Blog
/
Network
/
October 3, 2024

From Call to Compromise: Darktrace’s Response to a Vishing-Induced Network Attack

When a remote user fell victim to a vishing attack, allowing a malicious actor to gain access to a customer network, Darktrace swiftly detected the intrusion and responded effectively. This prompt action prevented any data loss and reinforced trust in Darktrace’s robust security measures.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rajendra Rushanth
Cyber Analyst
Man on computer cybersecurityDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Oct 2024

What is vishing?

Vishing, or voice phishing, is a type of cyber-attack that utilizes telephone devices to deceive targets. Threat actors typically use social engineering tactics to convince targets that they can be trusted, for example, by masquerading as a family member, their bank, or trusted a government entity. One method frequently used by vishing actors is to intimidate their targets, convincing them that they may face monetary fines or jail time if they do not provide sensitive information.

What makes vishing attacks dangerous to organizations?

Vishing attacks utilize social engineering tactics that exploit human psychology and emotion. Threat actors often impersonate trusted entities and can make it appear as though a call is coming from a reputable or known source.  These actors often target organizations, specifically their employees, and pressure them to obtain sensitive corporate data, such as privileged credentials, by creating a sense of urgency, intimidation or fear. Corporate credentials can then be used to gain unauthorized access to an organization’s network, often bypassing traditional security measures and human security teams.

Darktrace’s coverage of vishing attack

On August 12, 2024, Darktrace / NETWORK identified malicious activity on the network of a customer in the hospitality sector. The customer later confirmed that a threat actor had gained unauthorized access through a vishing attack. The attacker successfully spoofed the IT support phone number and called a remote employee, eventually leading to the compromise.

Figure 1: Timeline of events in the kill chain of this attack.

Establishing a Foothold

During the call, the remote employee was requested to authenticate via multi-factor authentication (MFA). Believing the caller to be a member of their internal IT support, using the legitimate caller ID, the remote user followed the instructions and confirmed the MFA prompt, providing access to the customer’s network.

This authentication allowed the threat actor to login into the customer’s environment by proxying through their Virtual Private Network (VPN) and gain a foothold in the network. As remote users are assigned the same static IP address when connecting to the corporate environment, the malicious actor appeared on the network using the correct username and IP address. While this stealthy activity might have evaded traditional security tools and human security teams, Darktrace’s anomaly-based threat detection identified an unusual login from a different hostname by analyzing NTLM requests from the static IP address, which it determined to be anomalous.

Observed Activity

  • On 2024-08-12 the static IP was observed using a credential belonging to the remote user to initiate an SMB session with an internal domain controller, where the authentication method NTLM was used
  • A different hostname from the usual hostname associated with this remote user was identified in the NTLM authentication request sent from a device with the static IP address to the domain controller
  • This device does not appear to have been seen on the network prior to this event.

Darktrace, therefore, recognized that this login was likely made by a malicious actor.

Internal Reconnaissance

Darktrace subsequently observed the malicious actor performing a series of reconnaissance activities, including LDAP reconnaissance, device hostname reconnaissance, and port scanning:

  • The affected device made a 53-second-long LDAP connection to another internal domain controller. During this connection, the device obtained data about internal Active Directory (AD) accounts, including the AD account of the remote user
  • The device made HTTP GET requests (e.g., HTTP GET requests with the Target URI ‘/nice ports,/Trinity.txt.bak’), indicative of Nmap usage
  • The device started making reverse DNS lookups for internal IP addresses.
Figure 2: Model alert showing the IP address from which the malicious actor connected and performed network scanning activities via port 9401.
Figure 3: Model Alert Event Log showing the affected device connecting to multiple internal locations via port 9401.

Lateral Movement

The threat actor was also seen making numerous failed NTLM authentication requests using a generic default Windows credential, indicating an attempt to brute force and laterally move through the network. During this activity, Darktrace identified that the device was using a different hostname than the one typically used by the remote employee.

Cyber AI Analyst

In addition to the detection by Darktrace / NETWORK, Darktrace’s Cyber AI Analyst launched an autonomous investigation into the ongoing activity. The investigation was able to correlate the seemingly separate events together into a broader incident, continuously adding new suspicious linked activities as they occurred.

Figure 4: Cyber AI Analyst investigation showing the activity timeline, and the activities associated with the incident.

Upon completing the investigation, Cyber AI Analyst provided the customer with a comprehensive summary of the various attack phases detected by Darktrace and the associated incidents. This clear presentation enabled the customer to gain full visibility into the compromise and understand the activities that constituted the attack.

Figure 5: Cyber AI Analyst displaying the observed attack phases and associated model alerts.

Darktrace Autonomous Response

Despite the sophisticated techniques and social engineering tactics used by the attacker to bypass the customer’s human security team and existing security stack, Darktrace’s AI-driven approach prevented the malicious actor from continuing their activities and causing more harm.

Darktrace’s Autonomous Response technology is able to enforce a pattern of life based on what is ‘normal’ and learned for the environment. If activity is detected that represents a deviation from expected activity from, a model alert is triggered. When Darktrace’s Autonomous Response functionality is configured in autonomous response mode, as was the case with the customer, it swiftly applies response actions to devices and users without the need for a system administrator or security analyst to perform any actions.

In this instance, Darktrace applied a number of mitigative actions on the remote user, containing most of the activity as soon as it was detected:

  • Block all outgoing traffic
  • Enforce pattern of life
  • Block all connections to port 445 (SMB)
  • Block all connections to port 9401
Figure 6: Darktrace’s Autonomous Response actions showing the actions taken in response to the observed activity, including blocking all outgoing traffic or enforcing the pattern of life.

The growing threat of vishing in a remote workforce

This vishing attack underscores the significant risks remote employees face and the critical need for companies to address vishing threats to prevent network compromises. The remote employee in this instance was deceived by a malicious actor who spoofed the phone number of internal IT Support and convinced the employee to perform approve an MFA request. This sophisticated social engineering tactic allowed the attacker to proxy through the customer’s VPN, making the malicious activity appear legitimate due to the use of static IP addresses.

Despite the stealthy attempts to perform malicious activities on the network, Darktrace’s focus on anomaly detection enabled it to swiftly identify and analyze the suspicious behavior. This led to the prompt determination of the activity as malicious and the subsequent blocking of the malicious actor to prevent further escalation.

While the exact motivation of the threat actor in this case remains unclear, the 2023 cyber-attack on MGM Resorts serves as a stark illustration of the potential consequences of such threats. MGM Resorts experienced significant disruptions and data breaches following a similar vishing attack, resulting in financial and reputational damage [1]. If the attack on the customer had not been detected, they too could have faced sensitive data loss and major business disruptions. This incident underscores the critical importance of robust security measures and vigilant monitoring to protect against sophisticated cyber threats.

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

Credit to Rajendra Rushanth (Cyber Security Analyst) and Ryan Traill (Threat Content Lead)

Darktrace Model Detections

  • Device / Unusual LDAP Bind and Search Activity
  • Device / Attack and Recon Tools
  • Device / Network Range Scan
  • Device / Suspicious SMB Scanning Activity
  • Device / RDP Scan
  • Device / UDP Enumeration
  • Device / Large Number of Model Breaches
  • Device / Network Scan
  • Device / Multiple Lateral Movement Model Breaches (Enhanced Monitoring)
  • Device / Reverse DNS Sweep
  • Device / SMB Session Brute Force (Non-Admin)

List of Indicators of Compromise (IoCs)

IoC - Type – Description

/nice ports,/Trinity.txt.bak - URI – Unusual Nmap Usage

MITRE ATT&CK Mapping

Tactic – ID – Technique

INITIAL ACCESS – T1200 – Hardware Additions

DISCOVERY – T1046 – Network Service Scanning

DISCOVERY – T1482 – Domain Trust Discovery

RECONNAISSANCE – T1590 – IP Addresses

T1590.002 – DNS

T1590.005 – IP Addresses

RECONNAISSANCE – T1592 – Client Configurations

T1592.004 – Client Configurations

RECONNAISSANCE – T1595 – Scanning IP Blocks

T1595.001 – Scanning IP Blocks

T1595.002 – Vulnerability Scanning

References

[1] https://www.bleepingcomputer.com/news/security/securing-helpdesks-from-hackers-what-we-can-learn-from-the-mgm-breach/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rajendra Rushanth
Cyber Analyst

More in this series

No items found.

Blog

/

Compliance

/

November 25, 2025

UK Cyber Security & Resilience Bill: What Organizations Need to Know

Default blog imageDefault blog image

Why the Bill has been introduced

The UK’s cyber threat landscape has evolved dramatically since the 2018 NIS regime was introduced. Incidents such as the Synnovis attack against hospitals and the British Library ransomware attack show how quickly operational risk can become public harm. In this context, the UK Department for Science, Innovation and Technology estimates that cyber-attacks cost UK businesses around £14.7 billion each year.

At the same time, the widespread adoption of AI has expanded organisations’ attack surfaces and empowered threat actors to launch more effective and sophisticated activities, including crafting convincing phishing campaigns, exploiting vulnerabilities and initiating ransomware attacks at unprecedented speed and scale.  

The CSRB responds to these challenges by widening who is regulated, accelerating incident reporting and tightening supply chain accountability, while enabling rapid updates that keep pace with technology and emerging risks.

Key provisions of the Cyber Security and Resilience Bill

A wider set of organisations in scope

The Bill significantly broadens the range of organisations regulated under the NIS framework.

  • Managed service providers (MSPs) - medium and large MSPs, including MSSPs, managed SOCs, SIEM providers and similar services,will now fall under NIS obligations due to their systemic importance and privileged access to client systems. The Information Commissioner’s Office (ICO) will act as the regulator. Government analysis anticipates that a further 900 to 1,100 MSPs will be in scope.
  • Data infrastructure is now recognised as essential to the functioning of the economy and public services. Medium and large data centres, as well as enterprise facilities meeting specified thresholds, will be required to implement appropriate and proportionate measures to manage cyber risk. Oversight will be shared between DSIT and Ofcom, with Ofcom serving as the operational regulator.
  • Organisations that manage electrical loads for smart appliances, such as those supporting EV charging during peak times, are now within scope.

These additions sit alongside existing NIS-regulated sectors such as transport, energy, water, health, digital infrastructure, and certain digital services (including online marketplaces, search engines, and cloud computing).

Stronger supply chain requirements

Under the CSRB, regulators can now designate third-party suppliers as ‘designated critical suppliers’ (DCS) when certain threshold criteria are met and where disruption could have significant knock-on effects. Designated suppliers will be subject to the same security and incident-reporting obligations as Operators of Essential Services (OES) and Relevant Digital Service Providers (RDSPs).

Government will scope the supply chain duties for OES and RDSPs via secondary legislation, following consultation. infrastructure incidents where a single supplier’s compromise caused widespread disruption.

Faster incident reporting

Sector-specific regulators, 12 in total, will be responsible for implementing the CSRB, allowing for more effective and consistent reporting. In addition, the CSRB introduces a two-stage reporting process and expands incident reporting criteria. Regulated entities must submit an initial notification within 24 hours of becoming aware of a significant incident, followed by an incident report within 72 hours. Incident reporting criteria are also broadened to capture incidents beyond those which actually resulted in an interruption, ensuring earlier visibility for regulators and the National Cyber Security Centre (NCSC). The importance of information sharing across agencies, law enforcement and regulators is also facilitated by the CSRB.

The reforms also require data centres and managed service providers to notify affected customers where they are likely to have been impacted by a cyber incident.

An agile regulatory framework

To keep pace with technological change, the CSRB will enable the Secretary of State to update elements of the framework via secondary legislation. Supporting materials such as the NCSC Cyber Assessment Framework (CAF) are to be "put on a stronger footing” allowing for requirements to be more easily followed, managed and updated. Regulators will also now be able to recover full costs associated with NIS duties meaning they are better resourced to carry out their associated responsibilities.

Relevant Managed Service Providers must identify and take appropriate and proportionate measures to manage risks to the systems they rely on for providing services within the UK. Importantly, these measures must, having regard to the state of the art, ensure a level of security appropriate to the risk posed, and prevent or minimise the impact of incidents.

The Secretary of State will also be empowered to issue a Statement of Strategic Priorities, setting cross-regime outcomes to drive consistency across the 12 competent authorities responsible for implementation.

Penalties

The enforcement framework will be strengthened, with maximum fines aligned with comparable regimes such as the GDPR, which incorporate maximums tied to turnover. Under the CSRB, maximum penalties for more serious breaches could be up to £17 million or 4% of global turnover, whichever is higher.

Next steps

The Bill is expected to progress through Parliament over the course of 2025 and early 2026, with Royal Assent anticipated in 2026. Once enacted, most operational measures will not take immediate effect. Instead, Government will bring key components into force through secondary legislation following further consultation, providing regulators and industry with time to adjust practices and prepare for compliance.

Anticipated timeline

  • 2025-2026: Parliamentary scrutiny and passage;
  • 2026: Royal Assent;  
  • 2026 consultation: DSIT intends to consult on detailed implementation;
  • From 2026 onwards: Phased implementation via secondary legislation, following further consultation led by DSIT.

How Darktrace can help

The CSRB represents a step change in how the UK approaches digital risk, shifting the focus from compliance to resilience.

Darktrace can help organisations operationalise this shift by using AI to detect, investigate and respond to emerging threats at machine speed, before they escalate into incidents requiring regulatory notification. Proactive tools which can be included in the Darktrace platform allow security teams to stress-test defences, map supply chain exposure and rehearse recovery scenarios, directly supporting the CSRB’s focus on resilience, transparency and rapid response. If an incident does occur, Darktrace’s autonomous agent, Cyber AI Analyst, can accelerate investigations and provide a view of every stage of the attack chain, supporting timely reporting.  

Darktrace’s AI can provide organisations with a vital lens into both internal and external cyber risk. By continuously learning patterns of behaviour across interconnected systems, Darktrace can flag potential compromise or disruption to detect supply chain risk before it impacts your organisation.

In a landscape where compliance and resilience go hand in hand, Darktrace can equip organisations to stay ahead of both evolving threats and evolving regulatory requirements.

[related-resource]

Continue reading
About the author
The Darktrace Community

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI