Blog
/
Email
/
December 4, 2024

Phishing Attacks Surge Over 600% in the Buildup to Black Friday

Black Friday and Cyber Monday are prime targets for cyber-attacks, as consumer spending rises and threat actors flock to take advantage. Darktrace analysis reveals a surge in retail cyber scams at the opening of the peak 2024 shopping period, and the top brands that scammers love to impersonate. Plus, don’t forget to check out our top tips for holiday-proofing your SOC before you clock off for the festive season.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Dec 2024

Defenders are accustomed now to an uptick in cyber-attacks around the holiday period. The festive shopping season creates ideal conditions for cybercriminals. Consumers are inundated with time-sensitive deals, while retailers handle record-breaking transaction volumes at speed. This environment makes it harder than ever to identify suspicious activity.

An investigation conducted by Darktrace’s global analyst team revealed that Christmas-themed phishing attacks leapt 327%1 around the world and Black Friday and Cyber Monday themed phishing attacks soared to 692% last week compared to the beginning of November2 (4th - 9th November), as threat actors seek to take advantage of the busy holiday shopping period.

The United States retail sector saw the most marked increase in threat actors crafting convincing emails purporting to be from well-known brands, mimicking promotional emails. Attacks designed to look like they came from major brands including Walmart – which was easily the most mimicked US brand – Macy’s, Target, Old Navy, and Best Buy3 increased by more than 2000% during peak shopping periods.

Darktrace analysis also highlighted a redistribution of scammers’ resources to take advantage of the festive shopping season, moving from targeting businesses to consumers. The impersonation of major consumer brands, dominated by Amazon and PayPal4, increased by 92% globally between analyzed periods, while the spoofing of workplace-focused brands, like Adobe, Zoom and LinkedIn, decreased by 9%.

Major retail brands invest heavily in safeguarding themselves and their customers from scams and cyberattacks, particularly during the holiday season. However, phishing and website spoofing occur outside the retailers' legitimate infrastructure and security controls, making it difficult to catch and prevent every instance due to their sheer volume. While advancements like AI are helping security teams narrow the gap, brand impersonation remains a persistent challenge.

Multiple attack methods exploit trust during holiday rush

Darktrace’s findings demonstrate some of the most common brand spoofing strategies used by attackers during the holiday season:

Domain spoofing, which sees attackers create near perfect replicas of retail websites, complete with lookalike domain names and branding, to trick consumers into handing over personal and payment details.  

Brand spoofing, where attackers send a phishing email designed to look like a favorite retailer, enticing their target to click a link for a discount, when in fact the link downloads malware to their device.  

Safelink smuggling, which involves an attacker intentionally getting their malicious payload rewritten by a security solution’s Safelink capability to then propagate the rewritten URL to others. This not only evades detection but also undermines trust in email security tools. Darktrace observed over 300,000 cases of Safelinks being included in unexpected and suspicious contexts over a period of 3 months.

Multi-stage attacks which combine these tactics into a single attack: brand spoofing emails lead unsuspecting shoppers directly to domain spoofed websites that harvest login or payment details, creating a seamless deception that hands personal and financial data directly to attackers. This coordinated approach exploits the chaos of holiday sales, when shoppers are primed to expect high volumes of retail emails and website traffic promoting significant savings.

A spike in cyber-criminal activity which extends beyond email

While email often serves as the front door to an organization and the initial avenue of attack, Darktrace frequently observes a surge in cyber-attacks during public holidays5. These “off-peak” attacks exploit common organizational practices and human vulnerabilities with greater ease.

When staff numbers are reduced, and employees mentally and physically disconnect from work, the speed of detection and response has the potential to slow. This creates opportunities for threat actors to infiltrate undetected. Without real-time autonomous systems in place, such attacks can have a far more severe impact on an organization’s ability to respond and recover effectively.

Ransomware is among the most common threats targeting organizations after hours. In 76% of cases, the encryption process begins during off-hours or on weekends6. For instance, Darktrace identified a ransomware attack launched in the early hours of Christmas Day on a client’s network, taking advantage of the period when most employees were offline.

Festive cheer: giving your SOC team the break they deserve

Staff burnout is increasingly top of mind, with 74% of cybersecurity leaders reporting that they’ve had employees resign due to stress7. And the numbers stack up – almost 60% of security analysts report feeling burnt out, and many are choosing to leave their jobs and even security altogether.8

At a human level, the holiday season should be a time of relaxation and merriment rather than anxiety. For SOC leaders, giving teams time to prioritize recharging during the holidays is crucial for sustaining long-term resilience and productivity, balanced with the importance of maintaining rigorous defenses with a reduced workforce.  

So… how can cybersecurity leaders ensure peace of mind during the holidays?

Step 1: Cover yourself from every angle. It’s no longer enough for your email solution to only catch known threats. Security leaders need to invest in multi-layered email defenses that can combat novel and advanced attacks – such as the multi-stage brand personation attacks that lead shoppers to domain-spoofed websites.  

Darktrace / EMAIL – the fastest growing email security solution – has been proven to detect up to 56% more threats than other email solutions.9  It is uniquely capable of catching novel attacks on the first encounter, rather than waiting the 13 days it takes for other solutions to take action10 – by which time your decorations might be coming down, along with your business.

Step 2: Avoid an overwhelming deluge of alerts raining (or snowing) down on your L1 SOC analysts. Lining up people to manage the grunt work over the holidays is an easy pattern to fall into, but consider technology that can automate that initial triage. For example, Darktrace’s Cyber AI Analyst automatically investigates every alert detected by Darktrace’s core real-time detection engine. It does an additional layer of AI analysis – establishing whether an alert is unusual but benign, or part of a more serious security incident. Rather than looking at hundreds of alerts, your team is presented with just a handful of overall incidents. They can use that new free time to do more strategic work, or take some much-needed time off.

Step 3: Make sure someone – or something – is keeping guard in those super off-peak hours. Enter Autonomous Response. Because it knows what normal looks like for your business it can take action to stop and contain only the unusual and threatening activity. Even if it doesn’t eliminate the threat entirely, it can buy your security team time and space, allowing them to enjoy their holiday in peace.

With Black Friday over and the festive shopping period looming, businesses should act now to protect their brand and ensure they have the cybersecurity measures are in place to enjoy the gift of a stress-free holiday season.  

Interested in how AI-driven email security can protect your organization? Check out the product hub to learn more. Or watch the demo video to see Darktrace / EMAIL in action.

References

[1] Based on analysis of 626 customer deployments and attempted phishing emails mentioning Christmas that were detected by Darktrace / EMAIL.

[2] Emails in the analysis mentioning ‘Black Friday’ or ‘Cyber Monday’.

[3] Walmart, Target, Best Buy, Macy's, Old Navy, 1800-Flowers

[4] Amazon, eBay, Netflix, Alibaba, Paypal, Apple

[5] In 2021, Darktrace observed a 70% average increase in attempted ransomware attacks in November and December compared to January and February. (Darktrace Press Release, 2021)

[6] https://www.zdnet.com/article/most-ransomware-attacks-take-place-during-the-night-or-the-weekend

[7] https://www.scworld.com/perspective/ciso-stress-levels-are-out-of-control

[8] https://www.informationweek.com/cyber-resilience/the-psychology-of-cybersecurity-burnout

[9] 56% of malicious phishing emails detected and analyzed across Darktrace / EMAIL customer deployments from December 2023 – July 2024 passed through all existing security layers. (Darktrace Half Year Report 2024)

[10] 13 days mean average of phishing payloads active in the wild between the response of Darktrace / EMAIL compared to the earliest of 16 independent feeds submitted by other email security technologies. (Darktrace Press Release, 2023)

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

/

May 16, 2025

Catching a RAT: How Darktrace neutralized AsyncRAT

woman working on laptopDefault blog imageDefault blog image

What is a RAT?

As the proliferation of new and more advanced cyber threats continues, the Remote Access Trojan (RAT) remains a classic tool in a threat actor's arsenal. RATs, whether standardized or custom-built, enable attackers to remotely control compromised devices, facilitating a range of malicious activities.

What is AsyncRAT?

Since its first appearance in 2019, AsyncRAT has become increasingly popular among a wide range of threat actors, including cybercriminals and advanced persistent threat (APT) groups.

Originally available on GitHub as a legitimate tool, its open-source nature has led to widespread exploitation. AsyncRAT has been used in numerous campaigns, including prolonged attacks on essential US infrastructure, and has even reportedly penetrated the Chinese cybercriminal underground market [1] [2].

How does AsyncRAT work?

Original source code analysis of AsyncRAT demonstrates that once installed, it establishes persistence via techniques such as creating scheduled tasks or registry keys and uses SeDebugPrivilege to gain elevated privileges [3].

Its key features include:

  • Keylogging
  • File search
  • Remote audio and camera access
  • Exfiltration techniques
  • Staging for final payload delivery

These are generally typical functions found in traditional RATs. However, it also boasts interesting anti-detection capabilities. Due to the popularity of Virtual Machines (VM) and sandboxes for dynamic analysis, this RAT checks for the manufacturer via the WMI query 'Select * from Win32_ComputerSystem' and looks for strings containing 'VMware' and 'VirtualBox' [4].

Darktrace’s coverage of AsyncRAT

In late 2024 and early 2025, Darktrace observed a spike in AsyncRAT activity across various customer environments. Multiple indicators of post-compromise were detected, including devices attempting or successfully connecting to endpoints associated with AsyncRAT.

On several occasions, Darktrace identified a clear association with AsyncRAT through the digital certificates of the highlighted SSL endpoints. Darktrace’s Real-time Detection effectively identified and alerted on suspicious activities related to AsyncRAT. In one notable incident, Darktrace’s Autonomous Response promptly took action to contain the emerging threat posed by AsyncRAT.

AsyncRAT attack overview

On December 20, 2024, Darktrace first identified the use of AsyncRAT, noting a device successfully establishing SSL connections to the uncommon external IP 185.49.126[.]50 (AS199654 Oxide Group Limited) via port 6606. The IP address appears to be associated with AsyncRAT as flagged by open-source intelligence (OSINT) sources [5]. This activity triggered the device to alert the ‘Anomalous Connection / Rare External SSL Self-Signed' model.

Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.
Figure 1: Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.

Following these initial connections, the device was observed making a significantly higher number of connections to the same endpoint 185.49.126[.]50 via port 6606 over an extended period. This pattern suggested beaconing activity and triggered the 'Compromise/Beaconing Activity to External Rare' model alert.

Further analysis of the original source code, available publicly, outlines the default ports used by AsyncRAT clients for command-and-control (C2) communications [6]. It reveals that port 6606 is the default port for creating a new AsyncRAT client. Darktrace identified both the Certificate Issuer and the Certificate Subject as "CN=AsyncRAT Server". This SSL certificate encrypts the packets between the compromised system and the server. These indicators of compromise (IoCs) detected by Darktrace further suggest that the device was successfully connecting to a server associated with AsyncRAT.

Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Figure 2: Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Figure 3: Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.
Figure 4: Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.

A few days later, the same device was detected making numerous connections to a different IP address, 195.26.255[.]81 (AS40021 NL-811-40021), via various ports including 2106, 6606, 7707, and 8808. Notably, ports 7707 and 8808 are also default ports specified in the original AsyncRAT source code [6].

Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.
Figure 5: Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.

Similar to the activity observed with the first endpoint, 185.49.126[.]50, the Certificate Issuer for the connections to 195.26.255[.]81 was identified as "CN=AsyncRAT Server". Further OSINT investigation confirmed associations between the IP address 195.26.255[.]81 and AsyncRAT [7].

Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server
Figure 6: Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server.

Once again, Darktrace's Autonomous Response acted swiftly, blocking the connections to 195.26.255[.]81 throughout the observed AsyncRAT activity.

Figure 7: Darktrace's Autonomous Response actions were applied against the suspicious IP address 195.26.255[.]81.

A day later, Darktrace again alerted to further suspicious activity from the device. This time, connections to the suspicious endpoint 'kashuub[.]com' and IP address 191.96.207[.]246 via port 8041 were observed. Further analysis of port 8041 suggests it is commonly associated with ScreenConnect or Xcorpeon ASIC Carrier Ethernet Transport [8]. ScreenConnect has been observed in recent campaign’s where AsyncRAT has been utilized [9]. Additionally, one of the ASN’s observed, namely ‘ASN Oxide Group Limited’, was seen in both connections to kashuub[.]com and 185.49.126[.]50.

This could suggest a parallel between the two endpoints, indicating they might be hosting AsyncRAT C2 servers, as inferred from our previous analysis of the endpoint 185.49.126[.]50 and its association with AsyncRAT [5]. OSINT reporting suggests that the “kashuub[.]com” endpoint may be associated with ScreenConnect scam domains, further supporting the assumption that the endpoint could be a C2 server.

Darktrace’s Autonomous Response technology was once again able to support the customer here, blocking connections to “kashuub[.]com”. Ultimately, this intervention halted the compromise and prevented the attack from escalating or any sensitive data from being exfiltrated from the customer’s network into the hands of the threat actors.

Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.
Figure 8: Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.

Due to the popularity of this RAT, it is difficult to determine the motive behind the attack; however, from existing knowledge of what the RAT does, we can assume accessing and exfiltrating sensitive customer data may have been a factor.

Conclusion

While some cybercriminals seek stability and simplicity, openly available RATs like AsyncRAT provide the infrastructure and open the door for even the most amateur threat actors to compromise sensitive networks. As the cyber landscape continually shifts, RATs are now being used in all types of attacks.

Darktrace’s suite of AI-driven tools provides organizations with the infrastructure to achieve complete visibility and control over emerging threats within their network environment. Although AsyncRAT’s lack of concealment allowed Darktrace to quickly detect the developing threat and alert on unusual behaviors, it was ultimately Darktrace Autonomous Response's consistent blocking of suspicious connections that prevented a more disruptive attack.

Credit to Isabel Evans (Cyber Analyst), Priya Thapa (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

  • Real-time Detection Models
       
    • Compromise / Suspicious SSL Activity
    •  
    • Compromise / Beaconing Activity To      External Rare
    •  
    • Compromise / High Volume of      Connections with Beacon Score
    •  
    • Anomalous Connection / Suspicious      Self-Signed SSL
    •  
    • Compromise / Sustained SSL or HTTP      Increase
    •  
    • Compromise / SSL Beaconing to Rare      Destination
    •  
    • Compromise / Suspicious Beaconing      Behaviour
    •  
    • Compromise / Large Number of      Suspicious Failed Connections
  •  
  • Autonomous     Response Models
       
    • Antigena / Network / Significant      Anomaly / Antigena Controlled and Model Alert
    •  
    • Antigena / Network / Significant      Anomaly / Antigena Enhanced Monitoring from Client Block

List of IoCs

·     185.49.126[.]50 - IP – AsyncRAT C2 Endpoint

·     195.26.255[.]81 – IP - AsyncRAT C2 Endpoint

·      191.96.207[.]246 – IP – Likely AsyncRAT C2 Endpoint

·     CN=AsyncRAT Server - SSL certificate - AsyncRATC2 Infrastructure

·      Kashuub[.]com– Hostname – Likely AsyncRAT C2 Endpoint

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique  

 

Execution– T1053 - Scheduled Task/Job: Scheduled Task

DefenceEvasion – T1497 - Virtualization/Sandbox Evasion: System Checks

Discovery– T1057 – Process Discovery

Discovery– T1082 – System Information Discovery

LateralMovement - T1021.001 - Remote Services: Remote Desktop Protocol

Collection/ Credential Access – T1056 – Input Capture: Keylogging

Collection– T1125 – Video Capture

Commandand Control – T1105 - Ingress Tool Transfer

Commandand Control – T1219 - Remote Access Software

Exfiltration– T1041 - Exfiltration Over C2 Channel

 

References

[1]  https://blog.talosintelligence.com/operation-layover-how-we-tracked-attack/

[2] https://intel471.com/blog/china-cybercrime-undergrond-deepmix-tea-horse-road-great-firewall

[3] https://www.attackiq.com/2024/08/01/emulate-asyncrat/

[4] https://www.fortinet.com/blog/threat-research/spear-phishing-campaign-with-new-techniques-aimed-at-aviation-companies

[5] https://www.virustotal.com/gui/ip-address/185.49.126[.]50/community

[6] https://dfir.ch/posts/asyncrat_quasarrat/

[7] https://www.virustotal.com/gui/ip-address/195.26.255[.]81

[8] https://www.speedguide.net/port.php?port=8041

[9] https://www.esentire.com/blog/exploring-the-infection-chain-screenconnects-link-to-asyncrat-deployment

[10] https://scammer.info/t/taking-out-connectwise-sites/153479/518?page=26

Continue reading
About the author
Isabel Evans
Cyber Analyst

Blog

/

/

May 13, 2025

Revolutionizing OT Risk Prioritization with Darktrace 6.3

man in hard hat on tabletDefault blog imageDefault blog image

Powering smarter protection for industrial systems

In industrial environments, security challenges are deeply operational. Whether you’re running a manufacturing line, a power grid, or a semiconductor fabrication facility (fab), you need to know: What risks can truly disrupt my operations, and what should I focus on first?

Teams need the right tools to shift from reactive defense, constantly putting out fires, to proactively thinking about their security posture. However, most OT teams are stuck using IT-centric tools that don’t speak the language of industrial systems, are consistently overwhelmed with static CVE lists, and offer no understanding of OT-specific protocols. The result? Compliance gaps, siloed insights, and risk models that don’t reflect real-world exposure, making risk prioritization seem like a luxury.

Darktrace / OT 6.3 was built in direct response to these challenges. Developed in close collaboration with OT operators and engineers, this release introduces powerful upgrades that deliver the context, visibility, and automation security teams need, without adding complexity. It’s everything OT defenders need to protect critical operations in one platform that understands the language of industrial systems.

additions to darktrace / ot 6/3

Contextual risk modeling with smarter Risk Scoring

Darktrace / OT 6.3 introduces major upgrades to OT Risk Management, helping teams move beyond generic CVE lists with AI-driven risk scoring and attack path modeling.

By factoring in real-world exploitability, asset criticality, and operational context, this release delivers a more accurate view of what truly puts critical systems at risk.

The platform now integrates:

  • CISA’s Known Exploited Vulnerabilities (KEV) database
  • End-of-life status for legacy OT devices
  • Firewall misconfiguration analysis
  • Incident response plan alignment

Most OT environments are flooded with vulnerability data that lacks context. CVE scores often misrepresent risk by ignoring how threats move through the environment or whether assets are even reachable. Firewalls are frequently misconfigured or undocumented, and EOL (End of Life) devices, some of the most vulnerable, often go untracked.

Legacy tools treat these inputs in isolation. Darktrace unifies them, showing teams exactly which attack paths adversaries could exploit, mapped to the MITRE ATT&CK framework, with visibility into where legacy tech increases exposure.

The result: teams can finally focus on the risks that matter most to uptime, safety, and resilience without wasting resources on noise.

Automating compliance with dynamic IEC-62443 reporting

Darktrace / OT now includes a purpose-built IEC-62443-3-3 compliance module, giving industrial teams real-time visibility into their alignment with regulatory standards. No spreadsheets required!

Industrial environments are among the most heavily regulated. However, for many OT teams, staying compliant is still a manual, time-consuming process.

Darktrace / OT introduces a dedicated IEC-62443-3-3 module designed specifically for industrial environments. Security and operations teams can now map their security posture to IEC standards in real time, directly within the platform. The module automatically gathers evidence across all four security levels, flags non-compliance, and generates structured reports to support audit preparation, all in just a few clicks.Most organizations rely on spreadsheets or static tools to track compliance, without clear visibility into which controls meet standards like IEC-62443. The result is hidden gaps, resource-heavy audits, and slow remediation cycles.

Even dedicated compliance tools are often built for IT, require complex setup, and overlook the unique devices found in OT environments. This leaves teams stuck with fragmented reporting and limited assurance that their controls are actually aligned with regulatory expectations.

By automating compliance tracking, surfacing what matters most, and being purpose built for industrial environments, Darktrace / OT empowers organizations to reduce audit fatigue, eliminate blind spots, and focus resources where they’re needed most.

Expanding protocol visibility with deep insights for specialized OT operations

Darktrace has expanded its Deep Packet Inspection (DPI) capabilities to support five industry-specific protocols, across healthcare, semiconductor manufacturing, and ABB control systems.

The new protocols build on existing capabilities across all OT industry verticals and protocol types to ensure the Darktrace Self-Learning AI TM can learn intelligently about even more assets in complex industrial environments. By enabling native, AI-driven inspection of these protocols, Darktrace can identify both security threats and operational issues without relying on additional appliances or complex integrations.

Most security platforms lack native support for industry-specific protocols, creating critical visibility gaps in customer environments like healthcare, semiconductor manufacturing, and ABB-heavy industrial automation. Without deep protocol awareness, organizations struggle to accurately identify specialized OT and IoT assets, detect malicious activity concealed within proprietary protocol traffic, and generate reliable device risk profiles due to insufficient telemetry.

These blind spots result in incomplete asset inventories, and ultimately, flawed risk posture assessments which over-index for CVE patching and legacy equipment.

By combining protocol-aware detection with full-stack visibility across IT, OT, and IoT, Darktrace’s AI can correlate anomalies across domains. For example, connecting an anomaly from a Medical IoT (MIoT) device with suspicious behavior in IT systems, providing actionable, contextual insights other solutions often miss.

Conclusion

Together, these capabilities take OT security beyond alert noise and basic CVE matching, delivering continuous compliance, protocol-aware visibility, and actionable, prioritized risk insights, all inside a single, unified platform built for the realities of industrial environments.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI