Inside the SOC

How Darktrace SOC Thwarted a BEC Attack

Photo of woman looking at computer screenDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
Jul 2023
Jul 2023
Discover how Darktrace's SOC detected and stopped a Business Email Compromise in a customer's SaaS environment.

What is Business Email Compromise (BEC)?

Business Email Compromise (BEC) is the practice of tricking an organization into transferring funds or sensitive data to a malicious actor.

Although at face value this type of attack may not carry the same gravitas as the more blockbuster, cloak-and-dagger type of attack such as ransomware [1], the costs of BEC actually dwarf that of ransomware [2]. Moreover, among UK organizations that reported a cyber breach in 2023, attacks related to BEC – namely phishing attacks, email impersonation, attempted hacking of online back accounts, and account takeover – were reported as the most disruptive, ahead of ransomware and other types of cyber-attack [3].  

What makes a BEC attack successful?

BEC attacks are so successful and damaging due to the difficulty of detection for traditional security systems, along with their ease of execution.  BEC does not require much technical sophistication to accomplish; rather, it exploits humans’ natural trust in known correspondents, via a phishing email for example, to induce them to perform a certain action.

How does a BEC attack work?

BEC attacks typically begin with a phishing email to an employee of an organization. Traditional email gateways may be unable to block the initial phishing email, as the email often appear to have been sent by a known correspondent, or it may contain minimal payload content.

The recipient’s interaction with the initial phishing email will likely result in the attacker gaining access to the user’s identity. Once access is obtained, the attacker may abuse the identity of the compromised user to obtain details of the user’s financial relations to the rest of the organization or its customers, eventually using these details to conduct further malicious email activity, such as sending out emails containing fraudulent wire transfer requests.  Today, the continued growth in adoption of services to support remote working, such as cloud file storage and sharing, means that the compromise of a single user’s email account can also grant access to a wide range of corporate sensitive information.

How to protect against BEC attacks

The rapid uptake of cloud-based infrastructure and software-as-a-service (SaaS) outpaces the adoption of skills and expertise required to secure it, meaning that security teams are often less prepared to detect and respond to cloud-based attacks.  

Alongside the adoption of security measures that specialize in anomaly-based detection and autonomous response, like Darktrace DETECT™ and Darktrace RESPOND™, it is extremely beneficial for organizations to have an around the clock security operations center (SOC) in place to monitor and investigate ongoing suspicious activity as it emerges.

In June 2023, Darktrace’s SOC alerted a customer to an active BEC attack within their cloud environment, following the successful detection of suspicious activity by Darktrace’s AI, playing a fundamental role in thwarting the attack in its early stages.

Darktrace Mitigates BEC Attack

Figure 1: Screenshot of the SaaS Console showing location information for the compromised SaaS account.  The ability to visualize the distance between these two locations enables a SOC Analyst to deduce that the simultaneous activity from London and Derby may represent impossible travel’.

It was suspected the attack began with a phishing email, as on the previous day the user had received a highly anomalous email from an external sender with which the organization had not previously communicated. However, the customer had configured Darktrace/Email™ in passive mode, which meant that Darktrace was not able to carry out any RESPOND actions on this anomalous email to prevent it from landing in the user’s inbox. Despite this, Darktrace/Apps was able to instantly detect the subsequent unusual login to the customer’s SaaS environment; its anomaly-based approach to threat detection allowed it to recognize the anomalous behavior even though the malicious email had successfully reached the user.

Following the anomalous ExpressVPN login, Darktrace detected further account anomalies originating from another ExpressVPN IP (45.92.229[.]195), as the attacker accessed files over SharePoint.  Notably, Darktrace identified that the logins from ExpressVPN IPs were performed with the software Chrome 114, however, activity from the legitimate account owner prior to these unusual logins was performed using the software Chrome 102. It is unusual for a user to be using multiple browser versions simultaneously, therefore in addition to the observed impossible travel, this further implied the presence of different actors behind the simultaneous account activity.

Figure 2: Screenshot of the Event Log for the compromised SaaS account, showing simultaneous login and file access activity on the account from different browser versions, and thus likely from different devices.

Darktrace identified that the files observed during this anomalous activity referenced financial information and personnel schedules, suggesting that the attacker was performing internal reconnaissance to gather information about sensitive internal company procedures, in preparation for further fraudulent financial activity.

Although the actions taken by the attacker were mostly passive, Darktrace/Apps chained together the multiple anomalies to understand that this pattern of activity was indicative of movement along the cyber kill chain. The multiple model breaches generated by the ongoing unusual activity triggered an Enhanced Monitoring model breach that was escalated to Darktrace’s SOC as the customer had subscribed to Darktrace’s Proactive Threat Notification (PTN) service.  Enhanced Monitoring models detect activities that are more likely to be indicative of compromise.  

Subsequently, Darktrace’s SOC triaged the activity detected on the SaaS account and sent a PTN alert to the customer, advising urgent follow up action.  The encrypted alert contained relevant technical details of the incident that were summarized by an expert Darktrace Analyst, along with recommendations to the customer’s internal SOC team to take immediate action.  Upon receipt and validation of the alert, the customer used Darktrace RESPOND to perform a manual force logout and block access from the external ExpressVPN IP.

Had Darktrace RESPOND been enabled in autonomous response mode, it would have immediately taken action to disable the account after ongoing anomalies were detected from it. However, as the customer only had RESPOND configured in the manual human confirmation model, the expertise of Darktrace’s SOC team was critical in enabling the customer to react and prevent further escalation of post-compromise activity.  Evidence of further attempts to access the compromised account were observed hours after RESPOND actions were taken, including failed login attempts from another rare external IP, this time associated with the VPN service NordVPN.

Figure 3: Timeline of attack and response actions from Darktrace SOC and Darktrace RESPOND.

Because the customer had subscribed to Darktrace’s PTN service, they were able to further leverage the expertise of Darktrace’s global team of cyber analysts and request further analysis of which files were accessed by the legitimate account owner versus the attacker.  This information was shared securely within the same Customer Portal ticket that was automatically opened on behalf of the customer when the PTN was alerted, allowing the customer’s security team to submit further queries and feedback, and request assistance to further investigate this alert within Darktrace. A similar service called Ask the Expert (ATE) exists for customers to draw from the expertise of Darktrace’s analysts at any time, not just when PTNs are alerted.


The growing prevalence and impact of BEC attacks amid the shift to cloud-based infrastructure means that already stretched internal security teams may not have the sufficient human capacity to detect and respond to these threats.

Darktrace’s round-the-clock SOC thwarted a BEC attack that had the potential to result in significant financial and reputational damage to the legal services company, by alerting the customer to high priority activity during the early stages of the attack and sharing actionable insights that the customer could use to prevent further escalation.  Following the confirmed compromise, the support and in-depth analysis provided by Darktrace’s SOC on the files accessed by the attacker enabled the customer to effectively report this breach to the Information Commissioner’s Office, to maintain compliance with UK data protection regulations. [4].  

Although the attacker used IP addresses that were local to the customer’s country of operations and did not perform overtly noisy actions during reconnaissance, Darktrace was able to identify that this activity deviated from the legitimate user’s typical pattern of life, triggering model breaches at each stage of the attack as it progressed from initial access to internal reconnaissance. While Darktrace RESPOND triggered an action that would have prevented the attack autonomously, the customer’s configuration meant that Darktrace’s SOC had an even more significant role in alerting the customer directly to take manual action.

Credit to: Sam Lister, Senior Analyst, for his contributions to this blog.


Darktrace DETECT/Apps Models Breached:

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Unusual Activity / Activity from Multiple Unusual IPs
  • SaaS / Unusual Activity / Multiple Unusual SaaS Activities
  • SaaS / Access / Suspicious Login Attempt
  • SaaS / Compromise / SaaS Anomaly Following Anomalous Login (Enhanced Monitoring Model)

Darktrace RESPOND/Apps Models Breached:

  • Antigena / SaaS / Antigena Unusual Activity Block
  • Antigena / SaaS / Antigena Suspicious SaaS Activity Block


Tactic Techniques
Reconnaissance • T1598 – Phishing for Information
Initial Access • T1078.004 – Valid Accounts: Cloud Accounts
Collection • T1213.002 – Data from Information Repositories: Sharepoint


[1] Rand, D. (2022, November 10). Why Business Email Compromise Costs Companies More Than Ransomware Attacks. Retrieved from Tanium:

[2] Federal Bureau of Investigation. (2022). 2022 IC3 Report. Retrieved from

[3] Department for Science, Innovation & Technology. (2023, April 19). Cyber security breaches survey 2023. Retrieved from

[4] ICO. (2023). Personal data breaches: a guide. Retrieved from Information Commissioner's Office:

Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Nicole Wong
Cyber Security Analyst
Book a 1-1 meeting with one of our experts
share this article
No items found.

More in this series

No items found.


No items found.

What you need to know about the new SEC Cybersecurity rules

Default blog imageDefault blog image
Jul 2024

What is new in 2023 to SEC cybersecurity rules?

Form 8-K Item 1.05: Requiring the timely disclosure of material cybersecurity incidents.

Regulation S-K item 106: requiring registrants’ annual reports on Form 10-K to address cybersecurity risk management, strategy, and governance processes.

Comparable disclosures are required for reporting foreign private issuers on Forms 6-K and 20-F respectively.

What is Form 8-K Item 1.05 SEC cybersecurity rules?

Form 8-K Item 1.05 requires the following to be reported within four business days from when an incident is determined to be “material” (1), unless extensions are granted by the SEC under certain qualifying conditions:

“If the registrant experiences a cybersecurity incident that is determined by the registrant to be material, describe the material aspects of the nature, scope, and timing of the incident, and the material impact or reasonably likely material impact on the registrant, including its financial condition and results of operations.” (2, 3)

How does the SEC define cybersecurity incident?

Cybersecurity incident defined by the SEC means an unauthorized occurrence, or a series of related unauthorized occurrences, on or conducted through a registrant’s information systems that jeopardizes the confidentiality, integrity, or availability of a registrant’s information systems or any information residing therein. (4)

How can Darktrace assist in the process of disclosing incidents to the SEC?

Accelerate reporting

Darktrace’s Cyber AI Analyst generates automated reports that synthesize discrete data points potentially indicative of cybersecurity threats, forming reports that provide an overview of the evolution and impact of a threat.

Thus, when a potential threat is identified by Darktrace, AI Analyst can quickly compile information that organizations might include in their disclosure of an occurrence they determined to be material, including the following: incident timelines, incident events, incident summary, related model breaches, investigation process (i.e., how Darktrace’s AI conducted the investigation), linked incident events, and incident details. The figure below illustrates how Darktrace compiles and presents incident information and insights in the UI.

Overview of information provided in an ‘AI Analyst Report’ that could be relevant to registrants reporting a material cybersecurity incident to the SEC
Figure 1: Overview of information provided in an ‘AI Analyst Report’ that could be relevant to registrants reporting a material cybersecurity incident to the SEC

It should be noted that Instruction 4 to the new Form 8-K Item 1.05 specifies the “registrant need not disclose specific or technical information about its planned response to the incident or its cybersecurity systems, related networks and devices, or potential system vulnerabilities in such detail as would impede the registrant’s response or remediation of the incident” (5).

As such, the incident report generated by Darktrace may provide more information, including technical details, than is needed for the 8-K disclosure. In general, users should take appropriate measures to ensure that the information they provide in SEC reports meets the requirements outlined by the relevant regulations. Darktrace cannot recommend that an incident should be reported, nor report an incident itself.

Determine if a cybersecurity incident is material

Item 1.05 requires registrants to determine for themselves whether cybersecurity incidents qualify as ‘material’. This involves considerations such as ‘the nature scope and timing of the incident, and the material impact or reasonably likely material impact on the registrant, including its financial condition and results of operations.’

While it is up to the registrant to determine, consistent with existing legal standards, the materiality of an incident, Darktrace’s solution can provide relevant information which might aid in this evaluation. Darktrace’s Threat Visualizer user interface provides a 3-D visualization of an organization’s digital environment, allowing users to assess the likely degree to which an attack may have spread throughout their digital environment. Darktrace Cyber AI Analyst identifies connections among discrete occurrences of threatening activity, which can help registrants quickly assess the ‘scope and timing of an incident'.

Furthermore, in order to establish materiality it would be useful to understand how an attack might extend across recipients and environments. In the image below, Darktrace/Email identifies how a user was impacted across different platforms. In this example, Darktrace/Email identified an attacker that deployed a dual channel social engineering attack via both email and a SaaS platform in an effort to acquire login credentials. In this case, the attacker useding a legitimate SharePoint link that only reveals itself to be malicious upon click. Once the attacker gained the credentials, it proceeded to change email rules to obfuscate its activity.

Darktrace/Email presents this information in one location, making such investigations easier for the end user.

Darktrace/Email indicating a threat across SaaS and email
Figure 2: Darktrace/Email indicating a threat across SaaS and email

What is regulation S-K item 106 of the SEC cybersecurity rules?

The new rules add Item 106 to Regulation S-K requiring registrants to disclose certain information regarding their risk management, strategy, and governance relating to cybersecurity in their annual reports on Form 10-K. The new rules add Item 16K to Form 20-F to require comparable disclosure by [foreign private issuers] in their annual reports on Form 20-F. (6)

SEC cybersecurity rules: Risk management

Specifically, with respect to risk management, Item 106(b) and Item 16K(b) require registrants to describe their processes, if any, for assessing, identifying, and managing material risks from cybersecurity threats, as well as whether any risks from cybersecurity threats, including as a result of any previous cybersecurity incidents, have materially affected or are reasonably likely to materially affect them. The new rules include a non-exclusive list of disclosure items registrants should provide based on their facts and circumstances. (6)

SEC cybersecurity rules: Governance

With respect to governance, Item 106 and Item 16K require registrants to describe the board of directors’ oversight of risks from cybersecurity threats (including identifying any board committee or subcommittee responsible for such oversight) and management’s role in assessing and managing material risks from cybersecurity threats. (6)

How can Darktrace solutions aid in disclosing their risk management, strategy, and governance related to cybersecurity?

Impact scores

Darktrace End-to-End (E2E) leverages AI to understand the complex relationships across users and devices to model possible attack paths, giving security teams a contextual understanding of risk across their digital environments beyond isolated CVEs or CVSS scores. Additionally, teams can prioritize risk management actions to increase their cyber resilience through the E2E Advisory dashboard.

Attack paths consider:

  • Potential damages: Both the potential consequences if a given device was compromised and its immediate implications on other devices.
  • Exposure: Devices' level of interactivity and accessibility. For example, how many emails does a user get via mailing lists and from what kind of sources?
  • Impact: Where a user or asset sits in terms of the IT or business hierarchy and how they communicate with each other. Darktrace can simulate a range of possible outcomes for an uncertain event.
  • Weakness: A device’s patch latency and difficulty, a composite metric that looks at attacker MITRE methods and our own scores to determine how hard each stage of compromise is to achieve.

Because the SEC cybersecurity rules require “oversight of risks from cybersecurity threats” and “management’s role in assessing and managing material risks from cybersecurity threats” (6), the scores generated by Darktrace E2E can aid end-user’s ability to identify risks facing their organization and assign responsibilities to address those risks.

E2E attack paths leverage a deep understanding of a customer’ digital environment and highlight potential attack routes that an attacker could leverage to reach critical assets or entities. Difficulty scores (see Figure 5) allow security teams to measure potential damage, exposure, and impact of an attack on a specific asset or entity.

An example of an attack path in a digital environment
Figure 3: An example of an attack path in a digital environment

Automatic executive threat reports

Darktrace’s solution automatically produces Executive Threat Reports that present a simple visual overview of model breaches (i.e., indicators of unusual and threatening behaviors) and activity in the network environment. Reports can be customized to include extra details or restricted to high level information.

These reports can be generated on a weekly, quarterly, and yearly basis, and can be documented by registrants in relation to Item 106(b) to document parts of their efforts toward assessing, identifying, and managing material risks from cybersecurity threats.

Moreover, Cyber AI Analyst incident reports (described above) can be leveraged to document key details concerning significant previous incidents identified by the Darktrace solution that the registrant determined to be ‘material’.

While the disclosures required by Item 106(c) relate to the governance processes by which the board of directors, the management, and other responsible bodies within an organization oversee risks resulting from cybersecurity threats, the information provided by Darktrace’s Executive Threat Reports and Cyber AI Analyst incident reports can also help relevant stakeholders communicate more effectively regarding the threat landscape and previous incidents.


The material above is provided for informational purposes only. This summary does not constitute legal or compliance advice, recommendations, or guidance. Darktrace encourages you to verify the contents of this summary with your own advisors.


  1. Note that the rule does not set forth any specific timeline between the incident and the materiality determination, but the materiality determination should be made without unreasonable delay.
Continue reading
About the author
Kendra Gonzalez Duran
Director of Technology Innovation


Inside the SOC

Hashing out TA577: Darktrace’s Detection of NTLM Hash Theft

Default blog imageDefault blog image
Jul 2024

What is credential theft and how does it work?

What began as a method to achieve unauthorized access to an account, often driven by the curiosity of individual attackers, credentials theft become a key tactic for malicious actors and groups, as stolen login credentials can be abused to gain unauthorized access to accounts and systems. This access can be leveraged to carry out malicious activities such as data exfiltration, fraud, espionage and malware deployment.

It is therefore no surprise that the number of dark web marketplaces selling privileged credentials has increased in recent years, making it easier for malicious actors to monetize stolen credentials [1]. This, in turn, has created new opportunities for threat actors to use increasingly sophisticated tactics such as phishing, social engineering and credential stuffing in their attacks, targeting individuals, organizations and government entities alike [1].

Credential theft example

TA577 Threat Actor

TA577 is a threat actor known to leverage stolen credentials, also known as Hive0118 [2], an initial access broker (IAB) group that was previously known for delivering malicious payloads [2]. On March 4, 2024, Proofpoint reported evidence of TA577 using a new attack chain with a different aim in mind: stealing NT LAN Manager (NTLM) hashes that can be used to authenticate to systems without needing to know plaintext passwords [3].

How does TA577 steal credentials?

Proofpoint reported that this new attack chain, which was first observed on February 26 and 27, was made up of two distinct campaigns. The first campaign consisted of a phishing attack featuring tens of thousands of emails targeting hundreds of organizations globally [3]. These phishing emails often appeared as replies to previous messages (thread hijacking) and contained zipped HTML attachments that each contained a unique file hash, customized for each recipient [3]. These attached files also contained a HTTP Meta refresh function, which triggered an automatic connection to a text file hosted on external IP addresses running as SMB servers [3].

When attempting to access the text file, the server requires an SMB session authentication via NTLM. This session is initiated when a client sends an ‘SMB_COM_NEGOTIATE’ request to the server, which answers with a ‘SMB_COM_NEGOTIATE’ response.

The client then proceeds to send a ‘SMB_COM_SESSION_SETUP_ANDX’ request to start the SMB session setup process, which includes initiating the NTLM authentication process. The server responds with an ‘SMB_COM_SESSION_SETUP_ANDX’ response, which includes an NTLM challenge message [6].

The client can then use the challenge message and its own credentials to generate a response by hashing its password using an NTLM hash algorithm. The response is sent to the server in an ‘SMB_COM_SESSION_SETUP_ANDX’ request. The server validates the response and, if the authentication is successful, the server answers with a final ‘SMB_COM_SESSION_SETUP_ANDX’ response, which completes the session setup process and allows the client to access the file listed on the server [6].

What is the goal of threat actor TA577?

As no malware delivery was detected during these sessions, researchers have suggested that the aim of TA577 was not to deliver malware, but rather to take advantage of the NTLMV2 challenge/response to steal NTLM authentication hashes [3] [4]. Hashes stolen by attackers can be exploited in pass-the-hash attacks to authenticate to a remote server or service [4]. They can also be used for offline password cracking which, if successful, could be utilized to escalate privileges or perform lateral movement through a target network [4]. Under certain circumstances, these hashes could also permit malicious actors to hijack accounts, access sensitive information and evade security products [4].

The open-source toolkit Impacket, which includes modules for password cracking [5] and which can be identified by the default NTLM server challenge “aaaaaaaaaaaaaaaa”[3], was observed during the SMB sessions. This indicates that TA577 actor aim to use stolen credentials for password cracking and pass-the-hash attacks.

TA577 has previously been associated with Black Basta ransomware infections and Qbot, and has been observed delivering various payloads including IcedID, SystemBC, SmokeLoader, Ursnif, and Cobalt Strike [2].This change in tactic to follow the current trend of credential theft may indicate that not only are TA577 actors aware of which methods are most effective in the current threat landscape, but they also have monetary and time resources needed to create new methods to bypass existing detection tools [3].  

Darktrace’s Coverage of TA577 Activity

On February 26 and 26, coinciding with the campaign activity reported by Proofpoint, Darktrace/Email™ observed a surge of inbound emails from numerous suspicious domains targeting multiple customer environments. These emails consistently included zip files with seemingly randomly generated names, containing HTLM content and links to an unusual external IP address [3].

A summary of anomaly indicators seen for a campaign email sent by TA577, as detected by Darktrace/Email.
Figure 1: A summary of anomaly indicators seen for a campaign email sent by TA577, as detected by Darktrace/Email.
Details of the name and size of the .zip file attached to a campaign email, along with the Darktrace/Email model alerts triggered by the email.
Figure 2: Details of the name and size of the .zip file attached to a campaign email, along with the Darktrace/Email model alerts triggered by the email.

The URL of these links contained an unusually named .txt file, which corresponds with Proofpoint reports of the automatic connection to a text file hosted on an external SMB server made when the attachment is opened [3].

A link to a rare external IP address seen within a campaign email, containing an unusually named .txt file.
Figure 3: A link to a rare external IP address seen within a campaign email, containing an unusually named .txt file.

Darktrace identified devices on multiple customer networks connecting to external SMB servers via the SMB protocol. It understood this activity was suspicious as the SMB protocol is typically reserved for internal connections and the endpoint in question had never previously been observed on the network.

The Event Log of a ‘Compliance / External Windows Communication’ model alert showing a connection to an external SMB server on destination port 445.
Figure 4: The Event Log of a ‘Compliance / External Windows Communication’ model alert showing a connection to an external SMB server on destination port 445.
External Sites Summary highlighting the rarity of the external SMB server.
Figure 5: External Sites Summary highlighting the rarity of the external SMB server.
External Sites Summary highlightin that the SMB server is geolocated in Moldova.
Figure 6: External Sites Summary highlightin that the SMB server is geolocated in Moldova.

During these connections, Darktrace observed multiple devices establishing an SMB session to this server via a NTLM challenge/response, representing the potential theft of the credentials used in this session. During this session, some devices also attempted to access an unusually named .txt file, further indicating that the affected devices were trying to access the .txt file hosted on external SMB servers [3].

Packet captures (PCAPs) of these sessions show the default NTLM server challenge, indicating the use of Impacket, suggesting that the captured NTLM hashes were to be used for password cracking or pass-the-hash-attacks [3]

PCAP analysis showing usage of the default NTLM server challenge associated with Impacket.
Figure 7: PCAP analysis showing usage of the default NTLM server challenge associated with Impacket.


Ultimately, Darktrace’s suite of products effectively detected and alerted for multiple aspects of the TA577 attack chain and NTLM hash data theft activity across its customer base. Darktrace/Email was able to uncover the inbound phishing emails that served as the initial access vector for TA577 actors, while Darktrace DETECT identified the subsequent external connections to unusual external locations and suspicious SMB sessions.

Furthermore, Darktrace’s anomaly-based approach enabled it to detect suspicious TA577 activity across the customer base on February 26 and 27, prior to Proofpoint’s report on their new attack chain. This showcases Darktrace’s ability to identify emerging threats based on the subtle deviations in a compromised device’s behavior, rather than relying on a static list of indicators of compromise (IoCs) or ‘known bads’.

This approach allows Darktrace to remain one step ahead of increasingly adaptive threat actors, providing organizations and their security teams with a robust AI-driven solution able to safeguard their networks in an ever-evolving threat landscape.

Credit to Charlotte Thompson, Cyber Analyst, Anna Gilbertson, Cyber Analyst.









Darktrace Model Detections


·       Attachment / Unsolicited Archive File

·       Attachment / Unsolicited Attachment

·       Link / New Correspondent Classified Link

·       Link / New Correspondent Rare Link

·       Spoof / Internal User Similarities

Darktrace DETECT

·       Compliance / External Windows Communications

Darktrace RESPOND

·       Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block


IoC - Type - Description

176.123.2[.]146 - IP address -Likely malicious SMB Server

89.117.2[.]33 - IP address - Likely malicious SMB Server

89.117.1[.]161 - IP address - Likely malicious SMB Server

104.129.20[.]167 - IP address - Likely malicious SMB Server

89.117.1[.]160 - IP address - Likely malicious SMB Server

85.239.33[.]149 - IP address - Likely malicious SMB Server

89.117.2[.]34 - IP address - Likely malicious SMB Server

146.19.213[.]36 - IP address - Likely malicious SMB Server

66.63.188[.]19 - IP address - Likely malicious SMB Server

103.124.104[.]76 - IP address - Likely malicious SMB Server

103.124.106[.]224 - IP address - Likely malicious SMB Server

\5aohv\9mn.txt - SMB Path and File - SMB Path and File

\hvwsuw\udrh.txt - SMB Path and File - SMB Path and File

\zkf2rj4\VmD.txt = SMB Path and File - SMB Path and File

\naams\p3aV.txt - SMB Path and File - SMB Path and File

\epxq\A.txt - SMB Path and File - SMB Path and File

\dbna\H.txt - SMB Path and File - SMB Path and File – Filename - Phishing Attachment

e751f9dddd24f7656459e1e3a13307bd03ae4e67 - SHA1 Hash - Phishing Attachment  - Filename - Phishing Attachment

db982783b97555232e28d5a333525118f10942e1 - SHA1 Hash - Phishing Attachment

aaaaaaaaaaaaaaaa - NTLM Server Challenge -Impacket Default NTLM Challenge

MITRE ATT&CK Tactics, Techniques and Procedures (TTPs)

Tactic - Technique

TA0001            Initial Access

TA0002            Execution

TA0008            Lateral Movement

TA0003            Persistence

TA0005            Defense Evasion

TA0006            Credential Access

T1021.002       SMB/Windows Admin Shares

T1021  Remote Services

T1566.001       Spearfishing Attachment

T1566  Phishing

T1204.002       Malicious File

T1204  User Execution

T1021.002       SMB/Windows Admin Shares

T1574  Hijack Execution Flow

T1021  Remote Services

T1555.004       Windows Credential Manager

T1555  Credentials from Password Stores

Continue reading
About the author
Charlotte Thompson
Cyber Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.