Blog
/
Email
/
December 4, 2024

Phishing Attacks Surge Over 600% in the Buildup to Black Friday

Black Friday and Cyber Monday are prime targets for cyber-attacks, as consumer spending rises and threat actors flock to take advantage. Darktrace analysis reveals a surge in retail cyber scams at the opening of the peak 2024 shopping period, and the top brands that scammers love to impersonate. Plus, don’t forget to check out our top tips for holiday-proofing your SOC before you clock off for the festive season.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Dec 2024

Defenders are accustomed now to an uptick in cyber-attacks around the holiday period. The festive shopping season creates ideal conditions for cybercriminals. Consumers are inundated with time-sensitive deals, while retailers handle record-breaking transaction volumes at speed. This environment makes it harder than ever to identify suspicious activity.

An investigation conducted by Darktrace’s global analyst team revealed that Christmas-themed phishing attacks leapt 327%1 around the world and Black Friday and Cyber Monday themed phishing attacks soared to 692% last week compared to the beginning of November2 (4th - 9th November), as threat actors seek to take advantage of the busy holiday shopping period.

The United States retail sector saw the most marked increase in threat actors crafting convincing emails purporting to be from well-known brands, mimicking promotional emails. Attacks designed to look like they came from major brands including Walmart – which was easily the most mimicked US brand – Macy’s, Target, Old Navy, and Best Buy3 increased by more than 2000% during peak shopping periods.

Darktrace analysis also highlighted a redistribution of scammers’ resources to take advantage of the festive shopping season, moving from targeting businesses to consumers. The impersonation of major consumer brands, dominated by Amazon and PayPal4, increased by 92% globally between analyzed periods, while the spoofing of workplace-focused brands, like Adobe, Zoom and LinkedIn, decreased by 9%.

Major retail brands invest heavily in safeguarding themselves and their customers from scams and cyberattacks, particularly during the holiday season. However, phishing and website spoofing occur outside the retailers' legitimate infrastructure and security controls, making it difficult to catch and prevent every instance due to their sheer volume. While advancements like AI are helping security teams narrow the gap, brand impersonation remains a persistent challenge.

Multiple attack methods exploit trust during holiday rush

Darktrace’s findings demonstrate some of the most common brand spoofing strategies used by attackers during the holiday season:

Domain spoofing, which sees attackers create near perfect replicas of retail websites, complete with lookalike domain names and branding, to trick consumers into handing over personal and payment details.  

Brand spoofing, where attackers send a phishing email designed to look like a favorite retailer, enticing their target to click a link for a discount, when in fact the link downloads malware to their device.  

Safelink smuggling, which involves an attacker intentionally getting their malicious payload rewritten by a security solution’s Safelink capability to then propagate the rewritten URL to others. This not only evades detection but also undermines trust in email security tools. Darktrace observed over 300,000 cases of Safelinks being included in unexpected and suspicious contexts over a period of 3 months.

Multi-stage attacks which combine these tactics into a single attack: brand spoofing emails lead unsuspecting shoppers directly to domain spoofed websites that harvest login or payment details, creating a seamless deception that hands personal and financial data directly to attackers. This coordinated approach exploits the chaos of holiday sales, when shoppers are primed to expect high volumes of retail emails and website traffic promoting significant savings.

A spike in cyber-criminal activity which extends beyond email

While email often serves as the front door to an organization and the initial avenue of attack, Darktrace frequently observes a surge in cyber-attacks during public holidays5. These “off-peak” attacks exploit common organizational practices and human vulnerabilities with greater ease.

When staff numbers are reduced, and employees mentally and physically disconnect from work, the speed of detection and response has the potential to slow. This creates opportunities for threat actors to infiltrate undetected. Without real-time autonomous systems in place, such attacks can have a far more severe impact on an organization’s ability to respond and recover effectively.

Ransomware is among the most common threats targeting organizations after hours. In 76% of cases, the encryption process begins during off-hours or on weekends6. For instance, Darktrace identified a ransomware attack launched in the early hours of Christmas Day on a client’s network, taking advantage of the period when most employees were offline.

Festive cheer: giving your SOC team the break they deserve

Staff burnout is increasingly top of mind, with 74% of cybersecurity leaders reporting that they’ve had employees resign due to stress7. And the numbers stack up – almost 60% of security analysts report feeling burnt out, and many are choosing to leave their jobs and even security altogether.8

At a human level, the holiday season should be a time of relaxation and merriment rather than anxiety. For SOC leaders, giving teams time to prioritize recharging during the holidays is crucial for sustaining long-term resilience and productivity, balanced with the importance of maintaining rigorous defenses with a reduced workforce.  

So… how can cybersecurity leaders ensure peace of mind during the holidays?

Step 1: Cover yourself from every angle. It’s no longer enough for your email solution to only catch known threats. Security leaders need to invest in multi-layered email defenses that can combat novel and advanced attacks – such as the multi-stage brand personation attacks that lead shoppers to domain-spoofed websites.  

Darktrace / EMAIL – the fastest growing email security solution – has been proven to detect up to 56% more threats than other email solutions.9  It is uniquely capable of catching novel attacks on the first encounter, rather than waiting the 13 days it takes for other solutions to take action10 – by which time your decorations might be coming down, along with your business.

Step 2: Avoid an overwhelming deluge of alerts raining (or snowing) down on your L1 SOC analysts. Lining up people to manage the grunt work over the holidays is an easy pattern to fall into, but consider technology that can automate that initial triage. For example, Darktrace’s Cyber AI Analyst automatically investigates every alert detected by Darktrace’s core real-time detection engine. It does an additional layer of AI analysis – establishing whether an alert is unusual but benign, or part of a more serious security incident. Rather than looking at hundreds of alerts, your team is presented with just a handful of overall incidents. They can use that new free time to do more strategic work, or take some much-needed time off.

Step 3: Make sure someone – or something – is keeping guard in those super off-peak hours. Enter Autonomous Response. Because it knows what normal looks like for your business it can take action to stop and contain only the unusual and threatening activity. Even if it doesn’t eliminate the threat entirely, it can buy your security team time and space, allowing them to enjoy their holiday in peace.

With Black Friday over and the festive shopping period looming, businesses should act now to protect their brand and ensure they have the cybersecurity measures are in place to enjoy the gift of a stress-free holiday season.  

Interested in how AI-driven email security can protect your organization? Check out the product hub to learn more. Or watch the demo video to see Darktrace / EMAIL in action.

References

[1] Based on analysis of 626 customer deployments and attempted phishing emails mentioning Christmas that were detected by Darktrace / EMAIL.

[2] Emails in the analysis mentioning ‘Black Friday’ or ‘Cyber Monday’.

[3] Walmart, Target, Best Buy, Macy's, Old Navy, 1800-Flowers

[4] Amazon, eBay, Netflix, Alibaba, Paypal, Apple

[5] In 2021, Darktrace observed a 70% average increase in attempted ransomware attacks in November and December compared to January and February. (Darktrace Press Release, 2021)

[6] https://www.zdnet.com/article/most-ransomware-attacks-take-place-during-the-night-or-the-weekend

[7] https://www.scworld.com/perspective/ciso-stress-levels-are-out-of-control

[8] https://www.informationweek.com/cyber-resilience/the-psychology-of-cybersecurity-burnout

[9] 56% of malicious phishing emails detected and analyzed across Darktrace / EMAIL customer deployments from December 2023 – July 2024 passed through all existing security layers. (Darktrace Half Year Report 2024)

[10] 13 days mean average of phishing payloads active in the wild between the response of Darktrace / EMAIL compared to the earliest of 16 independent feeds submitted by other email security technologies. (Darktrace Press Release, 2023)

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

AI

/

December 23, 2025

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI