Blog
/

Inside the SOC

/
October 18, 2022

Kill Chain Insights: Detecting AutoIT Malware Compromise

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Oct 2022
AutoIt can be exploited. Learn how Darktrace detected and stopped an AutoIt malware in the cyber kill chain. Enhance cyber security with Darktrace's expertise.

Introduction 

Good defence is like an onion, it has layers. Each part of a security implementation should have checks built in so that if one wall is breached, there are further contingencies. Security aficionados call this ‘defence in depth’, a military concept introduced to the cyber-sphere in 2009 [1]. Since then, it has remained a central tenet when designing secure systems, digital or otherwise [2]. Despite this, the attacker’s advantage is ever-present with continued development of malware and zero-day exploits. No matter how many layers a security platform has, how can organisations be expected to protect against a threat they do not know or even understand? 

Take the case of one Darktrace customer, a government-contracted manufacturing company located in the Americas. This company possesses a modern OT and IT network comprised of several thousand devices. They have dozens of servers, a few of which host Microsoft Exchange. Every week, these few mail servers receive hundreds of malicious payloads which will ultimately attempt to make their way into over a thousand different inboxes while dodging different security gateways. Had the RESPOND portion of Darktrace for Email been properly enabled, this is where the story would have ended. However, in June 2022 an employee made an instinctual decision that could have potentially cost the company its time, money, and reputation as a government contractor. Their crime: opening an unknown html file attached to a compelling phishing email. 

Following this misstep, a download was initiated which resulted in compromise of the system via vulnerable Microsoft admin tools from endpoints largely unknown to conventional OSINT sources. Using these tools, further malicious connectivity was accomplished before finally petering out. Fortunately, their existing Microsoft security gateway was up to date on the command and control (C2) domains observed in this breach and refused the connections.

Darktrace detected this activity at every turn, from the initial email to the download and subsequent attempted C2. Cyber AI Analyst stitched the events together for easy understanding and detected Indicators of Compromise (IOCs) that were not yet flagged in the greater intelligence community and, critically, did this all at machine speed. 

So how did the attacker evade action for so long? The answer is product misconfiguration - they did not refine their ‘layers’.  

Attack Details

On the night of June 8th an employee received a malicious email. Darktrace detected that this email contained a html attachment which itself contained links to endpoints 100% rare to the network. This email also originated from a never-before-seen sender. Although it would usually have been withheld based on these factors, the customer’s Darktrace/Email deployment was set to Advisory Mode meaning it continued through to the inbox. Late the next day, this user opened the attachment which then routed them to the 100% rare endpoint ‘xberxkiw[.]club’, a probable landing page for malware that did not register on OSINT available at the time.

Figure 1- Popular OSINT VirusTotal showing zero hits against the rare endpoint 

Only seconds after reaching the endpoint, Darktrace detected the Microsoft BITS user agent reaching out to another 100% rare endpoint ‘yrioer[.]mikigertxyss[.]com’, which generated a DETECT/Network model breach, ‘Unusual BITS Activity’. This was immediately suspicious since BITS is a deprecated and insecure windows admin tool which has been known to facilitate the movement of malicious payloads into and around a network. Upon successfully establishing a connection, the affected device began downloading a self-professed .zip file. However, Darktrace detected this file to be an extension-swapped .exe file. A PCAP of this activity can be seen below in Figure 2.

Figure 2- PCAP highlighting BITs service connections and false .zip (.exe) download

This activity also triggered a correlating breach of the ‘Masqueraded File Transfer’ model and pushed a high-fidelity alert to the Darktrace Proactive Threat Notification (PTN) service. This ensured both Darktrace and the customer’s SOC team were alerted to the anomalous activity.

At this stage the local SOC were likely beginning their triage. However further connections were being made to extend the compromise on the employee’s device and the network. The file they downloaded was later revealed to be ‘AutoIT3.exe’, a default filename given to any AutoIt script. AutoIt scripts do have legitimate use cases but are often associated with malicious activity for their ability to interact with the Windows GUI and bypass client protections. After opening, these scripts would launch on the host device and probe for other weaknesses. In this case, the script may have attempted to hunt passwords/default credentials, scan the local directory for common sensitive files, or scout local antivirus software on the device. It would then share any information gathered via established C2 channels.  

After the successful download of this mismatched MIME type, the device began attempting to further establish C2 to the endpoint ‘dirirxhitoq[.]kialsoyert[.]tk’. Even though OSINT still did not flag this endpoint, Darktrace detected this outreach as suspicious and initiated its first Cyber AI Analyst investigation into the beaconing activity. Following the sixth connection made to this endpoint on the 10th of June, the infected device breached C2 models, such as ‘Agent Beacon (Long Period)’ and ‘HTTP Beaconing to Rare Destination’. 

As the beaconing continued, it was clear that internal reconnaissance from AutoIt was not widely achieved, although similar IOCs could be detected on at least two other internal devices. This may represent other users opening the same malicious email, or successful lateral movement and infection propagation from the initial user/device. However comparatively, these devices did not experience the same level of infection as the first employee’s machine and never downloaded any malicious executables. AutoIt has a history of being used to deliver information stealers, which suggests a possible motivation had wider network compromise been successful [3].

Thankfully, after the 10th of June no further exploitation was observed. This was likely due to the combined awareness and action brought by the PTN alerting, static security gateways and action from the local security team. The company were protected thanks to defence in depth.  

Darktrace Coverage

Despite this, the role of Darktrace itself cannot be understated. Darktrace/Email was integral to the early detection process and provided insight into the vector and delivery methods used by this attacker. Post-compromise, Darktrace/Network also observed the full range of suspicious activity brought about by this incursion. In particular, the AI analyst feature played a major role in reducing the time for the SOC team to triage by detecting and flagging key information regarding some of the earliest IOCs.

Figure 3- Sample information pulled by AI analyst about one of the involved endpoints

Alongside the early detection, there were several instances where RESPOND/Network would have intervened however autonomous actions were limited to a small test group and not enabled widely throughout the customer’s deployment. As such, this activity continued unimpeded- a weak layer. Figure 4 highlights the first Darktrace RESPOND action which would have been taken.

Figure 4- Upon detecting the download of a mismatched mime from a rare endpoint, Darktrace RESPOND would have blocked all connections to the rare endpoint on the relevant port in a targeted manner

This Darktrace RESPOND action provides a precise and limited response by blocking the anomalous file download. However, after continued anomalous activity, RESPOND would have strengthened its posture and enforced stronger curbs across the wider anomalous activity. This stronger enforcement is a measure designed to relegate a device to its established norm. The breach which would generate this response can be seen below:

Figure 5- After a prolonged period of anomalous activity, Darktrace RESPOND would have stepped in to enforce the typical pattern of life observed on this device

Although Darktrace RESPOND was not fully enabled, this company had an extra layer of security in the PTN service, which alerted them just minutes after the initial file download was detected, alongside details relevant to the investigation. This ensured both Darktrace analysts and their own could review the activity and begin to isolate and remediate the threat. 

Concluding Insights

Thankfully, with multiple layers in their security, the customer managed to escape this incident largely unscathed. Quick and comprehensive email and network detection, customer alerting and local gateway blocking C2 connections ensured that the infection did not have leeway to propagate laterally throughout the network. However, even though this infection did not lead to catastrophe, the fact that it happened in the first place should be a learning point. 

Had RESPOND/Email been properly configured, this threat would have been stopped before reaching its intended recipients, removing the need to rely on end-users as a security measure. Furthermore, had RESPOND/Network been utilized beyond a limited test group, this activity would have been blocked at every other step of the network-level kill chain. From the anomalous MIME download to the establishment of C2, Darktrace RESPOND would have been able to effectively isolate and quarantine this activity to the host device, without any reliance on slow-to-update OSINT sources. RESPOND allows for the automation of time-sensitive security decisions and adds a powerful layer of defence that conventional security solutions cannot provide. Although it can be difficult to relinquish human ownership of these decisions, doing so is necessary to prevent unknown attackers from infiltrating using unknown vectors to achieve unknown ends.  

In conclusion, this incident demonstrates an effective case study around detecting a threat with novel IOCs. However, it is also a reminder that a company’s security makeup can always be improved. Overall, when building security layers in a company’s ‘onion’, it is great to have the best tools, but it is even greater to use them in the best way. Only with continued refining can organisations guarantee defence in depth. 

Thanks to Connor Mooney and Stefan Rowe for their contributions.

Appendices

Darktrace Model Detections

·      Anomalous File / EXE from Rare External Location 

·      Compromise / Agent Beacon (Long Period) 

·      Compromise / HTTP Beaconing to Rare Destination 

·      Device / Large Number of Model Breaches 

·      Device / Suspicious Domain 

·      Device / Unusual BITS Activity 

·      Enhanced Monitoring: Anomalous File / Masqueraded File Transfer 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Joel Davidson
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 28, 2024

/

Cloud

Cloud security: addressing common CISO challenges with advanced solutions

Default blog imageDefault blog image

Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.

1. Misconfigurations: The Silent Saboteur

Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80%  of data breaches involved data stored in the cloud.1  Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.

How Darktrace / CLOUD Helps:

Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.

2. Hybrid Environments: The Migration Maze

Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.

How Darktrace / CLOUD Helps:

Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.

This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.

3. Securing Productivity Suites: The Last Mile

Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.

How Darktrace helps:

Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:

   •    Unusual file accesses

   •    Anomalous login attempts from unexpected locations or devices.

   •    Suspicious email forwarding rules created by compromised accounts.

Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.  

4. Agent Fatigue: The Visibility Struggle

To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.

How Darktrace / CLOUD Helps:

Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.

So why Darktrace / CLOUD?

Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.

From Chaos to Clarity

Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.

[1] https://hbr.org/2024/02/why-data-breaches-spiked-in-2023

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security

Blog

/

November 28, 2024

/

Thought Leadership

Preparing for 2025: Darktrace's top 10 AI and cybersecurity predictions

Default blog imageDefault blog image

Each year, Darktrace's AI and cybersecurity experts reflect on the events of the past 12 months and predict the trends we expect to shape the cybersecurity landscape in the year ahead. In 2024, we predicted that the global elections, fast-moving AI innovations, and increasingly cloud-based IT environments would be key factors shaping the cyber threat landscape.

Looking ahead to 2025, we expect the total addressable market of cybercrime to expand as attackers add more tactics to their toolkits. Threat actors will continue to take advantage of the volatile geopolitical environment and cybersecurity challenges will increasingly move to new frontiers like space. When it comes to AI, we anticipate the innovation in AI agents in 2024 to pave the way for the rise of multi-agent systems in 2025, creating new challenges and opportunities for cybersecurity professionals and attackers alike.

Here are ten trends to watch for in 2025:

The overall Total Addressable Market (TAM) of cybercrime gets bigger

Cybercrime is a global business, and an increasingly lucrative one, scaling through the adoption of AI and cybercrime-as-a-service. Annual revenue from cybercrime is already estimated to be over $8 trillion, which we’ve found is almost 5x greater than the revenue of the Magnificent Seven stocks. There are a few key factors driving this growth.

The ongoing growth of devices and systems means that existing malware families will continue to be successful. As of October 2024, it’s estimated that more than 5.52 billion people (~67%) have access to the internet and sources estimate 18.8 billion connected devices will be online by the end of 2024. The increasing adoption of AI is poised to drive even more interconnected systems as well as new data centers and infrastructure globally.

At the same time, more sophisticated capabilities are available for low-level attackers – we’ve already seen the trickle-down economic benefits of living off the land, edge infrastructure exploitation, and identity-focused exploitation. The availability of Ransomware-as-a-Service (RaaS) and Malware-as-a-Service (MaaS) make more advanced tactics the norm. The subscription income that these groups can generate enables more adversarial innovation, so attacks are getting faster and more effective with even bigger financial ramifications.

While there has also been an increasing trend in the last year of improved cross-border law enforcement, the efficacy of these efforts remains to be seen as cybercriminal gangs are also getting more resilient and professionalized. They are building better back-up systems and infrastructure as well as more multi-national networks and supply chains.

Security teams need to prepare for the rise of AI agents and multi-agent systems

Throughout 2024, we’ve seen major announcements about advancements in AI agents from the likes of OpenAI, Microsoft, Salesforce, and more. In 2025, we’ll see increasing innovation in and adoption of AI agents as well as the emergence of multi-agent systems (or “agent swarms”), where groups of autonomous agents work together to tackle complex tasks.

The rise of AI agents and multi-agent systems will introduce new challenges in cybersecurity, including new attack vectors and vulnerabilities. Security teams need to think about how to protect these systems to prevent data poisoning, prompt injection, or social engineering attacks.

One benefit of multi-agent systems is that agents can autonomously communicate, collaborate, and interact. However without clear and distinct boundaries and explicit permissions, this can also pose a major data privacy risk and avenue for manipulation. These issues cannot be addressed by traditional application testing alone. We must ensure these systems are secure by design, where robust protective mechanisms and data guardrails are built into the foundations.

Threat actors will be the earliest adopters of AI agents and multi-agent systems

We’ve already seen how quickly threat actors have been able to adopt generative AI for tasks like email phishing and reconnaissance. The next frontier for threat actors will be AI agents and multi-agent systems that are specialized in autonomous tasks like surveillance, initial access brokering, privilege escalation, vulnerability exploitation, data summarization for smart exfiltration, and more. Because they have no concern for safe, secure, accurate, and responsible use, adversaries will adopt these systems faster than cyber defenders.

We could also start to see use cases emerge for multi-agent systems in cyber defense – with potential for early use cases in incident response, application testing, and vulnerability discovery. On the whole, security teams will be slower to adopt these systems than adversaries because of the need to put in place proper security guardrails and build trust over time.

There is heightened supply chain risk for Large Language Models (LLMs)

Training LLMs requires a lot of data, and many experts have warned that world is running out of quality data for that training. As a result, there will be an increasing reliance on synthetic data, which can introduce new issues of accuracy and efficacy. Moreover, data supply chain risks will be an Achilles heel for organizations, with the potential interjection of vulnerabilities through the data and machine learning providers that they rely on. Poisoning one data set could have huge trickle-down impacts across many different systems. Data security will be paramount in 2025.

The race to identify software vulnerabilities intensifies

The time it takes for threat actors to exploit newly published CVEs is getting shorter, giving defenders an even smaller window to apply patches and remediations. A 2024 report from Cloudflare found that threat actors quickly weaponized proof of concept exploits in attacks as quickly as 22 minutes after the exploits were made public.

At the same time, 2024 also saw the first reports from researchers across academia and the tech industry using AI for vulnerability discovery in real-world code. With threat actors getting faster at exploiting vulnerabilities, defenders will need to use AI to identify vulnerabilities in their software stack and to help identify and prioritize remediations and patches.

Insider threat risks will force organizations to evolve zero trust strategies

In 2025, an increasingly volatile geopolitical situation and the intensity of the AI race will make insider threats an even bigger risk for businesses, forcing organizations to expand zero-trust strategies. The traditional zero-trust model provides protection from external threats to an organization’s network by requiring continuous verification of the devices and users attempting to access critical business systems, services, and information from multiple sources. However, as we have seen in the more recent Jack Teixeira case, malicious insiders can still do significant damage to an organization within their approved and authenticated boundary.

To circumvent the remaining security gaps in a zero-trust architecture and mitigate increasing risk of insider threats, organizations will need to integrate a behavioral understanding dimension to their zero-trust approaches. The zero-trust best practice of “never trust, always verify” needs to evolve to become “never trust, always verify, and continuously monitor.”

Identity remains an expensive problem for businesses

2024 saw some of the biggest and costliest attacks – all because the attacker had access to compromised credentials. Essentially, they had the key to the front door. Businesses still struggle with identity and access management (IAM), and it’s getting more complex now that we’re in the middle of a massive Software-as-a-Service (SaaS) migration driven by increasing rates of AI and cloud use across businesses.

This challenge is going to be exacerbated in 2025 by a few global and business factors. First, there is an increasing push for digital identities, such as the rollout of the EU Digital Identity Framework that is underway, which could introduce additional attack vectors. As they scale, businesses are turning more and more to centralized identity and access solutions with decentralized infrastructure and relying on SaaS and application-native security.

Increasing vulnerabilities at the edge

During the COVID-19 pandemic, many organizations had to stand-up remote access solutions quickly – in a matter of days or weeks – without the high level of due diligence that they require to be fully secured. In 2025, we expect to see continued fall-out as these quickly spun-up solutions start to present genuine vulnerability to businesses. We’ve already seen this start to play out in 2024 with the mass-exploitation of internet-edge devices like firewalls and VPN gateway products.

By July 2024, Darktrace’s threat research team observed that the most widely exploited edge infrastructure devices were those related to Ivanti Connect Secure, JetBrains TeamCity, FortiClient Enterprise Management Server, and Palo Alto Networks PAN-OS. Across the industry, we’ve already seen many zero days and vulnerabilities exploiting these internet-connected devices, which provide inroads into the network and store/cache credentials and passwords of other users that are highly valuable for threat actors.

Hacking Operational Technology (OT) gets easier

Hacking OT is notoriously complex – causing damage requires an intimate knowledge of the specific systems being targeted and historically was the reserve of nation states. But as OT has become more reliant and integrated with IT systems, attackers have stumbled on ways to cause disruption without having to rely on the sophisticated attack-craft normally associated with nation-state groups. That’s why some of the most disruptive attacks of the last year have come from hacktivist and financially-motivated criminal gangs – such as the hijacking of internet-exposed Programmable Logic Controllers (PLCs) by anti-Israel hacking groups and ransomware attacks resulting in the cancellation of hospital operations.  

In 2025, we expect to see an increase in cyber-physical disruption caused by threat groups motivated by political ideology or financial gain, bringing the OT threat landscape closer in complexity and scale to that of the IT landscape. The sectors most at risk are those with a strong reliance on IoT sensors, including healthcare, transportation, and manufacturing sectors.

Securing space infrastructure and systems becomes a critical imperative

The global space industry is growing at an incredibly fast pace, and 2025 is on track to be another record-breaking year for spaceflight with major missions and test flights planned by NASA, ESA, CNSA as well as the expected launch of the first commercial space station from Vast and programs from Blue Origin, Amazon and more. Research from Analysis Mason suggests that 38,000 additional satellites will be built and launched by 2033 and the global space industry revenue will reach $1.7 trillion by 2032. Space has also been identified as a focus area for the incoming US administration.

In 2025, we expect to see new levels of tension emerge as private and public infrastructure increasingly intersect in space, shining a light on the lack of agreed upon cyber norms and the increasing challenge of protecting complex and remote space systems against modern cyber threats.  Historically focused on securing earth-bound networks and environments, the space industry will face challenges as post-orbit threats rise, with satellites moving up the target list.

The EU’s NIS2 Directive now recognizes the space sector as an essential entity that is subject to its most strict cybersecurity requirements. Will other jurisdictions follow suit? We expect global debates about cyber vulnerabilities in space to come to the forefront as we become more reliant on space-based technology.

Preparing for the future

Whatever 2025 brings, Darktrace is committed to providing robust cybersecurity leadership and solutions to enterprises around the world. Our team of subject matter experts will continue to monitor emerging threat trends, advising both our customers and our product development teams.

And for day-to-day security, our multi-layered AI cybersecurity platform can protect against all types of threats, whether they are known, unknown, entirely novel, or powered by AI. It accomplishes this by learning what is normal for your unique organization, therefore identifying unusual and suspicious behavior at machine speed, regardless of existing rules and signatures. In this way, organizations with Darktrace can be ready for any developments in the cybersecurity threat landscape that the new year may bring.

Discover more about Darktrace's predictions on the AI and cybersecurity landscape for 2025 by joining the upcoming webinar on December 12, 2024 at 10:00am EST/3:00pm GMT. Register here.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI