IoC - Type - Description

37.10[.]71[.]215 – IP – C2 + payload endpoint

173-44-141-47[.]nip[.]io – Hostname – C2 – payload

173.44[.]141[.]47 – IP – C2 + potential payload

170.130[.]55[.]77 – IP – Data exfiltration endpoint

Rclone.exe – Exe File – Common data tool

Rclone.bat – Script file – Common data tool

MITRE ATT&CK Mapping

Command and Control

T1071 - Application Layer Protocol

T1071.001 – Web protocols

T1573 – Encrypted channels

T1573.001 – Symmetric encryption

T1573.002 – Asymmetric encryption

T1571 – Non-standard port

T1105 – Ingress tool transfer

Execution

T1047 – Windows Management Instrumentation

Credential Access

T1003 – OS Credential Dumping

T1003.006 – DCSync

Lateral Movement

T1570 – Lateral Tool Transfer

T1021 - Remote Services

T1021.002 - SMB/Windows Admin Shares

T1021.006 – Windows Remote Management

Exfiltration

T1048 - Exfiltration Over Alternative Protocol

T1048.001 - Exfiltration Over Symmetric Encrypted Non-C2 Protocol

T1048.002 - Exfiltration Over Symmetric Encrypted Non-C2 Protocol

T1041 - Exfiltration Over C2 Channel

References

[1] https://cyberscoop.com/syssphinx-cybercrime-ransomware/

[2] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/Syssphinx-FIN8-backdoor

[3] https://www.bleepingcomputer.com/news/security/fin8-deploys-alphv-ransomware-using-sardonic-malware-variant/

[4] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/Syssphinx-FIN8-backdoor

[5] https://thehackernews.com/2023/07/fin8-group-using-modified-sardonic.html

[6] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/Syssphinx-FIN8-backdoor

[7] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/Syssphinx-FIN8-backdoor

[8] https://www.mandiant.com/resources/blog/windows-zero-day-payment-cards

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Adam Potter
Senior Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

December 11, 2024

/
No items found.

Darktrace’s view on Operation Lunar Peek: Exploitation of Palo Alto firewall devices (CVE 2024-2012 and 2024-9474)

Default blog imageDefault blog image

Introduction: Spike in exploitation and post-exploitation activity affecting Palo Alto firewall devices

As the first line of defense for many organizations, perimeter devices such as firewalls are frequently targeted by threat actors. If compromised, these devices can serve as the initial point of entry to the network, providing access to vulnerable internal resources. This pattern of malicious behavior has become readily apparent within the Darktrace customer base. In 2024, Darktrace Threat Research analysts identified and investigated at least two major campaigns targeting internet-exposed perimeter devices. These included the exploitation of PAN-OS firewall exploitation via CVE 2024-3400 and FortiManager appliances via CVE 2024-47575.

More recently, at the end of November, Darktrace analysts observed a spike in exploitation and post-exploitation activity affecting, once again, Palo Alto firewall devices in the days following the disclosure of the CVE 2024-0012 and CVE-2024-9474 vulnerabilities.

Threat Research analysts had already been investigating potential exploitation of the firewalls’ management interface after Palo Alto published a security advisory (PAN-SA-2024-0015) on November 8. Subsequent analysis of data from Darktrace’s Security Operations Center (SOC) and external research uncovered multiple cases of Palo Alto firewalls being targeted via the likely exploitation of these vulnerabilities since November 13, through the end of the month. Although this spike in anomalous behavior may not be attributable to a single malicious actor, Darktrace Threat Research identified a clear increase in PAN-OS exploitation across the customer base by threat actors likely utilizing the recently disclosed vulnerabilities, resulting in broad patterns of post-exploitation activity.

How did exploitation occur?

CVE 2024-0012 is an authentication bypass vulnerability affecting unpatched versions of Palo Alto Networks Next-Generation Firewalls. The vulnerability resides in the management interface application on the firewalls specifically, which is written in PHP. When attempting to access highly privileged scripts, users are typically redirected to a login page. However, this can be bypassed by supplying an HTTP request where a Palo Alto related authentication header can be set to “off”.  Users can supply this header value to the Nginx reverse proxy server fronting the application which will then send it without any prior processing [1].

CVE-2024-9474 is a privilege escalation vulnerability that allows a PAN-OS administrator with access to the management web interface to execute root-level commands, granting full control over the affected device [2]. When combined, these vulnerabilities enable unauthenticated adversaries to execute arbitrary commands on the firewall with root privileges.

Post-Exploitation Patterns of Activity

Darktrace Threat Research analysts examined potential indicators of PAN-OS software exploitation via CVE 2024-0012 and CVE-2024-9474 during November 2024. The investigation identified three main groupings of post-exploitation activity:

  1. Exploit validation and initial payload retrieval
  2. Command and control (C2) connectivity, potentially featuring further binary downloads
  3. Potential reconnaissance and cryptomining activity

Exploit Validation

Across multiple investigated customers, Darktrace analysts identified likely vulnerable PAN-OS devices conducting external network connectivity to bin services. Specifically, several hosts performed DNS queries for, and HTTP requests to Out-of-Band Application Security Testing (OAST) domains, such as csv2im6eq58ujueonqs0iyq7dqpak311i.oast[.]pro. These endpoints are commonly used by network administrators to harden defenses, but they are increasingly used by threat actors to verify successful exploitation of targeted devices and assess their potential for further compromise. Although connectivity involving OAST domains were prevalent across investigated incidents, this activity was not necessarily the first indicator observed. In some cases, device behavior involving OAST domains also occurred shortly after an initial payload was downloaded.

Darktrace model alert logs detailing the HTTP request to an OAST domain immediately following PAN-OS device compromise.
Figure 1: Darktrace model alert logs detailing the HTTP request to an OAST domain immediately following PAN-OS device compromise.

Initial Payload Retrieval

Following successful exploitation, affected devices commonly performed behaviors indicative of initial payload download, likely in response to incoming remote command execution. Typically, the affected PAN-OS host would utilize the command line utilities curl and Wget, seen via use of user agents curl/7.61.1 and Wget/1.19.5 (linux-gnu), respectively.

In some cases, the use of these command line utilities by the infected devices was considered new behavior. Given the nature of the user agents, interaction with the host shell suggests remote command execution to achieve the outgoing payload requests.

While additional binaries and scripts were retrieved in later stages of the post-exploitation activity in some cases, this set of behaviors and payloads likely represent initial persistence and execution mechanisms that will enable additional functionality later in the kill chain. During the investigation, Darktrace analysts noted the prevalence of shell script payload requests. Devices analyzed would frequently make HTTP requests over the usual destination port 80 using the command line URL utility (curl), as seen in the user-agent field.

The observed URIs often featured requests for text files, such as “1.txt”, or shell scripts such as “y.sh”. Although packet capture (PCAP) samples were unavailable for review, external researchers have noted that the IP address hosting such “1.txt” files (46.8.226[.]75) serves malicious PHP payloads. When examining the contents of the “y.sh” shell script, Darktrace analysts noticed the execution of bash commands to upload a PHP-written web shell on the affected server.

PCAP showing the client request and server response associated with the download of the y.sh script from 45.76.141[.]166. The body content of the HTTP response highlights a shebang command to run subsequent code as bash script. The content is base64 encoded and details PHP script for what appears to be a webshell that will likely be written to the firewall device.
Figure 2: PCAP showing the client request and server response associated with the download of the y.sh script from 45.76.141[.]166. The body content of the HTTP response highlights a shebang command to run subsequent code as bash script. The content is base64 encoded and details PHP script for what appears to be a webshell that will likely be written to the firewall device.

While not all investigated cases saw initial shell script retrieval, affected systems would commonly make an external HTTP connection, almost always via Wget, for the Executable and Linkable Format (ELF) file “/palofd” from the rare external IP  38.180.147[.]18.

Such requests were frequently made without prior hostname lookups, suggesting that the process or script initiating the requests already contained the external IP address. Analysts noticed a consistent SHA1 hash present for all identified instances of “/palofd” downloads (90f6890fa94b25fbf4d5c49f1ea354a023e06510). Multiple open-source intelligence (OSINT) vendors have associated this hash sample with Spectre RAT, a remote access trojan with capabilities including remote command execution, payload delivery, process manipulation, file transfers, and data theft [3][4].

Figure 3: Advanced Search log metrics highlighting details of the “/palofd” file download over HTTP.

Several targeted customer devices were observed initiating TLS/SSL connections to rare external IPs with self-signed TLS certificates following exploitation. Model data from across the Darktrace fleet indicated some overlap in JA3 fingerprints utilized by affected PAN-OS devices engaging in the suspicious TLS activity. Although JA3 hashes alone cannot be used for process attribution, this evidence suggests some correlation of source process across instances of PAN-OS exploitation.

These TLS/SSL sessions were typically established without the specification of a Server Name Indication (SNI) within the TLS extensions. The SNI extension prevents servers from supplying an incorrect certificate to the requesting client when multiple sites are hosted on the same IP. SSL connectivity without SNI specification suggests a potentially malicious running process as most software establishing TLS sessions typically supply this information during the handshake. Although the encrypted nature of the connection prevented further analysis of the payload packets, external sources note that JavaScript content is transmitted during these sessions, serving as initial payloads for the Sliver C2 platform using Wget [5].

C2 Communication and Additional Payloads

Following validation and preliminary post-compromise actions, examined hosts would commonly initiate varying forms of C2 connectivity. During this time, devices were frequently detected making further payload downloads, likely in response to directives set within C2 communications.

Palo Alto firewalls likely exploited via the newly disclosed CVEs would commonly utilize the Sliver C2 platform for external communication. Sliver’s functionality allows for different styles and formatting for communication. An open-source alternative to Cobalt Strike, this framework has been increasingly popular among threat actors, enabling the generation of dynamic payloads (“slivers”) for multiple platforms, including Windows, MacOS, Linux.

These payloads allow operators to establish persistence, spawn new shells, and exfiltrate data. URI patterns and PCAPs analysis yielded evidence of both English word type encoding within Sliver and Gzip formatting.

For example, multiple devices contacted the Sliver-linked IP address 77.221.158[.]154 using HTTP to retrieve Gzip files. The URIs present for these requests follow known Sliver Gzip formatted communication patterns [6]. Investigations yielded evidence of both English word encoding within Sliver, identified through PCAP analysis, and Gzip formatting.

Sample of URIs observed in Advanced Searchhighlighting HTTP requests to 77.221.158[.]154 for Gzip content suggest of Sliver communication.
Figure 4: Sample of URIs observed in Advanced Searchhighlighting HTTP requests to 77.221.158[.]154 for Gzip content suggest of Sliver communication.
PCAP showing English word encoding for Sliver communication observed during post-exploitation C2 activity.
Figure 5: PCAP showing English word encoding for Sliver communication observed during post-exploitation C2 activity.

External connectivity during this phase also featured TCP connection attempts over uncommon ports for common application protocols. For both Sliver and non-Sliver related IP addresses, devices utilized destination ports such as 8089, 3939, 8880, 8084, and 9999 for the HTTP protocol. The use of uncommon destination ports may represent attempts to avoid detection of connectivity to rare external endpoints. Moreover, some external beaconing within included URIs referencing the likely IP of the affected device. Such behavior can suggest the registration of compromised devices with command servers.

Targeted devices also proceeded to download additional payloads from rare external endpoints as beaconing/C2 activity was ongoing. For example, the newly registered domain repositorylinux[.]org (IP: 103.217.145[.]112) received numerous HTTP GET requests from investigated devices throughout the investigation period for script files including “linux.sh” and “cron.sh”. Young domains, especially those that present as similar to known code repositories, tend to host harmful content. Packet captures of the cron.sh file reveal commands within the HTTP body content involving crontab operations, likely to schedule future downloads. Some hosts that engaged in connectivity to the fake repository domain were later seen conducting crypto-mining connections, potentially highlighting the download of miner applications from the domain.

Additional payloads observed during this time largely featured variations of shell scripts, PHP content, and/or executables. Typically, shell scripts direct the device to retrieve additional content from external servers or repositories or contain potential configuration details for subsequent binaries to run on the device. For example, the “service.sh” retrieves a tar-compressed archive, a configuration JSON file as well as a file with the name “solr” from GitHub, potentially associated with the Apache Solr tool used for enterprise search. These could be used for further enumeration of the host and/or the network environment. PHP scripts observed may involve similar web shell functionality and were retrieved from both rare external IPs identified as well by external researchers [7]. Darktrace also detected the download of octet-stream data occurring mid-compromise from an Amazon Web Services (AWS) S3 bucket. Although no outside research confirmed the functionality, additional executable downloads for files such as “/initd”(IP: 178.215.224[.]246) and “/x6” (IP: 223.165.4[.]175) may relate to tool ingress, further Trojan/backdoor functionality, or cryptocurrency mining.

Figure 7: PCAP specifying the HTTP response headers and body content for the service.sh file request. The body content shown includes variable declarations for URLs that will eventually be called by the device shell via bash command.

Reconnaissance and Cryptomining

Darktrace analysts also noticed additional elements of kill chain operations from affected devices after periods of initial exploit activity. Several devices initiated TCP connections to endpoints affiliated with cryptomining pools such as us[.]zephyr[.]herominers[.]com and  xmrig[.]com. Connectivity to these domains indicates likely successful installation of mining software during earlier stages of post-compromise activity. In a small number of instances, Darktrace observed reconnaissance and lateral movement within the time range of PAN-OS exploitation. Firewalls conducted large numbers of internal connectivity attempts across several critical ports related to privileged protocols, including SMB and SSH. Darktrace detected anonymous NTLM login attempts and new usage of potential PAN-related credentials. These behaviors likely constitute attempts at lateral movement to adjacent devices to further extend network compromise impact.

Model alert connection logs detailing the uncommon failed NTLM logins using an anonymous user account following PAN-OS exploitation.
Figure 8: Model alert connection logs detailing the uncommon failed NTLM logins using an anonymous user account following PAN-OS exploitation.

Conclusion

Darktrace Threat Research and SOC analysts increasingly detect spikes in malicious activity on internet-facing devices in the days following the publication of new vulnerabilities. The latest iteration of this trend highlighted how threat actors quickly exploited Palo Alto firewall using authentication bypass and remote command execution vulnerabilities to enable device compromise. A review of the post-exploitation activity during these events reveals consistent patterns of perimeter device exploitation, but also some distinct variations.

Prior campaigns targeting perimeter devices featured activity largely confined to the exfiltration of configuration data and some initial payload retrieval. Within the current campaign, analysts identified a broader scope post-compromise activity consisting not only of payloads downloads but also extensive C2 activity, reconnaissance, and coin mining operations. While the use of command line tools like curl featured prominently in prior investigations, devices were seen retrieving a generally wider array of payloads during the latest round of activity. The use of the Sliver C2 platform further differentiates the latest round of PAN-OS compromises, with evidence of Sliver activity in about half of the investigated cases.

Several of the endpoints contacted by the infected firewall devices did not have any OSINT associated with them at the time of the attack. However, these indicators were noted as unusual for the devices according to Darktrace based on normal network traffic patterns. This reality further highlights the need for anomaly-based detection that does not rely necessarily on known indicators of compromise (IoCs) associated with CVE exploitation for detection. Darktrace’s experience in 2024 of multiple rounds of perimeter device exploitation may foreshadow future increases in these types of comprise operations.  

Credit to Adam Potter (Senior Cyber Analyst), Alexandra Sentenac (Senior Cyber Analyst), Emma Foulger (Principal Cyber Analyst) and the Darktrace Threat Research team.

References

[1]: https://labs.watchtowr.com/pots-and-pans-aka-an-sslvpn-palo-alto-pan-os-cve-2024-0012-and-cve-2024-9474/

[2]: https://security.paloaltonetworks.com/CVE-2024-9474

[3]: https://threatfox.abuse[.]ch/ioc/1346254/

[4]:https://www.virustotal.com/gui/file/4911396d80baff80826b96d6ea7e54758847c93fdbcd3b86b00946cfd7d1145b/detection

[5]: https://arcticwolf.com/resources/blog/arctic-wolf-observes-threat-campaign-targeting-palo-alto-networks-firewall-devices/

[6] https://www.immersivelabs.com/blog/detecting-and-decrypting-sliver-c2-a-threat-hunters-guide

[7] https://arcticwolf.com/resources/blog/arctic-wolf-observes-threat-campaign-targeting-palo-alto-networks-firewall-devices/

Appendices

Darktrace Model Alerts

Anomalous Connection / Anomalous SSL without SNI to New External

Anomalous Connection / Application Protocol on Uncommon Port  

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Posting HTTP to IP Without Hostname

Anomalous Connection / Rare External SSL Self-Signed

Anomalous File / EXE from Rare External Location

Anomalous File / Incoming ELF File

Anomalous File / Mismatched MIME Type From Rare Endpoint

Anomalous File / Multiple EXE from Rare External Locations

Anomalous File / New User Agent Followed By Numeric File Download

Anomalous File / Script from Rare External Location

Anomalous File / Zip or Gzip from Rare External Location

Anomalous Server Activity / Rare External from Server

Compromise / Agent Beacon (Long Period)

Compromise / Agent Beacon (Medium Period)

Compromise / Agent Beacon to New Endpoint

Compromise / Beacon for 4 Days

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / High Priority Tunnelling to Bin Services

Compromise / High Volume of Connections with Beacon Score

Compromise / HTTP Beaconing to New IP

Compromise / HTTP Beaconing to Rare Destination

Compromise / Large Number of Suspicious Failed Connections

Compromise / Large Number of Suspicious Successful Connections

Compromise / Slow Beaconing Activity To External Rare

Compromise / SSL Beaconing to Rare Destination

Compromise / Suspicious Beaconing Behavior

Compromise / Suspicious File and C2

Compromise / Suspicious HTTP and Anomalous Activity

Compromise / Suspicious TLS Beaconing To Rare External

Compromise / Sustained SSL or HTTP Increase

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Device / Initial Attack Chain Activity

Device / New User Agent

MITRE ATT&CK Mapping

Tactic – Technique

INITIAL ACCESS – Exploit Public-Facing Application

RESOURCE DEVELOPMENT – Malware

EXECUTION – Scheduled Task/Job (Cron)

EXECUTION – Unix Shell

PERSISTENCE – Web Shell

DEFENSE EVASION – Masquerading (Masquerade File Type)

DEFENSE EVASION - Deobfuscate/Decode Files or Information

CREDENTIAL ACCESS – Brute Force

DISCOVERY – Remote System Discovery

COMMAND AND CONTROL – Ingress Tool Transfer

COMMAND AND CONTROL – Application Layer Protocol (Web Protocols)

COMMAND AND CONTROL – Encrypted Channel

COMMAND AND CONTROL – Non-Standard Port

COMMAND AND CONTROL – Data Obfuscation

IMPACT – Resource Hijacking (Compute)

List of IoCs

IoC         –          Type         –        Description

  • sys.traceroute[.]vip     – Hostname - C2 Endpoint
  • 77.221.158[.]154     – IP - C2 Endpoint
  • 185.174.137[.]26     – IP - C2 Endpoint
  • 93.113.25[.]46     – IP - C2 Endpoint
  • 104.131.69[.]106     – IP - C2 Endpoint
  • 95.164.5[.]41     – IP - C2 Endpoint
  • bristol-beacon-assets.s3.amazonaws[.]com     – Hostname - Payload Server
  • img.dxyjg[.]com     – Hostname - Payload Server
  • 38.180.147[.]18     – IP - Payload Server
  • 143.198.1[.]178     – IP - Payload Server
  • 185.208.156[.]46     – IP - Payload Server
  • 185.196.9[.]154     – IP - Payload Server
  • 46.8.226[.]75     – IP - Payload Server
  • 223.165.4[.]175     – IP - Payload Server
  • 188.166.244[.]81     – IP - Payload Server
  • bristol-beaconassets.s3[.]amazonaws[.]com/Y5bHaYxvd84sw     – URL - Payload
  • img[.]dxyjg[.]com/KjQfcPNzMrgV     – URL - Payload
  • 38.180.147[.]18/palofd     – URL - Payload
  • 90f6890fa94b25fbf4d5c49f1ea354a023e06510     – SHA1 - Associated to file /palofd
  • 143.198.1[.]178/7Z0THCJ     – URL - Payload
  • 8d82ccdb21425cf27b5feb47d9b7fb0c0454a9ca     – SHA1 - Associated to file /7Z0THCJ
  • fefd0f93dcd6215d9b8c80606327f5d3a8c89712     – SHA1 - Associated to file /7Z0THCJ
  • e5464f14556f6e1dd88b11d6b212999dd9aee1b1     – SHA1 - Associated to file /7Z0THCJ
  • 143.198.1[.]178/o4VWvQ5pxICPm     – URL - Payload
  • 185.208.156[.]46/lUuL095knXd62DdR6umDig     – URL - Payload
  • 185.196.9[.]154/ykKDzZ5o0AUSfkrzU5BY4w     – URL - Payload
  • 46.8.226[.]75/1.txt     – URL - Payload
  • 223.165.4[.]175/x6     – URL - Payload
  • 45.76.141[.]166/y.sh     – URL - Payload
  • repositorylinux[.]org/linux.sh     – URL - Payload
  • repositorylinux[.]org/cron.sh     – URL - Payload

Continue reading
About the author
Adam Potter
Senior Cyber Analyst

Blog

/

December 11, 2024

/

Cloud

Cloud Security: Addressing Common CISO Challenges with Advanced Solutions

Default blog imageDefault blog image

Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.

1. Misconfigurations: The Silent Saboteur

Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80%  of data breaches involved data stored in the cloud.1  Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.

How Darktrace / CLOUD Helps:

Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.

2. Hybrid Environments: The Migration Maze

Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.

How Darktrace / CLOUD Helps:

Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.

This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.

3. Securing Productivity Suites: The Last Mile

Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.

How Darktrace helps:

Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:

   •    Unusual file accesses

   •    Anomalous login attempts from unexpected locations or devices.

   •    Suspicious email forwarding rules created by compromised accounts.

Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.  

4. Agent Fatigue: The Visibility Struggle

To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.

How Darktrace / CLOUD Helps:

Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.

So why Darktrace / CLOUD?

Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.

From Chaos to Clarity

Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.

[1] https://hbr.org/2024/02/why-data-breaches-spiked-in-2023

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security
Your data. Our AI.
Elevate your network security with Darktrace AI