Blog
/
Network
/
October 18, 2022

Kill Chain Insights: Detecting AutoIT Malware Compromise

Discover how AutoIt malware operates and learn strategies to combat this emerging threat in our latest blog post.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Joel Davidson
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Oct 2022

Introduction 

Good defence is like an onion, it has layers. Each part of a security implementation should have checks built in so that if one wall is breached, there are further contingencies. Security aficionados call this ‘defence in depth’, a military concept introduced to the cyber-sphere in 2009 [1]. Since then, it has remained a central tenet when designing secure systems, digital or otherwise [2]. Despite this, the attacker’s advantage is ever-present with continued development of malware and zero-day exploits. No matter how many layers a security platform has, how can organisations be expected to protect against a threat they do not know or even understand? 

Take the case of one Darktrace customer, a government-contracted manufacturing company located in the Americas. This company possesses a modern OT and IT network comprised of several thousand devices. They have dozens of servers, a few of which host Microsoft Exchange. Every week, these few mail servers receive hundreds of malicious payloads which will ultimately attempt to make their way into over a thousand different inboxes while dodging different security gateways. Had the RESPOND portion of Darktrace for Email been properly enabled, this is where the story would have ended. However, in June 2022 an employee made an instinctual decision that could have potentially cost the company its time, money, and reputation as a government contractor. Their crime: opening an unknown html file attached to a compelling phishing email. 

Following this misstep, a download was initiated which resulted in compromise of the system via vulnerable Microsoft admin tools from endpoints largely unknown to conventional OSINT sources. Using these tools, further malicious connectivity was accomplished before finally petering out. Fortunately, their existing Microsoft security gateway was up to date on the command and control (C2) domains observed in this breach and refused the connections.

Darktrace detected this activity at every turn, from the initial email to the download and subsequent attempted C2. Cyber AI Analyst stitched the events together for easy understanding and detected Indicators of Compromise (IOCs) that were not yet flagged in the greater intelligence community and, critically, did this all at machine speed. 

So how did the attacker evade action for so long? The answer is product misconfiguration - they did not refine their ‘layers’.  

Attack Details

On the night of June 8th an employee received a malicious email. Darktrace detected that this email contained a html attachment which itself contained links to endpoints 100% rare to the network. This email also originated from a never-before-seen sender. Although it would usually have been withheld based on these factors, the customer’s Darktrace/Email deployment was set to Advisory Mode meaning it continued through to the inbox. Late the next day, this user opened the attachment which then routed them to the 100% rare endpoint ‘xberxkiw[.]club’, a probable landing page for malware that did not register on OSINT available at the time.

Figure 1- Popular OSINT VirusTotal showing zero hits against the rare endpoint 

Only seconds after reaching the endpoint, Darktrace detected the Microsoft BITS user agent reaching out to another 100% rare endpoint ‘yrioer[.]mikigertxyss[.]com’, which generated a DETECT/Network model breach, ‘Unusual BITS Activity’. This was immediately suspicious since BITS is a deprecated and insecure windows admin tool which has been known to facilitate the movement of malicious payloads into and around a network. Upon successfully establishing a connection, the affected device began downloading a self-professed .zip file. However, Darktrace detected this file to be an extension-swapped .exe file. A PCAP of this activity can be seen below in Figure 2.

Figure 2- PCAP highlighting BITs service connections and false .zip (.exe) download

This activity also triggered a correlating breach of the ‘Masqueraded File Transfer’ model and pushed a high-fidelity alert to the Darktrace Proactive Threat Notification (PTN) service. This ensured both Darktrace and the customer’s SOC team were alerted to the anomalous activity.

At this stage the local SOC were likely beginning their triage. However further connections were being made to extend the compromise on the employee’s device and the network. The file they downloaded was later revealed to be ‘AutoIT3.exe’, a default filename given to any AutoIt script. AutoIt scripts do have legitimate use cases but are often associated with malicious activity for their ability to interact with the Windows GUI and bypass client protections. After opening, these scripts would launch on the host device and probe for other weaknesses. In this case, the script may have attempted to hunt passwords/default credentials, scan the local directory for common sensitive files, or scout local antivirus software on the device. It would then share any information gathered via established C2 channels.  

After the successful download of this mismatched MIME type, the device began attempting to further establish C2 to the endpoint ‘dirirxhitoq[.]kialsoyert[.]tk’. Even though OSINT still did not flag this endpoint, Darktrace detected this outreach as suspicious and initiated its first Cyber AI Analyst investigation into the beaconing activity. Following the sixth connection made to this endpoint on the 10th of June, the infected device breached C2 models, such as ‘Agent Beacon (Long Period)’ and ‘HTTP Beaconing to Rare Destination’. 

As the beaconing continued, it was clear that internal reconnaissance from AutoIt was not widely achieved, although similar IOCs could be detected on at least two other internal devices. This may represent other users opening the same malicious email, or successful lateral movement and infection propagation from the initial user/device. However comparatively, these devices did not experience the same level of infection as the first employee’s machine and never downloaded any malicious executables. AutoIt has a history of being used to deliver information stealers, which suggests a possible motivation had wider network compromise been successful [3].

Thankfully, after the 10th of June no further exploitation was observed. This was likely due to the combined awareness and action brought by the PTN alerting, static security gateways and action from the local security team. The company were protected thanks to defence in depth.  

Darktrace Coverage

Despite this, the role of Darktrace itself cannot be understated. Darktrace/Email was integral to the early detection process and provided insight into the vector and delivery methods used by this attacker. Post-compromise, Darktrace/Network also observed the full range of suspicious activity brought about by this incursion. In particular, the AI analyst feature played a major role in reducing the time for the SOC team to triage by detecting and flagging key information regarding some of the earliest IOCs.

Figure 3- Sample information pulled by AI analyst about one of the involved endpoints

Alongside the early detection, there were several instances where RESPOND/Network would have intervened however autonomous actions were limited to a small test group and not enabled widely throughout the customer’s deployment. As such, this activity continued unimpeded- a weak layer. Figure 4 highlights the first Darktrace RESPOND action which would have been taken.

Figure 4- Upon detecting the download of a mismatched mime from a rare endpoint, Darktrace RESPOND would have blocked all connections to the rare endpoint on the relevant port in a targeted manner

This Darktrace RESPOND action provides a precise and limited response by blocking the anomalous file download. However, after continued anomalous activity, RESPOND would have strengthened its posture and enforced stronger curbs across the wider anomalous activity. This stronger enforcement is a measure designed to relegate a device to its established norm. The breach which would generate this response can be seen below:

Figure 5- After a prolonged period of anomalous activity, Darktrace RESPOND would have stepped in to enforce the typical pattern of life observed on this device

Although Darktrace RESPOND was not fully enabled, this company had an extra layer of security in the PTN service, which alerted them just minutes after the initial file download was detected, alongside details relevant to the investigation. This ensured both Darktrace analysts and their own could review the activity and begin to isolate and remediate the threat. 

Concluding Insights

Thankfully, with multiple layers in their security, the customer managed to escape this incident largely unscathed. Quick and comprehensive email and network detection, customer alerting and local gateway blocking C2 connections ensured that the infection did not have leeway to propagate laterally throughout the network. However, even though this infection did not lead to catastrophe, the fact that it happened in the first place should be a learning point. 

Had RESPOND/Email been properly configured, this threat would have been stopped before reaching its intended recipients, removing the need to rely on end-users as a security measure. Furthermore, had RESPOND/Network been utilized beyond a limited test group, this activity would have been blocked at every other step of the network-level kill chain. From the anomalous MIME download to the establishment of C2, Darktrace RESPOND would have been able to effectively isolate and quarantine this activity to the host device, without any reliance on slow-to-update OSINT sources. RESPOND allows for the automation of time-sensitive security decisions and adds a powerful layer of defence that conventional security solutions cannot provide. Although it can be difficult to relinquish human ownership of these decisions, doing so is necessary to prevent unknown attackers from infiltrating using unknown vectors to achieve unknown ends.  

In conclusion, this incident demonstrates an effective case study around detecting a threat with novel IOCs. However, it is also a reminder that a company’s security makeup can always be improved. Overall, when building security layers in a company’s ‘onion’, it is great to have the best tools, but it is even greater to use them in the best way. Only with continued refining can organisations guarantee defence in depth. 

Thanks to Connor Mooney and Stefan Rowe for their contributions.

Appendices

Darktrace Model Detections

·      Anomalous File / EXE from Rare External Location 

·      Compromise / Agent Beacon (Long Period) 

·      Compromise / HTTP Beaconing to Rare Destination 

·      Device / Large Number of Model Breaches 

·      Device / Suspicious Domain 

·      Device / Unusual BITS Activity 

·      Enhanced Monitoring: Anomalous File / Masqueraded File Transfer 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Joel Davidson
Cyber Analyst

More in this series

No items found.

Blog

/

AI

/

December 23, 2025

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI