Blog
/
Network
/
October 18, 2022

Kill Chain Insights: Detecting AutoIT Malware Compromise

Discover how AutoIt malware operates and learn strategies to combat this emerging threat in our latest blog post.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Joel Davidson
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Oct 2022

Introduction 

Good defence is like an onion, it has layers. Each part of a security implementation should have checks built in so that if one wall is breached, there are further contingencies. Security aficionados call this ‘defence in depth’, a military concept introduced to the cyber-sphere in 2009 [1]. Since then, it has remained a central tenet when designing secure systems, digital or otherwise [2]. Despite this, the attacker’s advantage is ever-present with continued development of malware and zero-day exploits. No matter how many layers a security platform has, how can organisations be expected to protect against a threat they do not know or even understand? 

Take the case of one Darktrace customer, a government-contracted manufacturing company located in the Americas. This company possesses a modern OT and IT network comprised of several thousand devices. They have dozens of servers, a few of which host Microsoft Exchange. Every week, these few mail servers receive hundreds of malicious payloads which will ultimately attempt to make their way into over a thousand different inboxes while dodging different security gateways. Had the RESPOND portion of Darktrace for Email been properly enabled, this is where the story would have ended. However, in June 2022 an employee made an instinctual decision that could have potentially cost the company its time, money, and reputation as a government contractor. Their crime: opening an unknown html file attached to a compelling phishing email. 

Following this misstep, a download was initiated which resulted in compromise of the system via vulnerable Microsoft admin tools from endpoints largely unknown to conventional OSINT sources. Using these tools, further malicious connectivity was accomplished before finally petering out. Fortunately, their existing Microsoft security gateway was up to date on the command and control (C2) domains observed in this breach and refused the connections.

Darktrace detected this activity at every turn, from the initial email to the download and subsequent attempted C2. Cyber AI Analyst stitched the events together for easy understanding and detected Indicators of Compromise (IOCs) that were not yet flagged in the greater intelligence community and, critically, did this all at machine speed. 

So how did the attacker evade action for so long? The answer is product misconfiguration - they did not refine their ‘layers’.  

Attack Details

On the night of June 8th an employee received a malicious email. Darktrace detected that this email contained a html attachment which itself contained links to endpoints 100% rare to the network. This email also originated from a never-before-seen sender. Although it would usually have been withheld based on these factors, the customer’s Darktrace/Email deployment was set to Advisory Mode meaning it continued through to the inbox. Late the next day, this user opened the attachment which then routed them to the 100% rare endpoint ‘xberxkiw[.]club’, a probable landing page for malware that did not register on OSINT available at the time.

Figure 1- Popular OSINT VirusTotal showing zero hits against the rare endpoint 

Only seconds after reaching the endpoint, Darktrace detected the Microsoft BITS user agent reaching out to another 100% rare endpoint ‘yrioer[.]mikigertxyss[.]com’, which generated a DETECT/Network model breach, ‘Unusual BITS Activity’. This was immediately suspicious since BITS is a deprecated and insecure windows admin tool which has been known to facilitate the movement of malicious payloads into and around a network. Upon successfully establishing a connection, the affected device began downloading a self-professed .zip file. However, Darktrace detected this file to be an extension-swapped .exe file. A PCAP of this activity can be seen below in Figure 2.

Figure 2- PCAP highlighting BITs service connections and false .zip (.exe) download

This activity also triggered a correlating breach of the ‘Masqueraded File Transfer’ model and pushed a high-fidelity alert to the Darktrace Proactive Threat Notification (PTN) service. This ensured both Darktrace and the customer’s SOC team were alerted to the anomalous activity.

At this stage the local SOC were likely beginning their triage. However further connections were being made to extend the compromise on the employee’s device and the network. The file they downloaded was later revealed to be ‘AutoIT3.exe’, a default filename given to any AutoIt script. AutoIt scripts do have legitimate use cases but are often associated with malicious activity for their ability to interact with the Windows GUI and bypass client protections. After opening, these scripts would launch on the host device and probe for other weaknesses. In this case, the script may have attempted to hunt passwords/default credentials, scan the local directory for common sensitive files, or scout local antivirus software on the device. It would then share any information gathered via established C2 channels.  

After the successful download of this mismatched MIME type, the device began attempting to further establish C2 to the endpoint ‘dirirxhitoq[.]kialsoyert[.]tk’. Even though OSINT still did not flag this endpoint, Darktrace detected this outreach as suspicious and initiated its first Cyber AI Analyst investigation into the beaconing activity. Following the sixth connection made to this endpoint on the 10th of June, the infected device breached C2 models, such as ‘Agent Beacon (Long Period)’ and ‘HTTP Beaconing to Rare Destination’. 

As the beaconing continued, it was clear that internal reconnaissance from AutoIt was not widely achieved, although similar IOCs could be detected on at least two other internal devices. This may represent other users opening the same malicious email, or successful lateral movement and infection propagation from the initial user/device. However comparatively, these devices did not experience the same level of infection as the first employee’s machine and never downloaded any malicious executables. AutoIt has a history of being used to deliver information stealers, which suggests a possible motivation had wider network compromise been successful [3].

Thankfully, after the 10th of June no further exploitation was observed. This was likely due to the combined awareness and action brought by the PTN alerting, static security gateways and action from the local security team. The company were protected thanks to defence in depth.  

Darktrace Coverage

Despite this, the role of Darktrace itself cannot be understated. Darktrace/Email was integral to the early detection process and provided insight into the vector and delivery methods used by this attacker. Post-compromise, Darktrace/Network also observed the full range of suspicious activity brought about by this incursion. In particular, the AI analyst feature played a major role in reducing the time for the SOC team to triage by detecting and flagging key information regarding some of the earliest IOCs.

Figure 3- Sample information pulled by AI analyst about one of the involved endpoints

Alongside the early detection, there were several instances where RESPOND/Network would have intervened however autonomous actions were limited to a small test group and not enabled widely throughout the customer’s deployment. As such, this activity continued unimpeded- a weak layer. Figure 4 highlights the first Darktrace RESPOND action which would have been taken.

Figure 4- Upon detecting the download of a mismatched mime from a rare endpoint, Darktrace RESPOND would have blocked all connections to the rare endpoint on the relevant port in a targeted manner

This Darktrace RESPOND action provides a precise and limited response by blocking the anomalous file download. However, after continued anomalous activity, RESPOND would have strengthened its posture and enforced stronger curbs across the wider anomalous activity. This stronger enforcement is a measure designed to relegate a device to its established norm. The breach which would generate this response can be seen below:

Figure 5- After a prolonged period of anomalous activity, Darktrace RESPOND would have stepped in to enforce the typical pattern of life observed on this device

Although Darktrace RESPOND was not fully enabled, this company had an extra layer of security in the PTN service, which alerted them just minutes after the initial file download was detected, alongside details relevant to the investigation. This ensured both Darktrace analysts and their own could review the activity and begin to isolate and remediate the threat. 

Concluding Insights

Thankfully, with multiple layers in their security, the customer managed to escape this incident largely unscathed. Quick and comprehensive email and network detection, customer alerting and local gateway blocking C2 connections ensured that the infection did not have leeway to propagate laterally throughout the network. However, even though this infection did not lead to catastrophe, the fact that it happened in the first place should be a learning point. 

Had RESPOND/Email been properly configured, this threat would have been stopped before reaching its intended recipients, removing the need to rely on end-users as a security measure. Furthermore, had RESPOND/Network been utilized beyond a limited test group, this activity would have been blocked at every other step of the network-level kill chain. From the anomalous MIME download to the establishment of C2, Darktrace RESPOND would have been able to effectively isolate and quarantine this activity to the host device, without any reliance on slow-to-update OSINT sources. RESPOND allows for the automation of time-sensitive security decisions and adds a powerful layer of defence that conventional security solutions cannot provide. Although it can be difficult to relinquish human ownership of these decisions, doing so is necessary to prevent unknown attackers from infiltrating using unknown vectors to achieve unknown ends.  

In conclusion, this incident demonstrates an effective case study around detecting a threat with novel IOCs. However, it is also a reminder that a company’s security makeup can always be improved. Overall, when building security layers in a company’s ‘onion’, it is great to have the best tools, but it is even greater to use them in the best way. Only with continued refining can organisations guarantee defence in depth. 

Thanks to Connor Mooney and Stefan Rowe for their contributions.

Appendices

Darktrace Model Detections

·      Anomalous File / EXE from Rare External Location 

·      Compromise / Agent Beacon (Long Period) 

·      Compromise / HTTP Beaconing to Rare Destination 

·      Device / Large Number of Model Breaches 

·      Device / Suspicious Domain 

·      Device / Unusual BITS Activity 

·      Enhanced Monitoring: Anomalous File / Masqueraded File Transfer 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Joel Davidson
Cyber Analyst

More in this series

No items found.

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher

Blog

/

/

April 22, 2025

How NDR and Secure Access Service Edge (SASE) Work Together to Achieve Network Security Outcomes

woman looking out at buildingsDefault blog imageDefault blog image

Modern networks are evolving rapidly, with traffic patterns, user behavior, and critical assets extending far beyond the boundaries of traditional network security tools. As organizations adopt hybrid infrastructures, remote working, and cloud-native services, it is essential to maintain visibility and protect this expanding attack surface.

Network Detection and Response (NDR) and Secure Access Service Edge (SASE) are two technologies commonly used to safeguard organizational networks. While both play crucial roles in enhancing security, one does not replace the other. Instead, NDR and SASE complement each other, taking on different roles to create a robust network security framework. This blog will unpack the relationship between NDR and SASE, including the component functionalities that comprise SASE, highlighting their unique contributions to maintaining a comprehensive and resilient network security strategy.

Network Detection and Response (NDR) and Secure Access Service Edge (SASE) explained

NDR solutions, such as Darktrace / NETWORK, are designed to detect, investigate, and respond to suspicious activities within any network. By leveraging machine learning and behavioral analytics, NDR continuously monitors network traffic to identify anomalies that could indicate potential threats and to contain those threats at machine speed. These solutions analyze both North-South traffic (between internal and external networks) and East-West traffic (within internal networks), providing comprehensive visibility into network activities.

SASE, on the other hand, comprises multiple solutions, focused on providing hybrid and remote users access to services while adhering to the Zero Trust principle of "never trust, always verify". Within SASE architectures, Zero Trust Network Access (ZTNA) solutions provide secure remote access to private applications and services the user has been explicitly granted, and Secure Web Gateways (SWG) provide Internet access, again based on policy groups. Unlike traditional security models that grant implicit trust to users within the network perimeter, ZTNA requires continuous verification of user identity and device health before granting access to resources. This approach minimizes the attack surface and reduces the risk of unauthorized access to sensitive data and internal applications. Similarly, SWGs filter web traffic based on the verified user identity and can block known malware, further reducing the attack surface for the client estate.

Limitations of SASE highlights the importance of NDR

While SASE, including ZTNA and SWG, is a powerful tool for enforcing secure access to company networks and resources as well as the Internet, it is not a comprehensive security solution, or a replacement for dedicated network monitoring and NDR capabilities. Some of the main limitations include:

  • Focused on policies rather than security: SASE delivers strong networking outcomes but provides policy-based protections, rather than a full suite of security features. It can provide simple alerting for disallowed actions, but it lacks the security context needed for comprehensive threat detection, such as knowing if user credentials have been compromised.
  • Can only detect known threats: SASE solutions cannot detect novel attacks such as zero-days and insider threats. This is because they rely on a rule-based approach that does not have a behavioral understanding of network entities that can detect anomalies or suspicious activity.
  • Limited response capabilities: Due to the limited detection capabilities of SASE solutions, it is not possible to automate response actions to threats that slip past existing policies.  While access to internal resources and the Internet can be revoked or severely limited as part of a response, this must be done after human investigation and analysis, allowing more time for the threat to continue before being contained.
  • Limited scope: SASE provides cloud-hosted secure networking, which lends itself much more toward the client estate of any organization. As a result, servers and unmanaged devices—whether IT/IoT/OT—are mostly out of scope and do not benefit from the policies SASE enforces.

The complementary roles of NDR and ZTNA

NDR solutions provide full visibility into network activity, with the ability to detect and respond to threats that may bypass initial access controls and filters. When combined, NDR and SASE create a layered security approach that addresses different aspects of network security, for example:

  • Detection of novel, unknown and insider threats: NDR solutions can monitor all network traffic using behavioral anomaly detection. This can identify suspicious activities, such as insider threats from authorized users who have passed policy checks, or novel attacks that have never been seen before.
  • Validation of policies: By continuously monitoring network traffic, NDR can validate the effectiveness of existing policies and identify any gaps in security that need addressing due to organizational changes or outdated rule sets.
  • Reducing risk and impact of threats: Together, SASE and NDR solutions shift toward proactive security by reducing the potential impact of a threat through predefined policies and by detecting and containing a threat in its earliest stages, even if it is novel or nuanced.
  • Enhanced contextual information: Alerts raised by SASE solutions can provide additional context into potential threats, which can be used by NDR solutions to increase investigation quality and context.
  • Containment of network threats: SASE solutions can prohibit access to resources on an internal company network or on the Internet if predefined access control criteria are not met or a site matches a threat signature. When combined with an NDR solution, organizations can go far beyond this, detecting and responding to a much wider variety of network threats to prevent attacks from escalating.

When implementing SASE and NDR solutions, it is also crucial to consider the best configurations to maximize interoperability, and integrations will often increase functionality. Well-designed implementations, combined with integrations, will strengthen both SASE and NDR solutions for organizations.

How Darktrace continues to secure SASE networks

With the latest 6.3 update, Darktrace continues to extend its capabilities with new innovations that support modern enterprise networks and the use of SASE across remote and hybrid worker devices. This expands on existing Darktrace integrations and partnerships with SASE vendors such as Netskope and Zscaler.

Traditional methods to contain remote access and internet-born threats are either signature or policy based, and response to nuanced threats requires manual, human-led investigation and decision-making. By the time security teams can react, the damage is often already done.

With Darktrace 6.3, customers using Zscaler can now configure Darktrace Autonomous Response to quarantine ZPA-connected user devices at machine speed. This provides a powerful new mechanism for containing remote threats at the earliest sign of suspicious activity, without disrupting broader operations.

By automatically shutting down ZPA access for compromised user accounts, Darktrace gives SOC teams valuable time to investigate and respond, while continuing to protect the rest of the organization. This integration enhances Darktrace’s ability to take actions for remote user devices, helping customers contain threats faster and keep the business running smoothly.

For organizations using SASE technologies to address the challenges of securing large, distributed networks across a range of geographies, SaaS applications and remote worker devices, Darktrace also now integrates with Netskope Cloud TAP to provide visibility into and analysis over tunneled traffic, reducing blind spots and enabling organizations to maintain detection capabilities across their expanding network perimeters.

Conclusion

While NDR and ZTNA serve distinct purposes, their integration is crucial for a comprehensive security strategy. ZTNA provides robust access controls, ensuring that only authorized users can access network resources. NDR, on the other hand, offers continuous visibility into network activities, detecting and responding to threats that may bypass initial access controls. By leveraging the strengths of both solutions, organizations can enhance their security posture and protect against a wide range of network security threats.

Understanding the complementary roles of NDR and ZTNA is essential for building a resilient security framework. As cyber threats continue to evolve, adopting a multi-layered, defense-in-depth security approach will be key to safeguarding organizational networks.

Click here for more information about the latest product innovations in Darktrace 6.3, or learn more about Darktrace / NETWORK here.

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI